用户名: 密码: 验证码:
柱形等离子体天线性能和噪声机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通讯技术的不断发展与等离子体技术的日益成熟,将等离子体天线替代传统金属天线应用于通讯系统已经成为相关领域研究的一大热点。因此本文重点研究了不同等离子体参数条件下HF/VHF频段柱形单极等离子体天线的动态重构特性,包括柱形等离子体天线的基本理论、计算机仿真和技术实现,柱形等离子体天线电参数的数值求解,等离子体天线输入阻抗、噪声、增益等电参数的测量及分析。通过这些研究旨在探明可重构柱形等离子体天线的实现方法,为等离子体天线技术趋于实用化提供必要的理论及技术准备。
     目前已经初步实现了柱形等离子体天线系统的结构设计,完成了柱形等离子体天线理论模型的矩量法分析,建立了柱形等离子体天线特有的电参数测量系统。作者的主要工作和结果可以概括为:
     1.基于表面波激励等离子体的基本原理以及表面波在等离子体中的传播特性,给出了柱形等离子体天线耦合腔体的结构设计。应用仿真软件研究了激励频率和信号频率在耦合腔体中的电磁特性,并根据仿真结果实现了柱形等离子体天线系统的结构设计,包括等离子体参数、天线尺寸、天线耦合模式、HF/VHF频段滤波器等。
     2.基于矩量法计算了当等离子体天线工作频率远小于等离子体频率时,密度均匀分布的柱形等离子体天线表面电流分布、辐射方向图、输入阻抗、天线效率以及增益等天线参数。计算结果表明等离子体天线具有与金属铜天线类似的辐射特性,并且随等离子体参数变化而改变。此外既可以通过等离子体天线的动态重构,也可以在损失部分效率的前提下选取固定的等离子体参数,获得天线的宽带特性。
     3.采用驻波比推算法测量了不同激励功率条件下等离子体激励通道电离阻抗,设计完成的激励通道匹配电路满足不同激励功率条件下驻波比小于2。
     4.提出了一种新的通过矢量网络分析仪测量大功率条件下等离子体天线信号通道输入阻抗的测试方法,该方法有助于等离子体天线动态重构特性的研究和实现快速阻抗匹配。实验中测量了不同激励功率条件下柱形等离子体天线系统的输入阻抗随频率的变化关系,结合放电管的等效电路模型与柱形等离子体天线输入电流特性,定性分析了等离子体天线输入阻抗变化与等离子体参数之间的关系。实验结果表明柱形等离子体天线输入阻抗曲线具有明显的谐振特性。通过软件仿真和实际电路调试完成了天线信号通道HF频段的匹配设计,初步验证了天线的宽带特性。
     5.分析了利用等离子体天线代替金属天线时,系统通讯过程中噪声的来源、大小及其对系统的影响,并采用不同的测量原理通过无线电综合测量仪和频谱仪两种仪器得到结果近似的等离子体天线系统馈端的系统等效噪声温度。实验结果表明等离子体天线可以代替金属天线用于射频通讯。
With the development of communication and plasma technology, the research of using the plasma antenna to replace the traditional metal antenna in the communication system becomes one of the hotspot in related fields. Thus the dynamic reconfiguration of the plasma-column antenna in the HF/VHF range is focused for different plasma parameters. This thesis covered the contents about the basic theory and CAD of plasma-column antenna, numerical calculation of plasma-column antenna electrical parameters, and also measurement and analysis of plasma-column antenna input impedance, noise temperature and gain. The aim of these works is to confirm the possibility of realizing plasma-column antenna dynamic reconfiguration, so that the theoretical principle and technological preparations for the application of plasma-column antenna should be made.
     Presently, the author has realized the mechanical design of original plasma-column antenna system, accomplished the numerical simulation of the radiation characteristics of plasma antenna based on two-dimensional moment method, created the special measuring system for plasma-column antenna electrical parameters. The author's major contributions are as follows:
     1. The coupling structure of plasma column antenna was presented based on the elementary theory of surface wave plasma excitation and the propagation characteristics of surface wave in plasma. Then the design of plasma-column antenna system is realized according to the simulation results of the electromagnetic property of excitation and signal frequency inside the structure, including the plasma parameters, the dimension of plasma-column antenna, the coupling modes and the HF/VHF filters .
