用户名: 密码: 验证码:
岷江上游叠溪古堰塞湖沉积物的环境地质信息研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岷江上游古堰塞湖湖相沉积物保存有敏感反映古气候变化的重要信息。其中叠溪古堰塞湖湖相沉积物厚度达200余米,并在其中保留了以湖相沉积物为基座的六级阶地,测年显示其形成于距今2万年前左右,消亡时间起始于1万年前左右,在时代上即是末次冰盛期结束,经历增温期到新仙女木干冷期的阶段。无论从沉积物规模和沉积物记载的时间信息、环境地质信息都应当是相当丰富的,为研究该区域2万年以来的气候环境变化规律提供了非常丰富而宝贵的资料。
     本文主要对岷江上游叠溪古堰塞湖进行了深入研究,主要研究了古堰塞湖的分布特征、沉积物的沉积构造特征、沉积物中的环境信息指标(如:粒度测试分析、孢粉测试分析、碳氧同位素测试分析等)、堰塞湖的形成时间和消亡时间的测试等。根据这些测试与研究结果结合岷江上游一系列古堰塞湖的特征,对叠溪地区2万年以来的古环境古气候进行了分析,得到了该区域古气候古环境的演化规律。通过本次研究主要得到以下主要成果:
     (1)从古堰塞湖的岩相特征、空间展布特征以及物质成分结构特征等多个方面论证了叠溪团结村古老沉积物属于堰塞湖湖相沉积物,它不同于黄土沉积物、冰川湖沉积物、封闭湖泊沉积物。通过对古堰塞湖沉积物精细的颗分实验分析(共64个测试样),发现沉积物粒径范围多在(0,0.075mm)之间,属粉粒和粘粒范畴;沉积物纹层厚度在2~5cm之间;堰塞湖相沉积物纹层深色代表春夏雨水充足季节沉积,浅色代表秋冬旱季沉积;堰塞湖沉积物粗颗粒颜色较深,细颗粒颜色较浅,这种纹层特征正好与冰川湖相纹层特征相反。通过对古堰塞湖沉积物剖面系统的颗粒分析实验(共33个测试样),发现在整个沉积物纵剖面上从底到顶,颗粒总体有变细的趋势,中间存在粗细变化的波动现象。
     (2)综合各环境代用指标粒度(共33个测试样)、碳氧同位素(共20个测试样)、孢粉(共33个测试样)的研究成果,将整个团结村沉积物纵剖面划分为7个沉积环境时段:第①期段(22~20.8ka.BP):高程范围2130~2141m,该期段植被环境为森林草原类型,气候为冷干转为暖湿的过程;第②期段(20.8~17.7ka.BP):高程范围2141~2177m,该期段植被环境为草原森林类型,气候为暖湿转为冷干的过程;第③期段(17.7~16.4ka.BP):高程范围2177~2197m,该期段植被环境为混交林草原类型,气候为冷干转为暖湿的过程;第④期段(16.4~13.4ka.BP):高程范围2197~2224m,该期段植被环境为常绿针叶林类型,气候为暖湿转为较暖半干的过程;第⑤期段(13.4~11.9ka.BP):高程范围2224~2281m,该期段植被环境为针叶林及部分混交林类型,气候为较暖轻湿转为凉干的过程;第⑥期段(11.9~10.3ka.BP):高程范围2281~2299m,该期段植被环境为针叶林及部分混交林类型,气候为凉干转为冷湿的过程;第⑦期段(10.3~10ka.BP):高程范围2299~2310m,该期段植被环境为针、阔叶混交林植被类型,气候为冷湿转为暖干的过程。这些信息指示了在岷江叠溪地区,在10kaBP~22kaBP期间经历了大约7次环境的变迁。
     (3)叠溪古堰塞湖沉积物中保留下来了以湖相沉积物为基座的六级阶地,这六级阶地的存在表明了叠溪古堰塞湖曾经发生过六次溃决和相应的沉积过程,根据对阶地沉积物的年代测试和孢粉测试资料分析,对叠溪地区10kaBP以来的古气候古环境初步得到以下规律:1)叠溪古堰塞湖自10kaBP来开始溃决,并分为约6次溃决后消失,每一次溃决都有可能源于地质环境的改变;2)10~8.4kaBP间,气候由暖干转为暖偏凉轻湿;3)8.4~5.5kaBP间,气候由温暖偏凉轻微湿润转为温暖半干旱。
     (4)通过对青藏高原东部边缘相邻地区古气候古环境对比研究发现:叠溪地区与相邻的若尔盖地区在相同的时间段里气候环境特点存在差别,但在在2万年左右这些地区气候总体上一致表现出寒冷干燥;在1万年左右这些地区气候总体上一致表现出温暖湿润。这说明在青藏高原东部边缘,在这两个时间段上,区域气候一致,应该是大环境大气候的影响起主导作用。
The important information with ancient climatic evolution of sensitive reflection was kept in the ancient dammed lake sediments in the upstream of Minjiang River. Among them the ancient dammed lake lacustrine sediments thickness is up to more than 200 meters, and it has kept the six terraces which have taken the lacustrine sediments as base. The 14C dating showed that it was formed in about 2 million years ago and disappeared in about 1 million years ago, that is, in the era of the last period of the end of the ice, going through periods of warming to Younger Dryas cold period of the stage. Regardless of the scale and sediment from the sediment record of the time information, geological environmental information should be very rich,for the study of the changes of climate and environment to provide a very valuable information in the region since 2 million years.
     The Diexi ancient dammed lakes of upstream Minjiang River has been in-depth study in this paper which include distributed characteristic of ancient dammed lakes, Structural Characteristics of sediment deposition, sediment indicators of environmental information, and the 14C dating of forming and disappearing of the dammed lake, etc. Based on these test results with the combination of a series of ancient dammed lakes characteristic in the upstream of Minjiang River, the paleoenvironment and palaeoclimatic evolution of Diexi region were analyzed since 20,000 years. Through this study the following main results:
