用户名: 密码: 验证码:
基于构造控制的地应力预测理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对赵楼井田区域构造演化、矿井构造规律、地应力场特征及其预测理论与方法等研究内容,以构造与地应力的耦合关系为核心,综合运用构造地质、岩土力学、分形几何、神经网络等多个学科的理论和成果,系统分析了中小型构造的分布规律和形成演化模式,结合分形几何的信息维和容量维定量评价了矿井构造复杂程度;应用水压致裂法和应力解除法实测了井田地应力的大小和方位,结合有限元数值模拟总结了井田内地应力场的分布特征;分析了井田地应力场的主要影响因素,研究了构造控制下的地应力场变化规律,探讨了构造与地应力场的耦合关系;通过筛选和构建输入指标,建立了5×7×3结构的3层BP神经网络模型对地应力进行预测等。研究结果表明:区域构造演化控制了矿井构造的发育和演化,在剖面上表现为地堑、地垒相间的构造样式;断层信息维较之于容量维表征矿井构造复杂程度更客观、更合理;研究区以水平应力为主导,最大水平主应力的方向为NE65o~87o,最大主应力(水平)与最小主应力(垂直)的差值处于较低的水平,反映了研究区处于构造的相对稳定期,岩体不易变形与破坏;影响研究区地应力的主要因素为现代地壳运动、断裂构造、地层岩石组合和地震活动,构造特征控制了地应力场的分布格局,造成了主应力大小和方向的变化,同时,地应力场的分布对矿区构造演化又具有促进作用;在人工神经网络建模中引入具有构造意义的输入指标—岩组相对强度(I)、断层相对距离(D),实现了研究区地应力的预测,显示出其高效性和鲁棒性,更深刻的揭示了构造与地应力之间的耦合关系。
According to regional tectonic evolution, the laws of mine structure, the Characteristics of in-situ stress field, and the methods and theories of prediction for in-situ stress field etc. in Zhaolou Coal Mine, distribution law and formation-evolution model of middle and small structure were discussed systematically, combined with the information dimension of Fractal Geometry, the complex degree of mine structure was quantitative evaluated; The value and direction of in-situ stress in Zhaolou Coal Mine were measured, combined with finite element numerical simulation method, distribution characteristics of in-situ stress field were summarized; Main influence factors to in-situ stress field were analyzed, variation law of in-situ stress field controlled by the structure was studied, coupling relationship between structure and in-situ stress field was discussed; A BP neural network model having 3 layers and 5×7×3 structure was established etc. The research results show that the structural development and evolution were controlled by regional tectonic evolution, and the structural style are graben and horst in the section of mine structure; The information dimension about faults is more impersonal and reasonable than capacity dimension on the expression of complex degree in mine structure; The main influence factors to in-situ stress field in Zhaolou Coal Mine are recent crustal movements, faults, stratum assemblage and seismic activities, the distribution law of in-situ stress field and the value and direction of principal stress are controlled by geological structure, and the distribution pattern of in-situ stress field promoted the tectonic evolution; The input indexes having tectonic significance were introduced in artificial neural network modeling, such as Relative Intensity of Petrofabric(I), Relative Distance of Fault(D), the prediction of in-situ stress was feasible, the results reveal profoundly coupling relationship between structure and in-situ stress.
引文
[1]范维唐.落实科学发展观,发展先进生产力,促进煤炭工业健康发展[J].煤炭企业管理,2005,(12):5-9.
    [2]ЛукнновB B.朱雪芬译.根据局部构造图分析煤层的构造条件[J].国外煤田地质,1991,(2):34-36.
    [3]波利瓦洛夫B A.闫鸿铨译.确定地质构造等级的新方法[J].长春地质学院学报,1991,21(4):397-401.
    [4]徐凤银,魏铭康.矿井构造评价与预测理论、方法及其应用[M].徐州:中国矿业大学出版社,1993.
    [5]曹运兴,彭立世,侯泉林.顺煤层断层的基本特征及其地质意义[J].地质论评,1993,39(6):522-528.
    [6]金法礼,姜波,王桂梁等.利国矿区矿井层滑构造研究[J].中国矿业大学学报,1999,28(3):273-276.
    [7]琚宜文,王桂梁,姜波.浅层次脆性变形域中煤层韧性剪切带微观分析[J].中国科学(D辑),2003,33(7):626-635.