     2. The numerical analyses of the radiation characteristics of a plasma-column antenna is presented by using the moment method when the operating frequency is greatly lower than the plasma frequency, including current distribution along the plasma column, radiation pattern, input impedance, antenna efficiency and gain. It has been demonstrated that the plasma antenna can operate similar to a copper antenna, and the radiation characteristics can be varied by varying the plasma parameters.Furthermore,not only the dynamic reconfiguration of the plasma antenna, but also selecting fixed plasma parameters with reduced efficiency enables the wideband characteristics of plasma antenna.
     3. The ionization impedance of the exciting channel of plasma-column antenna was calculated based on the VSWR calculation for different applied RF power. Then an impedance matching electro circuit of this channel was designed, which made the VSWR always less than 2 for different applied power.
     4. The input impedance of the signal channel of plasma-column antenna in high exciting power was measured by a new method, which is useful to the study of plasma antenna dynamic reconfiguration and the realization of fast impedance matching. The changes of the input impedance of the signal channel of plasma-column antenna with frequency have been measured by the vector network analyzer for different applied RF power. The relationship between the impedance curves and the plasma parameters was proposed by using the equivalent circuit model and the characteristics of input current. The experimental result shows the resonance behavior of the impedance curves is prominent. A broadband matching electro circuit was designed by the software, and then a hardware matching electro circuit was realized in the HF range, which validated the broadband characteristics of plasma-column antenna.
     5. The noise source and magnitude which affects the performance of the communication system was discussed when the plasma antenna replaced the traditional metal antenna. Then the noise temperature of the plasma antenna feed was measured in two methods by using RF communications test set and Spectrum Analyzers. The result shows the plasma antenna can be used in radio communication instead of metal antenna.
引文
[1]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科学技术大学出版社,1988.
    [2]F.F.Chen(林光海译).等离子体物理学导论.北京:人民教育出版社,1980.
    [3]菅井秀郎(张海波、张丹译).等离子体电子工程学.北京:科学出版社,2002.
    [4]孙杏凡.等离子体及其应用.北京:高等教育出版社,1982.
    [5]J.R.Roth.工业等离子体工程(第Ⅰ卷)-基本原理.北京:科学出版社,1998
    [6]J.R.Roth.Industrial Plasma Engineering(VolumnⅡ)-Applications to Non-Thermal Plasma Processing.Institute of Physics Publishing,2001.
    [7]周健,傅文斌,袁润章.微波等离子体化学气相沉积金刚石膜.北京:中国建材工业出版社, 2002.
    [8]彭国贤.气体放电-等离子体物理的应用.北京:知识出版社,1988.
    [9]过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986.
    [10](美)等离子体和流体物理学专门小组.90年代物理学-等离子体和流体.北京:科学出版社,1996.
    [11]等离子体物理学科发展战略研究课题组.核聚变与低温等离子体-面向21世纪的挑战和对策.北京:科学出版社,2004.
    [12]国家自然科学基金委员会.等离子体物理学.北京:科学出版杜,1994.
    [13]戈尔杰耶夫等.利用等离子体技术降低超音速飞行器气动阻力的可能性实验研究(内部报告).
    [14]庄钊文,袁乃昌,刘少斌等.等离子体隐身技术.北京:科学出版杜,2005.
    [15]郑志院,张翼,吴秀文,鲁欣,李玉同,张杰.激光等离子体推进技术研究新进展.物理,2007,36(3):236~240.
    [16]傅文杰,鄂扬.高功率微波在等离子体填充波导中的传播特性.强激光与粒子束,2005,17(12):1852~1856.
    [17]G.G.Borg, I.V.Kamenski,J.H.Harris,D.G.Miljak,and N.M.Martin. Plasma antennas. Australian National University web page:Http://wwwrsphysse.anu.edu.au/~ggb112/docs/radio_club.html.
    [18]Borg G G,Harris J H,Milak D G,Andruczik D ,Martin N M.Plasma as radiations elements submitted to the IEEE Transactions on Plasma Science.
    [19]Kang W L,Rader M,Alexeff I. A microwave plasma closing switch and stealth plasma antenna. IEEE International Conferrence on Plasma Science ,1995 :141.
    [20]Kang W L,Rader M,Alexeff I.A conceptual study of stealth plasma antenna. IEEE International Conferrence on Plasma Science ,1996 :261.
