用户名: 密码: 验证码:
6-PRRS并联机器人关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机器人以其承载能力强、运动精度高、刚度大、运动惯量小等一系列的优点,在国民生产的各个领域得到越来越广泛应用。6-PRRS机构作为一种特殊构型的新型并联机构,其特点是连接杆长固定,依靠6个直线运动输入驱动,具有单方向较大工作空间的特性,改善了传统并联机构的工作空间小这一不足。本文在对国内外并联机器人理论、应用与发展分析的基础上,对其运动学、动力学、误差分析和标定方法以及相应的控制方法进行了深入的探讨和研究。
     并联机器人与串联机器人的一些特性存在对偶关系,其运动学逆解容易,正解困难。本文通过对现有的一些典型运动学正解方法进行分析,提出了一种神经网络结合拟牛顿迭代法的位置正解精确求解的方法。采用神经网络进行非线性映射,解决了拟牛顿迭代法的初值问题,两者的有效结合避免了以往并联机器人运动学求解需进行复杂运算的过程,并且能得到唯一的位置解。扩大了并联机器人运动学的应用范围。
     并联机器人的动力学模型是一个多变量、高度非线性,多参数耦合的复杂系统,本文采用虚功原理方法建立了并联机器人驱动电机到动平台的各构件随参数变化的完整动力学方程,其中包含了各支链质量与惯性力,考虑了所有结构因素对关节驱动力的影响,并根据实际的工作情况,对动力学模型进行了简化,给出了动力学方程线性形式,为并联机器人的动力学实时控制奠定了理论基础。
     机器人所能达到的精度受系统的机构误差影响很大,机构误差主要包括零部件的制造与装配误差、铰链和丝杠的间隙误差。对于机构误差对系统精度的影响,本文使用矢量链法对其进行了分析。通过基于连杆参数的D-H法对6-PRRS并联机器人进行了运动学建模,给出了参数识别方法,并提出了误差补偿的方案,通过实验完成了系统的标定工作。
     鉴于并联机器人的动力学计算复杂,不利于实时控制等特性,本文首先在不考虑并联机器人动力学的情况下,研究了并联机器人的控制器设计。基于分散控制策略,设计了可不依赖于并联机器人动力学模型的自抗扰控制器,将并联机器人的动力学耦合视为干扰,采用具有模型补偿功能的扩张状态观测器进行补偿,实现对6-PRRS并联机器人的高精度控制。仿真结果表明所设计的不依赖于动力学的自抗扰控制器可以实现系统的高速高精度控制,满足系统的性能要求,证明了所设计控制方法的有效性与可行性。
     不考虑动力学的控制方法虽然控制律简单,易于实现。但对于控制高速高精度机器人来说,这类方法有两个明显的缺点:一是难于保证受控机器人具有良好的动态和静态品质;二是需要较大的控制能量。因此本文根据机器人动力学模型的性质设计了一种利用机器人工作空间理想轨迹控制的自适应前馈控制方法,并对自适应控制下系统的稳定性进行了分析。其基本思想利用动力学模型的线性形式,在线实时的辨识对象特性的变化,使动力学耦合及外部干扰对系统的影响逐渐降到最低。实验结果验证了该方法有效性。
     最后,建立了6-PRRS并联机器人仿真与物理实验系统,对提出的自抗扰控制和自适应控制进行了实际验证。在实验中,6-PRRS并联机器人能够高精度的跟踪理想的运动轨迹、具有较强的抗干扰能力,表明对6-PRRS并联机器人控制方法的研究成果是正确的,可行的。
Parallel robots are applied more and more widely in every field of national product because its merit of good carrying capacity, high movement precision, great rigidity and lower movement inertia and so on. 6-PRRS mechanism, as a new parallel mechanism with a special structure, has non-variable length of link and is drived by six linear straight motions, with a single-direction big workspace. It enlarges the workspace of parallel mechanism. The kinematics, dynamics, error analysis, calibration and control method based on the domestic and external theories of parallel robot are discussed and studied deeply.