    [8]琚宜文,姜波,王桂梁等.层滑构造煤岩体微观特征及其应力应变分析[J].地质科学,2004,39(1):50-62.
    [9]詹才高,范念寒.应用等性块段指数法定量划分华北煤矿勘探类型[J].煤田地质与勘探, 1985,13(5):16-24.
    [10]王桂梁,龙荣生,徐凤银等.矿井构造预测[M].煤炭工业出版社,1993.
    [11]徐凤银,王桂梁.矿井构造定量评价中指标权重的确定方法[J].中国矿业大学学报,1991,20(4):60-65.
    [12]徐凤银,龙荣生.矿井地质构造定量评价及其预测[J].煤炭学报,1991,16(4):93-101.
    [13]徐凤银,龙荣生.煤矿构造复杂程度评价指标的优选途径[J].煤田地质与勘探,1991,19(1):20-23.
    [14]徐凤银,龙荣生,李汝明.衫木树矿井古构造应力场特征及其研究意义[J].西安矿业学院学报,1991,(4):56-63.
    [15]徐凤银,龙荣生.矿井地质构造定量预测中的难点及其研究[J].煤田地质与勘探,1992,20(1):27-32.
    [16]徐凤银,郑守权.矿井构造的灰色预测与综合评价[J].煤田地质与勘探,1994,22(5):23-27.
    [17]徐凤银,朱兴珊.矿井构造预测与评价的发展途径[J].中国矿业大学学报,1995,24(3):68-74.
    [18]徐凤银,王桂梁.芙蓉矿区古构造应力场及其对煤与瓦斯突出控制的定量化研究[J].地质科学,1995,30(1):71-84.
    [19]夏玉成,徐凤银.灰色关联分析在模糊综合评判中的应用[J].西安矿业学院学报,1991,(4):44-50.
    [20]夏玉成.矿井构造量化预测技术的研究与进展[J].地质与勘探,2001,37(3):61-63.
    [21]夏玉成,樊怀仁.矿井构造定量评价的原则和方法[J].西安矿业学院学报,1998,18(4):323-327.
    [22]夏玉成,胡明星.矿井构造的GMDH—BP评价预测方法及其应用[J].煤炭学报,1997,22(5):466-469.
    [23]夏玉成,贾海莉.矿井构造相对复杂程度自动量化预测技术[J].煤炭学报,2000,25(增刊):22-25.
    [24]汪吉林.矿井构造定量评价理论与方法研究——以鲍店矿为例[D].徐州:中国矿业大学,2005.
    [25]徐志斌,王继尧,张大顺等.煤矿断层网络复杂程度的分维描述[J],煤炭学报,1996,21(4):358-363.
    [26]徐志斌,谢和平.分维-评价矿井断裂复杂程度的综合性指标[J].中国矿业大学学报,1996,25(3):11-15.
    [27]孙洪泉,陆国桢等.判别分析法在矿井地质构造预测中的应用[J].煤炭学报,1996,21(5):455-458.
    [28]秦忠诚,翟德元.趋势面分析方法的应用[J].煤矿开采,1998,(1):47-51.
    [29]高文华,周利华.趋势面分析在洪山殿矿区构造和厚煤带分布研究中的应用[J].湖南地质,1997,16(3):197-201.
    [30]段卫东,马建军.反向起爆破碎效果优于正向起爆的机理探讨[J].武汉冶金科技大学学报,1998,21(1):10-14.
    [31]蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000.
    [32] Burg J P, Laurant P H. Strain analysis of a shear zone in a granodiorite[J]. Tectonophysics, 1978, 47: 15-42.
    [33]万天丰.古构造应力场[M].北京:地质出版社,1988.
    [34]刘耀荣.香花岭矿田古构造应力场特征[J].湖南地质,1991,10(1):59-66.
    [35]易改危,王钟秀,王文祥等.鲤鱼塘井田的古构造应力场及形成机理探讨[J].湘潭矿业学院学报,1990,5(2):136-142.
    [36]薛喜成,龙荣生,渠天翔.黄甲堡井田古构造应力场的恢复与研究[J].西安矿业学院学报,1993,(3):235-241.
    [37]马宗晋,邓起东.节理力学性质的判别及其分期、配套的初步研究[M].北京:科学出版社,1963.