    [21] Alexeff I,Kang W L,Rader M,Douglass C,Kintner D,Ogot R,Norris E.A plasma stealthantenna for the US navy. IEEE International Conferrence on Plasma Science ,1998 :277.
    [22]Anderson T,Alexeff I.Theory and experiments of plasma antenna radiation emitted through plasma apertures or windows with suppressed back and side lobes. IEEE International Conferrence on Plasma Science ,2002 :294.
    [23]Anderson T,Alexxeff I.Theory of plasma antenna windowing. IEEE International Conferrence on Plasma Science ,2004 :328.
    [24]Alexeff I,Anderson T,Parameswaran S,Michael E P,Dhanraj J,Thiyagarajan M.Advances in plasma antenna design. IEEE International Conferrence on Plasma Science ,2005 :350.
    [25]Alexxeff I.Experimental results of plasma antennas. IEEE International Conferrence on Plasma Science ,2006 :351.
    [26]Alexeff I,Anderson T,Parameswaran S,Pradeep E P,Hulloli J,Prashant H. Experimental and theoretical results of plasma antennas. IEEE Transactions on Plasma Science,2006,34(2):166~172.
    [27]O’Connor , Kevin A C , Randy D K , Scott.Analysis of plasma antenna options for explosively-driven microwave generators and outline of plasma antenna design.Conference record of the 27th International Power Modulator Symposium,2006,380~384.
    [28]Anderson T,Alexxeff I,Farshi E,Karnam N,Pradeep E P,Pulsani N R,Peck J.An operating intelligent plasma antenna. IEEE International Conferrence on Pulsed Power Plasma Science ,2007 :294.
    [29]寇艳玲,刘志勇.等离子体天线发展概况.测控与通信,2006,30(3):56~64.
    [30]Altgilbers L L,Merritt,Tracy P,Tkach Y,Tkach S.Plasma antennas:theoretical and experimental considerations.AIAA-98-2567.
    [31]Mathew J,Meger R A,Fernsler R F,Murphy D P,Pechacek R E,Manheimer W M.Electronically steerable plasma mirror based radar antenna.IEEE Conference on antennas and propagation,1997:469~473.
    [32]Markland Technologies Inc. Gas Plasma,http://www.marklandtech.com.
    [33]Lee Yong Hyun.Plasma antenna. 2005,US Patent:20050183668.
    [34]Istomin E N,Karfidov D M,Minaev I M,Rukhadze A A,Tarakanov V P,Sergeichev K F, Trefilov A Y. Plasma asymmetric dipole antenna excited by a surface wave.Plasma physics reports,2006,32(5):388~400.
    [35]Novikov V E,Puzanov A O,Sinkov V V,Soshenko V A.Plasma antenna for magneto cumulative generator.IEEE Conference on antenna theory and techniques,2003:692~695.
    [36]Cerri G,Deleo R,Primiani M,Russo P.Plasma antenna characterization.IEE Conference on applied electromagnetics and communications,2005:1~4.
    [37] Cerri G,Deleo R,Primiani M,Russo P.Measurement of the properties of a plasma column used as a radiating element.IEEE transactions on instrumentation and measurement,2008,57(2):242~247.
    [38]Kumar R,Bora D. Experimental Study of Antenna parameters of Surface Wave Produced Plasma Column. Http://www.ipr.res.in/ adas/preprint/rr392-07.pdf.
    [39]Puzanov O O,Soshenko V A.Explosive plasma antennas.The 15th International Crimean Conference on Microwave and Telecommunication Technology:695~696.
    [40]刘良涛,祝大军,刘盛刚.等离子体天线的原理与设计.雷达与对抗,2004,4,26~30.
    [41]杨兰兰屠彦,王保平.等离子体天线中波的色散关系的研究.真空科学与技术学报,2004,24(6):424~426.
    [42]刘平,刘黎刚,邓记才,贾琦.等离子体天线的发射特性.郑州大学学报(工学版),2006,27(3):126~128.
    [43]张颋,李红波,刘国强.等离子体天线的基本特性研究.信息工程大学学报,2006,7(3):241~243.
    [44]袁忠才,时家明,余桂芳.表面波激励等离子体天线的原理与实现.电子信息对抗技术,2006,21(4):38~41.