     Parallel robot is opposite to series robot in some characteristic. Its inverse kinematics is easier to solve and forward kinematics is harder to solve.After some existent typical methods of solving forward kinematics being analyzed, a new method is brought forward, that adopts neural network combined with quasi-Newton iteration method. Efficiently combination of neural network and quasi-Newton iteration can avoid the complicated computing process of parallel robot forward kinematics solution and the solution is one and only. So enlarges the application range of parallel robot forward kinematics.
     Parallel robot’s dynamic equation is a system with multi variables, serious nonlinearity and multi parameter coupling. So principle of virtual work is used to set up the whole dynamics equation, including each branched chain’s inertia and quality, with the parameter varying form actuation motor to each component of the parallel robot. The affection of configuration on joint driving force is considered in this equation. After this, dynamics equation is simplified in terms of actual work condition and it is linearized. This work settles the basis of real-time control.
     The precision robot can reach is not only relative of controller but also of mechanism error. The errors mainly include components’machining and assembly error and clearance error between hinge and leading screw. In this paper, vector chain method is applied to analysis of the affection to mechanism error on system precision, D-H method based on links’parameters is used to model 6-PRRS parallel robot’s kinematics, the method of parameter identification is given and error compensation scheme is proposed, then system calibration is finished by experiments.
     Because the parallel robot is hard to real-time control in terms of the complication of its dynamics, controller without considering parallel robot’s dynamics is studied firstly. Based on discrete scheme, auto disturbance-rejection controller(ADRC) is designed, the coupling of robot dynamics is regarded as disturbance and extended state observer with model compensation function is used to compensate the disturbance. So ADRC on 6-PRRS parallel robot is realized. Simulation results show the ADRC can realize the robot high speed and high precision controlling, satisfy the demand of system performance and the validity and feasibility of this algorithm are proved.
     In spite of the control algorithm not considering dynamics is simple and easy realized, it has two obvious disadvantages for high speed and high precision control of robot. First, it is difficult to ensure the dynamic and static better quality of controlled robot. Second, the system needs larger control energy. So an adaptive feed forward control method is proposed, this method basing on robot dynamics adopts ideal trajectory on workspace to control robot, its stability is analyzed. The basis is using linear dynamics form, real-time identifying object property change online, then reduceing the affection of dynamics coupled and external disturbance on system to least. The validity of this algorithm is proved by experiments.
     Finally, simulation and hardware systems are built. The method of ADRC and NNPID is verified in practice. In experiments, 6-PRRS parallel robot can finish high-precision track given trajectory, the system has a strong disturbance- rejection capability. It is indicated from experiments that results about research of 6-PRRS parallel robot are correct and feasible.
引文
1 Khalil W., Guegan S.. Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Transactions on Robotics and Automation, 2004, 20(4):754-762
    2 Leroy N., Kokosy A. M., Perruquetti W.. Dynamic modeling of a parallel robot application to a surgical simulator. IEEE International Conference on Robotics and Automation, Taiwan, 2003:4330-4335.
    3 Ji Zhiming. Study of the effect of leg inertia in stewart platforms. IEEE International Conference on Robotics and Automation, 1993, 121-126.