    [38]高文华,徐望国,周丕昌等.斗笠山矿区古构造应力场及构造形成机理探讨[J].湘潭矿业学院学报,2001,16(3):1-4.
    [39] Etchecopar A, Vasseur G, Daignieres M. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis[J]. Journal of Structural Geology, 1981, 3(1): 51-55.
    [40] Armijo R, Carey E, Cisternas A. The inverse problem in neotectonics and the separation of tectonic phases[J]. Tectonophysics, 1982, 82: 145-160.
    [41] Trinh P T. An inverse problem for the determination of the stress tensor from polyphased fault sets and earthquake focal mechanisms[J]. Tectonophysics, 1993, 224: 393-411.
    [42]许志琴,侯立玮,王宗秀等.中国松潘—甘孜造山带的造山过程[M].北京:地质出版社,1992.
    [43]谢富仁,刘光勋.阿尔金断裂中段区域构造应力场分析[J],中国地震,1989,5(3):30-38.
    [44]何玉林.四川抚边河断裂的活动特征[J].地震地质,1997,19(1):31-36.
    [45]王文侠.涟源煤田无烟煤镜质组反射率异性组构与有限应变分析[J].煤炭学报,1991,16(2):94-102.
    [46]曹代勇.安徽淮北煤田推覆构造中煤镜质组反射率各向异性研究[J].地质论评,1990,36(4):334-340.
    [47]王桂梁,曹代勇,姜波等.华北南部的逆冲推覆、伸展滑覆与重力滑动构造—兼论滑脱构造的研究方法[M].徐州:中国矿业大学出版社,1992.
    [48]王桂梁,刘登桃,姜波等.福建天湖山区推滑叠加型滑脱构造模式[J].中国科学(B辑),1995,25(1):85-92.
    [49]姜波,秦勇.变形煤的结构演化机理及其地质意义[M].徐州:中国矿业大学出版社,1998.
    [50]姜波,徐凤银,刘仰露等.柴达木北缘镜质组光性组构及应力-应变分析[J].中国矿业大学学报,2002,31(6):561-564.
    [51]佟彦明.胶莱盆地莱阳期古构造应力场分析及模拟[J].大庆石油地质与开发,2007,26(1):6-9.
    [52]刘允芳.水压致裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3):246-256.
    [53] Hayashi K,Haimson B C. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress[J]. J G R, 1991, 96(B11): 18311-18321.
    [54]蔡美峰,陈长臻,彭华等.万福煤矿深部水压致裂地应力测量[J].岩石力学与工程学报,2006,25(5):1069-1074.
    [55]蔡美峰,彭华,乔兰等.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报,2008,33(11):1248-1252.
    [56]韩嵩,蔡美峰.万福煤矿深部地应力场与地质构造关系分析[J].矿业研究与开发,2007,27(1):59-62.
    [57]楼一珊.应力的测试方法及其在石油工业中的应用[J].中国海上油气,1996,10(4):271-273.
    [58] Kanagawa T, Hayashi M, Nakasa H. Estimation of spatial geostress components in rock samples using the Kaiser effect of acoustic emission[M]. Tokyo: The Third Acoustic Emission Symposium, 1976.
    [59] Yosihkawa S, Mogi K. A new method for estimation the crustal stress from cored samples. Laboratory study in the case of unaxial compression[J]. Tectonophysics, 1981, (74): 323-339.
    [60] Yosihikawa S, Mogi K. Experimental studies on the effect of stress history on acoustic emission activity-A possibity for estimation of rock stress[J]. Journal of Acoustic Emission, 1989, 8(4): 113-123.
    [61] Thiencelin M J, Hudson P T, Ren N K, et al. Laboratory determination of the in-situ stress tensor[A]. Proceeding of the International Symposium on Engineering in Complex Rock Formations[C]. Beijing: Science Press, 1986.
    [62]李宏,陈景裕,江南生等.利用定向岩心进行AE法原地应力测量[J].地质力学学报,1999,5(1):85-89.
    [63] Doe T W, Korbin G E. A comparison of hydraulic fracturing and hydraulic jacking stress measurements[A]. In; Proc. 28th U S Symposium on Rock Mechanics[C]. Tucson, 1987, 283-290.
    [64] Rutqvist J. Determination of hydraulic normal stiffness of fractures in hard rock from well testing[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr, 1995, 32(5): 513-523.