     (1) The Diexi ancient dammed lake lithofacies characteristics, characteristics of spatial distribution, as well as structural characteristics of the material composition of many aspects, such as proof of the Diexi ancient sediments are lacustrine sediments, which is different from the loess sediments, glacial lake sediments, and closed lake sediments. Through particle analysis experiment of the lacustrine sediments(64 test samples), these sediment grain’s diameters are many in (0, 0.075mm), belong to the powder and clay grain; Sediment laminae thickness is between 2-5cm; The dark laminae of the ancient dammed lake sediment line layer represents the sufficient rainwater in spring and summer to deposit, dry deposition of light-colored representative of autumn and winter; The ancient dammed lake sediment thick particle color of sediment is relatively dark, detailed particle color is relatively shallow.
     (2) Based on the result of granularity analysis(33 test samples), carbon oxygen isotope analysis(20 test samples), and spore's powder analysis(33 test samples), the whole Tuanjie village sediment profile is divided into 7 environment time intervals: The first stage (22 ~ 20.8 ka BP) : elevation range:2141~ 2130m, it is to be forest grassland vegetation types, the climate environment is from frigidity dry turn into warm wet process in the period; The second stage (20.8~17.7ka.BP):elevation range:2141~2177m, it is to be grassland forest vegetation types, the climate environment is from warm wet turn into frigidity dry process in the period; The third stage (17.7~16.4ka.BP):elevation range:2177~2197m, it is to be mingled forest grasslands vegetation types, the climate environment is from frigidity dry turn into warm wet process in the period; The fourth stage (16.4~13.4ka.BP):elevation range:2197~2224m, it is to be evergreen needle leaf forest vegetation types, the climate environment is from warm wet turn into warm semi-dry process in the period; The fifth stage (13.4~11.9ka.BP):elevation range:2224~2281m, it is to be needle leaf forest and mingled forest vegetation types, the climate environment is from warmer lilted wet turn into cold dry process in the period; The sixth stage (11.9~10.3ka.BP):elevation range:2281~2299m, it is to be needle leaf forest and part mingled forest vegetation types, the climate environment is from cold dry turn into frigidity wet process in the period; The seventh stage (10.3~10ka.BP):elevation range:2299~2310m, it is to be needle-broad leaf mingled forest vegetation types, the climate environment is from frigidity wet turn into warm dry process in the period. The information has pointed out that has gone through changes of the environment about 7 times during 10kaBP-22kaBP in the Diexi area.