    [45]吴养曹.等离子体天线及隐身技术.通信与测控,2005,29(2),1~4.
    [46]陈林松,马红星.等离子体技术在天线隐身中的应用.雷达科学与技术,2005,3(3):140~143.
    [47]余道杰,牛忠霞,杨建宏,莫有权,周东方,胡涛.等离子体有源透镜天线的特性分析.强激光与粒子束,2004,16(7):923~926.
    [48]李圣.表面波等离子体天线物理特性的理论分析.南华大学学报(自然科学版),2007,21(2):37~40.
    [49]赵国伟,陈诚,徐跃民.柱形等离子体辐射场的数值计算和分析.空间科学学报,2005,25(2):91~97.
    [50]赵国伟,徐跃民,陈诚.柱形等离子体辐射场和阻抗的数值计算.物理学报,2006,55(7):3458~3463.
    [51]赵国伟,徐跃民,陈诚.等离子体天线色散关系和辐射场数值计算.物理学报,2007,56(9):5298~5303.
    [52] Wang Zhijiang,Zhao Guowei,Xu Yuemin,Liang Zhiwei,Xu Jie. Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern. Plasma Science and Technology,2007,9(5):526~529.
    [53]王之江,赵国伟,梁志伟,徐跃民,徐杰.等离子体天线中波传播的计算与测量.天线学报,2007,1(1):79~82.
    [54]赵国伟,王之江,徐跃民,梁志伟,徐杰.射频激励等离子体非线性效应的FDTD数值模拟.物理学报,2007,56(9):5304~5308.
    [55]梁志伟,王之江,赵国伟,徐杰,徐跃民.等离子体天线的噪声测量及分析.电波科学学报,2007,22(6):971~975.
    [56]赵国伟,王之江,徐跃民,梁志伟,徐杰.等离子体天线轴向密度数值模拟和辐射图计算.中国科学院研究生院学报,2007,24(4):419~424.
    [57]赵国伟,徐跃民.等离子体隐身中天线参数的数值计算.天线学报,2007, 1(1):23~27.
    [58]徐杰,赵国伟,梁志伟,王之江,徐跃民.柱形等离子体电离阻抗测量及分析.空间科学学报,2007,27(4):315~320.
    [59]徐杰,赵国伟,梁志伟,徐跃民.柱形等离子体辐射体输入阻抗测量.无线电工程,2007, 37(8):32~34.
    [60]Zakrzewski Z,Moisan M,Glaude V M N.Attenuation of surface wave in an unmagnetized R.F. plasma column.Plasma Phsics,1977,19(2):77~83.
    [61]Leprince P,Moisan M.Coupling between three electron waves in a plasma column.Plasma Physics,1971,13(8):659~666.
    [62]Moisan M.Description and properties of an r.f. plasma used for the study of parametric interaction of a strong E-M field with plasma.Plasma Physics,1974,16(1):1~17.
    [63]Margot J,Moisan M.Electromagnetic surface waves for a new approach to the investgatin of plasmas produced at electron cyclotron resonance(ECR). Journal of Physics D:Applied Physcis,1991,24(10):1765~1788.
    [64]Moisan M,Shivarova A,Trivelpiece A W.Experimental investigations of the propagation of surface waves along a plasma column.Plasma Physics,1982,24(11):1331~1400.
    [65]H.Nowakowska,Z.Zakrzewski,and M.Moisan,Modelling of atmospheric pressure,RF and microwave discharges sustained by travelling waves.Journal of Physics D:Applied Physcis,1990,23(7):789~796.
    [66]M.Moisan and Z.Zakrzewski,Plasma sources based on the propagation of electromagnetic surface waves.Journal of Physics D:Applied Physics,1991,24(7):1025~1048.
    [67]Zakrzewski Z,Moisan M.Plasma sources using long linear microwave field applicators:main features,classification and modeling.Plasma sources Science Technology,1995,4(3):379~397.
    [68]Nowakowska H,Zakrzewski Z,Moisan M.Propagation characteristics of electroagnetic waves along a dense plasma filament.Journal of Physics D:Applied Physics,2001,34(10):1474~1478.
    [69]Nowakowska H,Zakrzewski Z,Moisan M,Lubanski M.Propagation characteristics of surface waves sustaining atmospheric pressure discharges:the influence of the discharge processes.Journal of Physics D:Applied Physcis,1998, 31(12):1422~1432.