    [65]陈群策,李方全.水力阶撑法用于原地应力测量的工作原理及其工程实践[J].岩石力学与工程学报,1998,17(3):305-310.
    [66]欧阳健.测井地应力分析与油气藏勘探家[J].1999,4(1):38–43.
    [67]欧阳健,王贵文.测井地质分析与油气层定量评价[M].北京:石油工业出版社,1999.
    [68]欧阳健,王贵文.电测井地应力分析及评价[J].石油勘探与开发,2001,28(3):92-94.
    [69]高莉青,陈宏德.岩体应力状态的影响因素,地应力测量理论研究与应力[M].北京:地质出版社,1987.
    [70]佐洛塔列夫.丁健民(译).决定地应力状态的地质因素,地应力测量与研究[M].北京:地震出版社,1982.
    [71]古德曼R E.王鸿儒,王宏硕等译.岩石力学原理及其应用[M].北京:水利电力出版社,1990.
    [72] Rafiqul M d, Hayashi I D, Kamruzzaman A B M. Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine[J]. International Journal of Coal Geology, 2009, (78): 91–109.
    [73] Carlos M L, Jesus G Z, Luis R F, et al. Active faults, seismicity and stresses in an internalboundary of a tectonic arc (Campo de Dalias and Nijar,southeastern Betic Cordilleras, Spain)[J]. Tectonophysics, 2004, 396(2005): 81-96.
    [74] Matsuki K, Takeuchi K.Three-dimensional in situ stress determination by anelastic strain recovery of rock core[A]. 34th U S Symposium on Rock Mechanics[C]. 1993, 637-640.
    [75] Payman N, Jacques A, Eric B. Cenozoic post-collisional brittle tectonic history and stress reorientation in the High Zagros Belt(Iran, Fars Province)[J]. Tectonophysics, 2005, 432(2007): 101-131.
    [76]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991.
    [77]陶振宇,杨子文.地应力—岩体性状的一个主要因素[J].水利学报,1982,(10):38-43.
    [78] Aitmatov I T, Vdovin K D, Kejogulov K Ch, et al. U. A. State of stress in rock and rock-burst proneness in seimicative folded areas[A]. Procs. of 6th ISRM[C]. Canada, 1987, 1093-1100.
    [79]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1994,16(1):49-63.
    [80]苏生瑞.断裂构造对地应力场的影响及其工程意义[J].岩石力学及工程学报,2002,21(2):296.
    [81] Carlsson A, Christiansson R. Rock stresses and geological structures in the Forsmark area. Stephans-Son O. Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements[M]. Stockholm: Centek Publishers, 1986.
    [82]王靖涛,丁美英,黄建孟.在地应力场中断裂传播的能量耗损[J].岩石力学与工程学报,1996, (15):417-421.
    [83] Su S R, Stephansson O. Effect of a fault on in situ stress studied by distinct element method[J]. In t J Rock Mech & Mining Sci. 1999, 36(8): 1501-1506.
    [84]黄醒春,卢海星.复杂断层扰动下的原岩应力场的数值分析与评价[J].岩土工程学报,2000,22(3):327-331.
    [85]苏生瑞,朱合华,王士天等.断裂物理力学性质对其附近地应力场的影响[J].西北大学学报(自然科学版),2002,32(6):655-658.
    [86]贾立宏,李造鼎.地应力场灰色模拟方法研究[J].东北大学学报(自然科学版),1995,16(6):559-563.
    [87]金立平,鲜学福.煤层区域稳定性的研究[J].煤炭工程师,1994,(3):14-16.
    [88]孙宗顺,张国报,张景和.在地质断层构造中地应力状态演变研究[J].石油勘探与开发,2002,27(1):102-105.
    [89]白晨光,于学馥,孔广亚.基于神经网络的地应力预测方法研究[J].化工矿山技术,1997,12-14.
    [90]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析[J].河海大学学报,2002,30(3):52-56.
    [91]刁心宏,王泳嘉,冯夏庭等.用人工神经网络方法辨识岩体力学参数[J].东北大学学报(自然科学版),2002,23(1):60-63.
    [92]金长宇,马震岳,张运良等.神经网络在岩体力学参数和地应力场反演中的应用[J].岩土力学,2006,27(8):1263-1271.
    [93]罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真,2004,21(5):109-115.
    [94]尚冠雄.华北地台晚古生代煤地质学研究[M].太原:山西科学技术出版社,1997.