     (3) The Diexi ancient dammed lake preserved in lacustrine sediments of the base 6 for the terrace, which the existence of six terrace shows the ancient dammed lake outburst had occurred in six of the corresponding deposition process. According to the dating and palynological test data, get the following laws to the palaeoclimate and ancient environment in this area since in 10kaBP: 1) The Diexi ancient dammed lake begins to burst since 10ka.BP, disappear after being divided into about 6 times burst , every time after all possible efforts from climate change; 2) Among the 10-8.4kaBP, the climate environment is from warm dry turn into warm-cold little wet process in the period; 3) Among the 8.4~5.5kaBP, the climate environment is from warm-cold little wet turn into warm semi-dry process in the period.
     (4) Through comparing the ancient environment and palaeoclimate of adjacent area of edge of the east of Qinghai-Tibet Plateau with discovering: Diexi region and adjacent Ruoergai area in the same period of time characterized by the existence of differences in climate and environment, but demonstrated unanimously generally in these regional climate in 2 million years it is frigidity and dry; These regional climate demonstrated unanimously generally that warm and wet in 10,000 years. These evidences prove on the edge of the east of Qinghai-Tibet Plateau, has these two time intervals, the regional climate is identical, the influence that it should be the great environmental macroclimate plays a leading role.
引文
【1】常隆庆.四川叠溪地震调查记【J】.地质论评,1933,Ⅲ卷3期
    【2】李承三吴燕生李永昭卢登仕等,四川龙门山南段东坡及其山前带第四纪冰川遗迹【M】,中国第四纪冰川遗迹研究文集,科学出版社,北京,1964:14-86
    【3】四川地震局编著.《一九三三年叠溪地震》【M】.,成都科学技术出版社1985
    【4】黄祖智、唐荣昌、刘盛利,四川较场弧形构造与1933年叠溪地震发震构造的再讨论【J】,中国地震,第18卷、第2期(183~192)
    【5】江在雄,徐近之实察叠溪地震及震后的建议和对策【J】,山西地震,1994,No.3:52-54,
    【6】柴贺军,刘汉超,张倬元.中国地质灾害概述【M】,环境地质研究(四).1992,地质出版社
    【7】王兰生,杨立铮,李天斌,卫宏等.四川岷江叠溪较场地震滑坡及环境保护【J】.地质灾害与环境保护,2000(9), 3,11(3) :195 - 199.
    【8】王兰生杨立铮王小群段丽萍等,岷江叠溪古堰塞湖的发现【J】,成都理工大学学报(自然科学版),Vol.32 No.1, 2005,1-11
    【9】王兰生王小群崔杰许向宁等,茂县叠溪重点地质遗迹保护可行性报告【R】,成都理工大学,2006
    【10】王兰生,许向宁,王小群,崔杰等.岷江叠溪地区地质遗迹景观调查评价与规划报告—四川省地质遗迹景观调查评价专题之一【R】,成都理工大学
    【11】王兰生王小群崔杰许向宁等,岷江上游两万年左右前发生了什么事件?【J】,地学前缘(中国地质大学(北京);北京大学)2007,14(4):189-196
    【12】王兰生,王小群,许向宁,杨立铮,温少曲:“DIEXI EARTHQUAKE-LANDSLIDE AND ITS ENVIRONMENT ON THE UPSTREAM OF MIN RIVER OF SICHUAN",(叠溪地震滑坡和环境)”POSTER presentation (code: A32IGCEKAR), 32届世界地质大会展板成果;2004年7月,意大利,都灵
    【13】丁一汇;孙颖,国际气候变化研究新进展,气候变化研究进展[J ],2006(2):161-167
    【14】韩美;李艳红;张维英;张丽娜,中国湖泊与环境演变研究的回顾与展望,地理科学进展[J],2003(22):125-132
    【15】王苏民张振克,中国湖泊沉积与环境演变研究的新进展[J]科学通报,1999 ,44 (6):579– 587
    【16】王富葆,韩辉友等。青藏高原东北部30ka以来的古植被与古气候演变序列。中国科学D辑,1996,26(2):582~589。