    [70]Ricard A , Collobert D , Moisan M.Radial density distribution of excited atoms in asurface-wave-produced Ar-O2 plasma column.Journal of Physics B:Atomic,Molecular and Optical Physics,1983,16(9):1657~1665.
    [71]Zakrzewski Z,Moisan M,Margot J,Sauve G.Spatial distributions of electron density and electric field in discharges sustained within microwave circuits.Plasma Sources Science and Technology,1992,1(1):28~35.
    [72]Moisan M,Zakrzewski Z,Pantel R.The theory and characteristics of an effcient surface wave launcher(surfatron)producing long plasma columns.Journal of Physics D:Applid Physics,1979,12(2):219~237.
    [73]Moisan M,Chaker M,Zakrzewski Z,Paraszczak J.The waveguide surfatron:a high power surface-wave launcher to sustain large-diameter dense plasma columns.Journal of Physics E:Science Instruments,1987,20(11):1356~1361.
    [74]Moisan M,Zakrzewski Z,Rostaing J C.Waveguide-based single and multiple nozzle plasma torches:the TIAGO concept. Plasma Sources Science and Technology,2001,10(3):387~394.
    [75]Lao C,Gamero A,Sola A.Populations of excited atomic states along argon surface-wave plasma columns at low and intermediate pressures.Journal of Applied Physics,2000, 87(11):7652~7659.
    [76]Beneking C,Anderer P.Radiation efficiency of Hg-Ar surface wave discharges.Journal of Physics D:Applied Physics,1992,25(10):1470~1482.
    [77]Nghiem P,Chaker M,Bloyet E.,Leprinece Ph,Marec J.Propagation of surface waves in inhomogeneous plasmas. Journal of Applied Physics,1982,53(4):2920~2922.
    [78]Hargreave M,Rayner J P,Cheetham A D,French G N, Whichello A P.Coupling Power and infomation to a plasma antenna.Plasma Physics:11th international congress on plasma physics, 2002:388~391.
    [79]Aliev Y M,Schluter H,Shivarova A.Guided Wave Produced Plasmas. Berlin: Springer-Verlag,2000.
    [80]Shokri B,Niknam A R.Field profiles of symmetric surface wave in diffusion-controlled regime of a non-isothermal plasma columns.Plasma Physics and Controlled Fusion , 2005 , 47(10):1805-1816.
    [81]Dwyer T J,Greig J R,Murphy D P,Perin J M,Pechacek R E. On the feasibility of using an atmospheric discharge plasma as an RF Antenna. IEEE Transactions on Antennas and Propagation,1984,32(2):141~146.
    [82]Morrow I L,James J R. Fundamental limitations on excitation of a surface wave on a plasma Column.IEEE Antennas and Propagation Society International Symposium,2002:272~274.
    [83]Lee Yoonjae , Ganguly Suman.Analysis of a plasma-column antenna using FDTD method.Microwave and Optical Technology Letters,2005,46(3):252~259.
    [84]Liu G S,Yang S M,Li W M.A mathematical modeling and analysis of plasma antenna.The 4th Asia-Pacific Conference on Environmental Electromagnetics,2006,706~709.
    [85]Borg G G,Harris J H,Martin N M,Thorneraft D,Milliken R,Milak D G,Kwan B,Ng T,Kireher J.Plasmas as antennas: theory,experiment and applications. Physics of Plasma,2000,7(5):2198~2202.
    [86]Whichello A P,Rayner J P,Cheetham A D. Plasma Antenna Radiation Patterns.Plasma Physcis:11th International Congress on Plasma Physics,2002,396~399.
    [87]Rayner J P,Whichello A P,Cheetham A D.Physical characteristics of a plasma antenna. Plasma Physcis:11th International Congress on Plasma Physics,2002,392~395.
    [88]Rayner J P,Whichello A P, Cheetham A D. Physical characteristics of plasma antennas.IEEE Transactions on Plasma Science,2004,32(1),269~281.
    [89]Wang J Y ,Shi J M,Wang J C, Xu B. Study of the Radiation Pattern of the Unipole Plasma Antenna.The 7th International Symposium on Antennas.Propagation and EM Theory,2006,1~4.