    4 Gwinnett J.E. Amusement device, United States Patent, 1931, No. 1789680
    5 Willard Pollard, The first spatial industrial parallel robot, United States Patent, 1942, No. 2286571
    6 Gough V.E., Whitehall S.G.. Universal tyre test machine, Proceedings of the FISITA Ninth International Technical Congress, 1962:117-137
    7 Stewart D., A platform with six degrees of freedom, Proceedings of the Inst. Mech, 1965, 180(15):371-385
    8 Ui Kyoichi, Urabe Tomoyuki, etc. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase, Microgravity Science and Technology, 2005, 17:56-63
    9 Zhao Yang, Tian Hao, Wang Qiu-sheng. Analysis of dynamometry scheme for semi-physical simulation platform of space docking mechanism, Advances in Engineering Software, 2007, 38:710-716
    10 Van Strijp C.J., Langen H.H., Onosato M.. The application of a haptic interface on microassembly, 14th Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, 2006:289-293
    11 Steger R., Chung R., Lin K., etc. Design of a spatial linkage haptic interface, ASME International Mechanical Engineering Congress, Anaheim, 2004:1109-1121
    12张曙, U Heisel.并联运动机床,机械工业出版社,北京, 2003
    13 Tu Kuo-Yang, Wu Tung-Chung, Lee Tsu-Tian. A Study of Stewart Platform Specifications for Motion Cueing System, lntemational Conference on Systems, Man and Cybernetics, 2004:3950-3955
    14 Choi MinHee, Kim Wheekuk, Yi Byung-Ju. Trajectory planning in 6-degrees- of-freedom operational space for the 3-degrees-of-freedom mechanism configured by constraining the Stewart Platform structure, International Conference on Control, Automation and Systems, Korea, 2007: 1222-1227
    15 Prajapati J.M, Patel L.N.. Dynamic (Forward and Inverse Force Transmission Capability) Analysis of the Stewart Platform as Robot Manipulator, International Conference on Mechatronics and Automation, Harbin, 2007: 2848-2853
    16 Chen Gui-Lin, Wang Shuoyu etc. Analysis of Sensitivity for Six-Axis Force/Torque Sensor Based on Stewart Platform Sensor Based on Stewart, International Conference on Mechatronics and Automation, Harbin, 2007: 2668-2672
    17 Huang Chin-I, Fu Li-Chen. Smooth sliding mode tracking control of the Stewart platform, IEEE Conference on Control Applications, Toronto, 2005: 43-48
    18 Deblaise D., Maurine P.. Effective geometrical calibration of a delta parallel robot used in neurosurgery, International Conference on Intelligent Robots and Systems, Canada, 2005:1313-1318
    19 Li Yangmin, Xu Qingsong. Dynamic analysis of a modified DELTA parallel robot for cardiopulmonary resuscitation, International Conference on Intelligent Robots and Systems, Canada, 2005:233-238
    20 Afroun M., Chettibi T., Hanchi, S., Planning Optimal Motions for a DELTA Parallel Robot, Mediterranean Conference on Control and Automation, 2006: 1-6
    21 Carp-Ciocardia D.C., Staicu S.. Dynamics of delta parallel robot with prismatic actuators, International Conference on Mechatronics, Taipei, 2005:870-875
    22 Stan S.-D., Maties Vistrian B. R., Lapusan C.. Genetic algorithms to optimal design of a 3 DOF parallel robot, International Conference on Automation, Quality and Testing, Robotics, Romania, 2008, 2:365-370
    23 Massimo Sorli, Carlo Ferraresi etc. Mechanics of TURIN Parallel Robot, Mechanism and Machine Theory, 1997, 32(1):51-77
    24 RonenBen-Horin, MosheShoham, Shlomo Djerassi. Kinematics, dynamics and construction of a planarly actuated parallel robot, Robotics and Computer-Integrated Manufacturing,1998, 14:163-172
    25 Tanio K. Tanev. Kinematics of a hybrid (parallel-serial) robot manipulator, Mechanism and Machine Theory, 2000, 35:1183-1196
    26 Choi H.B., Company O., Pierrot F., etc. Design and Control of a Novel 4-DOFs Parallel Robot H4, International Conference on Robotics and Automation, 2003:1185-1190
    27 Liu Xin-Jun, Wang Jinsong, Gunter Pritschow, A new family of spatial 3-DoF fully-parallel manipulators with high rotational capability, Mechanism and Machine Theory, 2005, 40:475-494
    28 Jing Feng-Shui, Tan Min, etc. Kinematic Analysis of a Flexible Six-DOF Parallel Mechanism, IEEE Transaction on Systems, Man, and Cybernetics, 2006, 36(2):379-389
    29 Geng Z., Haynes L.S., Lee J.D., etc. On the dynamic model and kinematic analysis of a class of Stewart platforms, Robotics Autonomous Systems, 1992:237-254.