    【17】沈才明,唐领余,王苏民等.若尔盖盆地RM孔孢粉记录及其年代序列[J]科学通报,2005,50 (3): 246-254
    【18】朱大岗;孟宪刚;赵希涛等,西藏纳木错晚更新世以来湖面变化和湖相沉积中粘土矿物显示的环境信息,地质力学学报,[J ],2004, (10):300-309
    【19】吴敬禄, G.H.Schleser,夏威岚,Andreas L cke,李世杰,王苏民,青藏高原东部兴措湖生物壳体元素及同位素记录的气候环境信息,湖泊科学,[J ],2001,(13):220-226
    【20】吴敬禄, Andreas Luecke,李世杰,夏崴岚,兴措湖沉积物有机碳及其同位素记录揭示的近代气候与环境,海洋地质与第四纪地质,[J ],2000,(20):37-42
    【21】吴敬禄,李世杰,王苏民,夏威岚,李万春,羊向东,若尔盖盆地兴措湖沉积记录揭示的近代气候与环境,湖泊科学,[J ],2000,(12):291-296
    【22】刘兴起;沈吉;王苏民;张恩楼;蔡元峰,16ka以来青海湖湖相自生碳酸盐沉积记录的古气候,高校地质学报,[J ],2003(9):38-46
    【23】于守兵;李世杰;刘吉峰,青藏高原湖泊沉积研究及其进展,山地学报,[J ],2006(24):487-488
    【24】Anne Müller, Maren Voss,1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II.δ13C andδ15N ratios of organic matter—sources and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 145,17–32.
    【25】Adams, J., 1981. Earthquake-dammed lakes in New Zealand. Geology 9, 215– 219.
    [33]Alford, D., Schuster, R.L, 2000. Usoi Landslide Dam and Lake Sarez, an Assessment of Hazard and Risk in the Pamir Mountains, Tajikistan, ISDR Prevention Series no. 1. Chap. 1.
    【26】Anderson, R.Y., 1996. Seasonal sedimentation: a framework for reconstructing climate and environmental change. In: Kemp, A.E.S. (Ed.), Palaeoclimatology and Palaeoceanography from Laminated Sediments. Geol. Soc. Spec. Publ. 116, 1–15.
    【27】Bookhagen, B., Haselton, K., Trauth, M.H., 1998. Water balance model of a landslide-dammed lake in the Andes of NW Argentina (26oS, 66oW). Ann. Geophys. 16 (4), C1199.
    【28】Dethier, D.P., Reneau, S.L., 1996. Lacustrine chronology links late Pleistocene climate change and mass movement in northern New Mexico. Geology 24, 539–542.
    【29】Erol, O. Geomorphologic Arguments for Mid- to Late Holocene,Environmental Change in Central Anatolian (pluvial) lake Basins. In H. N. Dalfes, G. Kukla, & H. Weiss (Eds.), 1hird Millenium BCClimate Change and Old ?orld Collapse: NATO ASI series (1997). (Vol.149, pp. 321-350). Berlin: Springer.
    【30】Erol, O,Quaternary Chronology of Turkey according to geomorphologic arguments.?orkshop on the Quaternary of 1urkey, 17-19 November 1993 Istanbul. Abstracts,54-59, Publ. Of Istanbul Technical University, Faculty of Mining, Dept. of Geological Engineering, and TU? BITAK. (In Turkish). (1993)
    【31】Hanisch, J., So¨der, C.O., 2000. Usoi Landslide Dam and Lake Sarez, an Assessment of Hazard and Risk in the Pamir Mountains Tajikistan, ISDR Prevention Series no. 1. Chap. 3.
    【32】Heim, A., 1932. Bergsturz und Menschenleben Fretz und Wasmuth Verlag, Zu¨rich. 218 pp.
    [41]Hewitt, K., 1998. Catastrophic landslides and their effects on the Upper Indus stream, Karakoram Himalaya, northern Pakistan. Geomorphology 26, 47– 80.