    [90]Qian Z H,Chen R S,Wang H W.FDTD analysis of a plasma whip antenna.Microwave and Optical Technology,2005,47(2):147~150.
    [91]Qian Z H,Chen R S,Fan Z H,Rui P L.Analysis of electromagnetic scattering from plasma antnna using CG-FFT method.International Journal of Infrared and Millimeter Waves,2008,29(5):486~492.
    [92]Borg G G,Harris J H,Milak D G ,Martin N M.Application of plasma columns to radio frequency antennas.Applied Physics Letters,1999,74(22):3272~3274.
    [93]蔡英仪,王坦.短波天线工程建设与维护.北京:解放军出版社,2003.
    [94]Roosmalen A J V.Plasma parameter estimation from RF impedance measurements in a dry etching system.Applied Physics Letters,1983,42(5):416~418.
    [95]M W G,Hoek V D,M C A,Vries D,Heijman M G J .Power loss mechanisms in radio frequecny dry etching systems,Journal of Vacuum Science and Technology B,1987,5(3):647~651.
    [96]黄建军,余建华,Teuner D.射频放电阻抗测量用于等离子体诊断研究.物理学报,2001, 50(12):2403~2407.
    [97]Bohm C,Perrin J.Spatially resolved optical emission and electrical properties of SiH4 RF discharge at 13.56MHz in a symmetric parallel-plate configuration. Journal of Physics D:Applied Physcis,1991,24(6):865~881.
    [98]Lee H J,Yang I D,Whang K W.The effects of magnetic fields on a planar inductively coupled argon plasma. Plasma sources Science Technology,1996,5(3):383~388.
    [99]Trivelpiece A W,Gould R W.Space charge waves in cylindrical plasma columns.Journal ofApplied Physics,1959,30(11):1784~1793.
    [100]Shivarova A,Zhelyazkov I.Surface waves in a homogeneous plasma sharply bounded by a dielectric.Plasma Physics,1978, 20(10):1049~1073. (1978)
    [101]Aliev Y M,Berndt J,Schluter H and Shivarova A.Numerical calculations on surface wave propagation in longitudinally non-uniform plasmas.Plasma Physics and Controlled Fusion,1994, 36(6):937~944.
    [102]Pinheiro M J,Gousset G,Granier A,Ferreira C M.Modelling of low-pressure surface wave discharges in flowing oxygen:Ⅰ.Electrical properties and species concentrations.Plasma Sources Science and Technology,1998,7(4):524~536.
    [103]Pinheiro M J,Gordiets B F,Ferreira C M.Modelling of low-pressure surface wave discharges in flowing oxygen:Ⅱ.power dissipation and gas heating. Plasma Sources Science and Technology,1998,8(1):31~36.
    [104]Boardman A D.Electromagnetic Surface Modes. Chichester:John Wiley and Sons Ltd,1982.
    [105]Kortshagen U,Schluter H,Maximov A V.Analytical study of the influence of electron-electron collisions on the hign energy part of the electron energy distribution function.Physica Scripta,1992,46(5):450~456.
    [106]Vladimirov S V,Yu M Y,Tsytovich V M.Physics Reports,1994,241(1):1~63.
    [107]Stenflo L. Theory of nonlinear plasma surface wave. Physica Scripta,1996,T63:59~62.
    [108]Schluter M.A numerical simulation of 2D plasma surface waves. Journal of Physics D:Applied Physcis,1997,30(6):L11~L15.
    [109]欧琼荣.平面大面积表面波等离子体机理及应用研究.中国科学院等离子体物理研究所硕士学位论文,2002.
    [110]房芳.表面波等离子体内表面波的模式变换和SiO2/PET薄膜淀积的研究.中国科学院等离子体物理研究所硕士学位论文,2001.
    [111]Mateev E,Zhelyazkov I,Atanassov V.Propagation of a large-amplitude surface wave in a plasma column sustained by the wave.Journal of Applied Physics,1983, 54(6):3049~3052.
    [112]Moisan M,Zakrzewski.New surface wave launchers for sustaining plasma columns at submicrowave frequencies(1-300MHz). Review of Scientific Instruments,1987,58(10):1895~1900.
    [113]Harrington R F(王尔杰等译).计算电磁场的矩量法.北京:国防工业出版社,1981.