    [95]李智毅,杨裕云.工程地质学概论[M].武汉:中国地质大学出版社,2006.
    [96] Brady B H G, Brown E T. Rock Mechanics for underground mining[J]. George Allen&Unwin, 1985.
    [97] Amadei B, Stephansson O. Rock stress and its measurement[J]. Chapman&Hall, 1997.
    [98]陈宗基.我国在复杂岩层中的巷道掘进[J].岩石力学与工程学报,1988,7(1):1-14.
    [99]于双忠.煤矿工程地质研究[M].徐州:中国矿业大学出版社,1991.
    [100] Hudson J A, Harrison J P. An Introduction to the Principals, Elsevier, Oxford[J]. Engineering rock mechanics, 1997, 7(1):7-14.
    [101]张宏伟,张文军,李胜.断裂应力场模拟分析与应用[J].湘潭矿业学院学报,2002,17(2):1-3.
    [102]袁懋昶.断裂力学理论及其工程应用[M].重庆:重庆大学出版社,1989.
    [103]许进鹏,宋扬,程久龙等.小断层的走向长度与断距关系的数学模型[J].煤炭学报,2005,30(4):22-26.
    [104]苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用[M].北京:科学出版社,2002.
    [105] Richarderson A A, Brown S M, Hustrulid W A, et al. An interpretation of highly scattered stress measurements in foliated gneiss[A], In: Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress[C]. Centek Publishers, 1986, 441-447.
    [106] Obara Y, Chang H K, Sugawara K, et al. Measurement of stress distribution around fault and considerations[A], In: Rossmanith(ed), Mechanics of Jointed and Faulted Rock[C]. Balkema, Rotterdam, 1995, 495-500.
    [107] Stephansson O, Angman P. Hydraulic fracturing stress measurements at Forsmark and Sidsvig, Sweden, Bull[J]. Geol. Soc. Finland, 1986, (58): 307-333.
    [108] Xu Z B, Wang J Y, Xie H P. Fractal Model of Estimating the Roughness of Rock Fracture Surfaces[J]. Journal of China University of Mining & Technology, 1997, 7(1): 53-57.
    [109] Zhang X C, Wang J Q. Active faults, Research on the Mechanism and Prevention of Rockburst at the Yinxin Gold Mine[J]. Journal of China University of Mining & Technology, 2007, 17(4): 0541-0545.
    [110]杨树新,陈连旺,谢富仁.中国大陆现今构造应力场的回归分析研究[J].岩土力学,2003,24(增刊):357-361.
    [111]薛玺成,郭怀志,马启超.岩体高地应力及其分析[J].水利学报,1987,(3):52-58.
    [112]万天丰.中国东部中·新生代板内变形构造应力场及其应用[M].北京:地质出版社,1993.
    [113]马杏垣.中国岩石圈动力学概要[J].地质科学,1987,(2):113-125.
    [114]万天丰.中国大地构造学纲要[M].北京:地质出版社,2004.
    [115]储党生,童宏树,李全等.基于ANSYS的构造应力场模拟分析—以任楼煤矿7-2煤层为例[J].安理工学报,2008,28(1):16-19.
    [116]戴荣,李仲奎.三维地应力场BP反分析的改进[J].岩石力学与工程学报,2005,24(1):83-88.
    [117]宋卫华,张宏伟,徐秀茹.区域构造应力场的数值模拟与应用[J].辽宁工程技术大学学报,2006,25(14):39-42.
    [118]杨行峻,郑君里.人工神经网络[M].北京:高等教育出版社,1992.
    [119]朱宝龙,夏玉成.人工神经网络在矿井构造定量评价中的应用[J].煤田地质与勘探,2001,29(6):15-17.
    [120]朱宝龙,夏玉成.基于人工神经网络的矿井构造定量评价[J].中国煤田地质,2001,13(3):73-74.
    [121]朱宝龙,夏玉成.东坡井田矿井构造的人工神经网络定量评价[J].辽宁工程技术大学学报(自然科学版),2001,20(3):281-284.
    [122] Gonzalez D, Vallejo L I, Hijazo T. A New Method of Estimating the Ratio Between In Situ Rock Stresses and Tectonics Based on Empirical and Probabilistic Analyses[J]. Engineering Geology, 2008, 101(3-4): 185-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700