    【33】Johannes T. Weidinger, Jiading Wangb, Naixi Ma, 2002. The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, [43]P. R. of China-the benefits of a lake-damming prehistoric natural disaster. Quaternary International 93–94,207–214.
    【34】Johannes T. Weidinger,Case history and hazard analysis of two lake-damming landslides in the Himalayas,Journal of Asian Earth Sciences, Vol. 16, Nos. 2-3, pp. 323-331, 1998
    【35】King, J.P., Loveday, I.C., Schuster, R.L., 1989. The 1985 Bairaman landslide dam and resulting debris flow, Papua New Guinea. Quaternary Journal of Engineering Geology 22, 257– 270.
    【36】Li, T., Schuster, R.L., Wu, J., 1986. Landslide dams in south-central China. In: Schuster, R.L. (Ed.), Landslide Dams—Processes, Risk and Mitigation: American Society of Civil Engineerings-Geotech. Spec. Publ., vol. 3, pp. 146– 162.
    【37】Martin H. Trauth , Manfred R. Strecker,Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 yr B.P. in northwestern Argentina,Palaeogeography, Palaeoclimatology, Palaeoecology 153 (1999) 277–287
    【38】O. Erol,A geomorphological study of the Sultansazligi lake, central Anatolia,Quaternary Science Reviews,18 (1999) 647-657
    【39】P. Wassmer*, J.L. Schneider, N. Pollet, C. Schmitter-Voirin,Effects of the internal structure of a rock–avalanche dam on the drainage mechanism of its impoundment, Flims sturzstrom and Ilanz paleo-lake, Swiss Alps,Geomorphology 61 (2004) 3–17
    【40】Roberts, Age, palaeoenvironments and climatic signiTcanceof late Pleistocene Konya lake, Turkey. Quaternary Research, 19 (1983)154-171.
    【41】Reneau, S.L, Dettier, D.P., 1996. Late Pleistocene landslide dammed lakes along the Rio Grande, White Rock Canyon, New Mexico. Geological Society of America Bulletin 108, 1492–1507.
    【42】Schramm J-M. and Weidinger J. T. (1996) Distribution of electrical conductivity at Tsergo Ri landslide, central-north Nepal. In Proceedings of the 7th International Symposium on Landslides, pp. 889-894. Balkema, Rotterdam.
    【43】Schuster R. L. (1986) Landslide Dams, Processes, Risk and Mitigation. In Proceedings of the American Society of Civil Engineers Convention, Seattle Washington, No. 3, p. 164 pp. ASCE Geotechnical Special Publication, ASCE New York.
    【44】Shaller P. J. (1991) Analysis and implications of large Martian and terrestrial landslides. Ph.D. Thesis. California Institute of Technology, p. 604.
    【45】Schuster, R.L., 2000. Usoi Landslide Dam and Lake Sarez, an Assessment of Hazard and Risk in the Pamir Mountains, Tajikistan, ISDR Prevention Series no. 1. 2 pp.
    【46】Strom, A.L., 1994. Mechanism of stratification and abnormal crushing of rockslide deposits. Proc. 7th International IAEG Congress, vol. 3. Balkema, Rotterdam, pp. 1287– 1295.
    【47】S.K. Krivonogov et al. 2005. Stages in the development of the Darhad dammed lake (Northern Mongolia) during the Late Pleistocene and Holocene. Quaternary International 136, 83–94
    【48】Stella M. Moreiras. 2006. Chronology of a probable neotectonic Pleistocene rock avalanche, Cordon del Plata (Central Andes), Mendoza, Argentina. Quaternary International 148 (2006) 138–148.
    【49】Uhlir C. F. (1997) Landslide dammed lakes: a case study of the Lamabagar and Ghat-Chaurikharka landslide deposits, Dolakha and Solukhumbu districts, eastern Nepal. Journal of the Nepal Geological Society 16, 104-105.