    [114]吕英华.计算电磁学的数值方法.北京:清华大学出版社,2006.
    [115]罗翠梅,王敏男.分布电阻加载天线电流分布的矩量法求解.电波科学学报,1994,9(3):49~54.
    [116]徐良,石守元,焦永昌,董玉良.低轮廓全向宽带单极天线研究.电子学报,1995,23(12):89~92.
    [117]尹亚兰,张志刚.复杂线天线的一种矩量法算法.海军工程大学学报,2003,15(3):98~101.
    [118]姜光兴,曹伟,朱洪波.基于不同积分方程的线天线矩量法分析.南京邮电学院学报,2005,25(1):46~50.
    [119]Kraus J D(章文勋译).天线.北京:电子工业出版社,2004.
    [120]康行健.天线原理与设计.北京:国防工业出版社,1995.
    [121]谢处方,王石安,文希理.加载与媒质中天线.成都:电子科技大学出版社,1990.
    [122]张黎明,邓阿丽,赵燕平.矩量法计算半波振子天线电流分布.舰船电子工程,2006,26(2):127~129.
    [123]Stutzman W L,Thiele G A(朱守正,安同一译).天线理论与设计.北京:人民邮电出版社,2006.
    [124]林昌禄.天线工程手册.北京:电子工业出版社,2002.
    [125]Bletzinger P,Flemming M J.Impedance characteristics of an RF parallel plate discharge and validty of a simple circuit model. Journal of Applied Physics,1987,62(12):4688~4695.
    [126]Butterbaugh J W,Baston L D,Sawin H H.Measurements and analysis of radio frequency glow discharge electrical impedance and network power loss.Journal of Vacuum Science and Technology A,1990,8(2):916~923.
    [127]Beneking C.Power dissipation in capacitively coupled RF discharges.Journal of Applied Physics,1990,68(9):4461~4473.
    [128]Sobolewski M A.Electrical characterization of radio-frequency discharges in the gaseous electronics conference reference cell.Journal of Vacuum Science and Technology A,1992,10(6):3550~3562.
    [129]Miranda A J,Spanos C J. Impedance modeling of a Cl2/He plasma discharge for very large scale integrated circuit production monitoring.Journal of Vacuum Science and Technology A,1996,14(3):1888~1893.
    [130]Spiliopoulos N,Mataras D,Rapakoulias D E.Power dissipaion and impedance measurements in radiofrequency discharges. Journal of Vacuum Science and Technology A,1996,14(5):2757~2765.
    [131]Ilic D B.Impedance measurements as a diagnostic for plasma reactors.Review of Scientific Instruments,1981,52(10):1542~1545.
    [132]Wust K,Grop K H,Lob H W.Impedance measurements at RF plasma in noble gases by use of the four-terminal network formalism. Review of Scientific Instruments,1992,63(4):2584~2586.
    [133]Logan J S,Mazza N M,Davidse P D.Electrical characterization of raido-frequency supttering gas discharge. Journal of Vacuum Science and Technology,1969,6(1):120~123.
    [134]Andries B, Ravel G,Peccoud L.Electrical characterization of radio-frequency parallel-plate capacitively coupled discharges. Journal of Vacuum Science and Technology A,1996,7(4):2774~2783.
    [135]Van Roosmalen A J,Van den Hoek W G M,Kalter H.Electrical properties of planer RF discharges for dry etching.Journal of Applied Physics,1985,58(2):653~658.
    [136]Bakker L P,Kroesen G M W,Hoog F J D.RF discharge impedance measurements using a new method to determine the stray impedances.IEEE Transactions on Plasma science,1999,27(3):759~765.
    [137]Demokan O.Critical analysis of matching schemes in capacitively coupled discharges.IEEE Transactions on plasma science,2003,31(5):1100~1102.
    [138]Logan J S,Mazza N M,Davidse P D.Electrical characterization of radiofrequency sputtering gas discharge.Journal of Vacuum Science and Technology,1968,6(1):120~123.
    [139]黄建军,余建华,Teuner D.射频放电电参数的测量.电测与仪表,2000,37(9):25~27.
    [140]Blackwell D D,Walker D N,Messer S J,Amatucci W E.Characteristics of the plasma impedance probe with constant bias.Physics of Plasmas,2005,12(9):093510.