    30 Nanua P., Waldron K.J., V. Murthy. Direct kinematics solution of a Stewart platform, IEEE Trans. Robotics Automation, 1990, 6(4):438-443.
    31 Lee Tae-Young, Shim Jae-Kyung, Forward kinematics of general 6-6 Stewart platform using algebraic elimination, Mechanism and Machine Theory, 2001, 36:1073-1085
    32 Lee Tae-Young, Shim Jae-Kyung, Improved dialytic elimination algorithm for the forward kinematics of the general Stewart–Gough platform, Mechanism and Machine Theory, 2003, 38.563–577
    33 Gao Xiao-Shan, Lei Deli, Liao Qizheng, etc. Generalized Stewart–Gough Platforms and Their Direct Kinematics, IEEE Trans. On Robotics, 2005, 21(2):141-151 .
    34 McAree P.R., Daniel R.W., A fast, robust solution to the Stewart platform forward kinematics, Robotic Systems, 1996, 13(7):407-427.
    35 Boudreau R., Turkkan N., Solving the forward kinematics of parallel manipulators with a genetic algorithm, Robotic Systems, 1996, 13(2):11l-125.
    36 Zhao Xinhua, Shangxian Peng, Direct Displacement Analysis of Parallel Manipulators, Journal of Robotic Systems, 2000, 17(6):341-345
    37姜虹,贾嵘,董洪智,王小椿.六自由度并联机器人位置正解的数值解法,上海交通大学学报, 2000, 34(3):351-353
    38 Yee Choon seng, Li Kah-bin. Forward kinematics solution of Stewart platform using neural networks, Neurocomputing, 1997, 16:333-349
    39陈学生,陈在礼,孔民秀,谢涛,基于神经网络的6-SPS并联机器人正运动学精确求解,哈尔滨工业大学学报, 2002, 34(1):120-124
    40 Merlet J.-P., Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data, in Proc. IEEE Int. Conf. Robotics and Automation, 1993, 1:200–204.
    41 Luc Baron, Jorge Angeles, The Kinematic Decoupling of Parallel Manipulators Using Joint-Sensor Data, IEEE Trans. on Robotics and Automation, 2000, 16(6):644-651
    42 Ilian A. Bonev, Jeha Ryu, Sung-Gaun Kim, and Sun-Kyu Lee, A Closed-Form Solution to the Direct Kinematics of Nearly General Parallel Manipulators with Optimally Located Three Linear Extra Sensors, IEEE Trans. on Robotics and Automation, 2001, 17( 2):148-156
    43 Fichter E.F..A Stewart platform based manipulator: general theory and practical construction, The International Journal of Robotics Research, 1986, 5(2):157-182
    44 Alain Codourey. Dynamic modeling of parallel robots for computed-torque control implementation. The International Journal of Robotics Research, 1998, 17(12):1325-1336
    45 Bhaskar Dasugpta, Mruthyunjaya T. S.. A Newton-Euler formulation for the inverse dynamics of the Stewart plaform manipulator. Mechanism and Machine Theory, 1998, 33(8):1135-1152
    46 Dasgupta B., Choudhury P.. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators. Mechanism and Machine Theory, 1999, 34(6):801-824
    47 Geike T., Mcphee J. Inverse dynamic analysis of parallel manipulators with full mobility. Mechanism and Machine Theory, 2003, 38(6):549-562
    48 Li J. F.,Wang J. S.,Liu X.J..An efficient methou for inverse dynamics of kinematically defective parallel platforms. Journal of Robotic Systems, 2002, 19(2):45-61