    【50】Weidinger J. T. and Ibetsberger H. J. (1997a) Outbreaks and disappearance of a Landslide-dammed lake: casestudy from the Himalayas. In 87th Annual Meeting of the `Geologische Vereinigung e.V', Abstract Volume. (Edited by Mann U. and Alfred-Wegener Stiftung) 1, p. 36. Terra Nostra.
    【51】Weidinger J. T. and Ibetsberger H. J. (1997b) Risk-analysis of Gohna Tal Landslide (Kumaon Himalayas, India. In 12th Himalaya-Karakorum-Tibet Workshop, Abstract Volume. (Edited by Angiolini L, Balini M, Gaetani M, Germani V, Torti V. and Zanchi A.) pp. 105-106. Dipartimento di Scienze della Terra, Milano.
    【52】Weidinger J. T., Schramm J-M. and Madhikarmi D. P. (1995a) Electrical conductivity in a landslide-area with uniform lithology (Tsergo Ri Landslide, Langtang, Nepal). Spatial trends and application. Journal of the Nepal Geological Society 12, 50-51(Kathmandu).
    【54】Wayne, W.J., 1999. The Alemania rockfall dam: a record of midholocene earthquake and catastrophic flood in northwestern Argentina. Geomorphology 27, 295– 306.
    【55】Weidinger, J.T., Wang, J., Ma, N., 2002. The earthquake-triggered rock avalanche of cul Hua, Quin Ling Mountains, P.R. of China. The benefits of a lake-damming prehistoric natural disaster. Quaternary International 93– 94, 207–214.
    【56】Wirrmann, D., Mourguiart, P., 1995. Late Quaternary Spatiotemporal Limnological Variations in the Altiplano of Bolivia and Peru. Quat. Res. 43, 344–354.
    【57】Yagi H. and Oèi H. (1993) Hazard mapping on large scale landslides in Lower Nepal Himalayas. In Landslides, 7th International Conference and Field Workshop, Proceedings. (Edited by Novosad S. and Wagner P.) pp. 111-116.
    【58】Yagi H., Maruo Y., Saijo K. and Nakamura S. (1990) The Sept 1988 large landslide in the vicinity of MCT, Darbang, Nepal. Journal of the Japan Landslide Society 26, 45-49.
    【59】段丽萍,王兰生,董孝璧,湖泊记录中的古气候和古环境指标及其地质灾害信息【J】,沉积与特提斯地质第22卷第1期2002年3月
    【60】段丽萍,王兰生,杨立铮等.岷江叠溪古堰塞湖沉积物碳酸盐碳氧同位素记录所揭示的古气候演化特征【J】.中国地质灾害与防治学报,2002,
    【61】段丽萍,岷江叠溪古堰塞湖与地质环境【D】,硕士论文,2002
    【62】王书兵,李毅,夏雄刚,范振飞,傅建利,王燕,蒋复初等,四川茂县较场湖相沉积磁性地层初步研究【J】,地质力学学报,2006,Vol.12, No.4:416-422
    【63】张永双,赵希涛,胡道功等,滇西北德钦地区金沙江奔子栏古堰塞湖的发现及意义【J】,地质通报,2007,Vol.26, No.8:970-975
    【64】赵希涛,曲永新,张永双,胡道功,郭长宝等,滇西北丽江地区石鼓古湖的发现及其在现代金沙江河谷发育中的意义【J】,地质通报,2007,Vol.26, No.8:960-969