    [141]Spiliopouloas N,Mataras D,Rapakoulias D E.Power dissipation and impedance measurements in radio-frequency discharges. Journal of Vacuum Science and Technology A,1996,14(5):2759~2765.
    [142]廖承恩.微波技术基础.西安:西安电子科技大学出版社,2003.
    [143]Moisan M,Zakrzewski Z, Pantel R, Leprince P.A wave-guide-based launcher to sustain long plasma columns through the propagation of an electromagnetic surface wave.IEEE Transactions on Plasma Science,1984,12(3):203~214.
    [144]胡树豪.实用射频技术.北京:电子工业出版社,2004.
    [145]Aoki T,Fukasawa K,Nishikawa Y,Mikoshiba N.Novel impedance-matching method for plasma processing at very high frequency band(in Japanese).Japanese Journal of Applied Physcis,1996,35:4799~4806.
    [146]Beneking C.Impedance and emission properties of capacitively coupled Hg-Ar discharges.Journal of Applied Physics,1990,68(11):5435~5446.
    [147]Takakura T , Baba K , Nunogaki k , Mitani H.Radiation of plasma noise from arc discharge.Journal of Applied Physics,1955,26(2):185~189.
    [147]Laverghetta T S.Handbook of Microwave Testing. Norwood,MA:Artech House,1981.
    [148]Denson C I,Halford G J.Plasma noise sources of improved accuracy. IEEE Transactions on Microwave Theory and Techniques,1968,MTT-16(9):655~663.
    [149]Olson K W.Apparent frequency dependence of the microwave power radiated from gasdischarge noise sources. IEEE Transactions on Microwave Theory and Techniques,1971,19(9)776~778.
    [150]Guentzler R E.Noise temperature data on low pressure argon discharges. IEEE Transactions on Electron Devices,1972,Ed-19(2),160~163.
    [151]Nakata M T,Hart G W,Peterson B G.Using the plasma noise spectrum to measure the parallel temperature in a nonneutral plasma.2AIP Conference Proceedings,2002,606:271~276.
    [152]Manheimer W M,Antonsen T M,Calame J P,Danly B G,Freund H P,Levush B.Electron and Ion Noise in Microwave Tubes.IEEE Transactions on Plasma Science,2003,31(1),32~39.
    [153]Anderson T R.Electromagnetic noise from frequency driven and transient plasmas.498~501.
    [154]Lieberman M A , Lichtenberg A J.Principles of plasma discharges and materials processing.New York:Wiley,1994.
    [155]徐家鸾,金尚宪.等离子体物理学.北京:原子能出版社,1981.
    [156]Lee C,Lieberman M A.Global model of Ar, O2, Cl2,and Ar/O2 high-density plasma discharges. Journal of Vacuum Science and Technology A,1995,13(2):368~380.
    [157]Straub H C,Renault P,Lindsey B G,Smith K A,Stebbings R F. Physics Review A,1995,52(2):1115~1124.
    [158]Tachibana K.Excitation of the 1S5,1S4,1S3,and 1S2 levels of argon by low-energy electrons. Physics Review A,1986,34(2): 1007~1015.
    [159]Eggarter E.Comprehensive optical and collision data for radiation action.II.Ar.Journal of Chemical Physics,1975,62(5): 833~847.
    [160]Guentzler R E.Argon plasma sources temperature similarity. IEEE Transactions on Electron Devices,1975,Ed-22(2),47~50.
    [161]Hippler R,Pfau S,Schmidt M,Schoenbach K H.Low Temperature Plasma Physics.Berlin:Wiley-VCH,2001.
    [162]中国无线电管理.VHF/UHF收信机指标和测试方法.1994.
    [163]莆田市无线电监测分站.短波单边带收、发信机测试操作细则.2002.
    [164]焦欣,谢上次.数传方波抖动和12dB信纳比之间的关系.现代计量测试,1997,5(1):37~40.
    [165]邹家禄,张广福,程时昕.城市无线电噪声的测量及分布规律研究.通信学报,1997,18(8):63~70.
    [166]陈邦媛.射频通信电路.北京:科学出版社,2002.
    [167]许建华.频谱分析仪在噪声测量中的应用.电子测量技术,1996,2:19~22.
    [168]詹志强,陆福敏.如何用频谱仪测量噪声源的超噪比.上海计量测试,2004,31(5):48~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700