    【65】孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义【J】.海洋地质与第四纪地质,2001,21(1):93—95
    【66】陈敬安,万国江,张峰, David Dian Zhang,黄荣贵,不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例,中国科学D辑,[J ], 2003(33):563-568
    【67】谢远云,王秋良,李长安,殷鸿福,湖泊沉积物粒度的气候指示意义——以江汉平原江陵剖面为例,地质科技情报,[J ],2004,(23):41-43
    【68】李福春,谢昌仁,冯家毅,杨用钊,粒度分组:提取古环境变化信息的一种有效方法,地球化学,[J ],2004(33):477-481
    【69】Jochen Hoefs著刘季花,石学法,卜文瑞译,稳定同位素地球化学[M],海洋出版社,北京,2002
    【70】吴敬禄, G.H.Schleser,夏威岚,Andreas L cke,李世杰,王苏民,青藏高原东部兴措湖生物壳体元素及同位素记录的气候环境信息,湖泊科学,[J ],2001,(13):220-226
    【71】吴敬禄, Andreas Luecke,李世杰,夏崴岚,兴措湖沉积物有机碳及其同位素记录揭示的近代气候与环境,海洋地质与第四纪地质,[J ],2000,(20):37-42
    【72】吴敬禄,李世杰,王苏民,夏威岚,李万春,羊向东,若尔盖盆地兴措湖沉积记录揭示的近代气候与环境,湖泊科学,[J ],2000,(12):291-296
    【73】谢远云,何葵,康春国,李长安,湖泊沉积物有机质碳同位素的气候意义:以江汉平原江陵剖面为例,哈尔滨师范大学自然科学学报,[J ],2004,(20):96-99
    【74】陈敬安,万国江,唐德贵,黄荣贵,洱海近代气候变化的沉积物粒度与同位素记录,自然科进展【J】,2000,Vol.10,No.3:253-259
    【75】张金谈,陈克,莫广友,陈祥焘,广西南宁空气中孢粉及其致敏性研究,植物学报【J】,1984,26(6):567-573
    【76】王开发,张玉兰,蒋辉,太湖地区第四纪沉积的孢粉组合及其古植被与古气候,地理科学【J】,1983,Vol.3,No.1:17-26
    【77】杨振京;徐建明,孢粉-植被-气候关系研究进展,植物生态学报,[J ],2002,(S1):73~81
    【78】沈才明,唐领余,王苏民等.若尔盖盆地RM孔孢粉记录及其年代序列[J]科学通报,2005,50 (3): 246-254
    【79】施炜,马寅生,吴满路,杜建军,张西娟,共和盆地剖面第四纪孢粉组合特征及环境演化,地质力学学报,[J ],2004(10):210-318
    【80】张生,第四纪沉积物常用测年方法及其适用性研究,安徽师范大学学报(自然科学版) [J],2001(24):383-388
    【81】孙洪艳;李志祥;田明中,第四纪测年研究新进展,地质力学学报,2003(9):371-378
    【82】杨文光,岷江上游阶地沉积记录与气候环境变迁研究【D】,硕士论文,成都理工大学,2005
    【83】王兰生等,四川岷江叠溪地震滑坡,选自《中国典型灾难性滑坡》【M】,科学出版社,北京,2008:
    【84】陈竞超,汶川地震灾区部分堰塞湖分布示意图,2008年05月22日,http://news.xinhuanet.com/photo/2008-05/22/content_8233226.htm
    【85】王云飞,王苏民,薛滨等.黄河袭夺若尔盖古湖泊的沉积学依据【J】.科学通报,1995,40(8):723-725
    【86】王富葆,韩辉友,阎革等。青藏高原东北部30Ka以来的古植被与古气候演变序列【J】。中国科学,D辑,1994,26(2):111~117
    【87】沈才明,唐领余,王苏明。若尔盖地区22000年以来的植被与气候。微体古生物学1996,13(4):401~406
    【88】王燕,赵志中,乔彦松,王书兵,李朝柱,宋利峰,川北若尔盖高原红原泥炭剖面孢粉记录的晚冰期以来古气候古环境的演变【J】,地质通报,2006,Vol.25,No.7:827-832
    【89】唐领余,沈才明,长江上游地区18Ka以来的植被与气候【J】,世界科技研究与发展,2000,S1:1-4
    【90】刘传联,赵泉鸿,汪品先,湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型【J】,地球化学,2001,Vol.30,No.4:363-367
    【91】陈忠,冰消期晚期以来德令哈尕海湖气候环境演变的碳、氧同位素记录【D】,中国科学院研究生院博士学位论文,2007
    【92】许向宁,高地震烈度区斜坡变形破坏机制与防治对策研究【D】成都理工大学硕士学位论文,2002
    【93】张光生,生态导游员基础教程【M】,科学普及出版社
    【94】左大康主编,现代地理学辞典【M】,商务印书馆, 1990
    【95】赵澄林编著,沉积学原理【M】,石油工业出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700