    49郭祖华,陈五一,陈鼎昌. 6-UPS型并联机构的刚体动力学模型,机械工程学报, 2002, 38(11):53-57
    50杨建新,汪劲松,郁鼎文.空间并联机构运动学与动力学逆解得模块化计算方法,机械工程学报, 2005, 41(5):104-107
    51楚中毅,曲东升,孙立宁,崔晶.机器人动力学分析的等效有限元建模方法.机械工程学报, 2005, 41(6):13-18
    52 Liu Min-Jie, Li Cong-Xin and Li Chong-Ni, Dynamics Analysis of the Gough–Stewart Platform Manipulator, International Conference on Robotics and Automation, 2000:94-98
    53 Besnard S., Khalil W.. Calibration of parallel robots using two inclinometers. International Conference on Robotics and Automation, Michigan, 1999:1758-1763
    54 Bai Shaoping, and Ming Yeong Teo. Kinematic Calibration and Pose Measurement of a Medical Parallel Manipulator by Optical Position Sensors, Journal of Robotic Systems, 2003, 20(4):201–209
    55 Iain Williams, Geir Hovland, Torgny Brogardh. Kinematic Error Calibration of the Gantry-Tau Parallel Manipulator. International Conference on Robotics and Automation, Florida, 2006:4199-4204
    56 Yu Lingtao, Wang Jian, Du zhijiang etc. A novel method on parallel robot’s pose measuring and calibration, IEEE Conference on Industrial Electronics and Application, 2007:1292-1296
    57唐国宝,黄田. Delta并联机构精度标定方法研究.机械工程学报. 2003, 39(8):55-60
    58 Besnard S., Khalil W.. Identifiable Parameters for Parallel Robots Kinematic Calibration. International Conference on Robotics and Automation, Seoul, Korea, 2001:2859-2866
    59 W. Khalil, S. Besnard. Self Calibration of a Stewart-Gough Parallel Robot without Extra Sensors. IEEE transactions on Robotics and Automation. 1999, 15:1116-1121
    60 Abdul Rauf, Jeha Ryu. Fully Autonomous Calibration of Parallel Manipulators by Imposing Calibration. International conference on Robotics and Automation, Seoul, 2001:2389-2394
    61 Hanqi Zhuang, Jiahua Yan, Oren Masory. Calibration of Stewart Platforms and other Parallel Manipulators by Minimizing Inverse Kinematic Residuals. Journal of Robotic Systems. 1998, 15(7):395~405
    62 Hanqi Zhuang, Lixin Liu. Self-Calibration of a Class of Parallel Manipulators. International conference on Robotics and Automation, Minneapolis, Minnesota, 1996:994-999
    63朱延河,赵杰,蔡鹤皋. Delta机构的闭环自标定方法研究,西安交通大学学报, 2005, 39(2):134-137
    64 Philipp Last and Jurgen Hesselbach, Nicolae Plitea, An Extended Inverse Kinematic Model of the HEXA-Parallel-Robot for Calibration Purposes, International Conference on Mechatronics & Automation, Niagara Falls, Canada, 2005:1294-1299
    65 Wee Kiat Lim, Guilin Yang, Song Huat Yeo, 1-Ming Chen. Kinematic Analysis and Self-Calibration of Three-legged Modular Parallel Robots, the SPIE Conference on Sensor Fusion and Decentralized Control in Robotic Systems , Boston, 1999:224-235
    66 Marcel Verner, Fengfeng Xi, Chris Mechefske, Optimal Calibration of Parallel Kinematic Machines, Journal of Mechanical Design, 2005, 12(7):62-69
    67 M. Saeed Varziri, Leila Notash, Kinematic calibration of a wire-actuated parallel robot, Mechanism and Machine Theory, 2007, 42:960–976
    68刘文涛,唐德威,王知行. Stewart平台机构标定的鸡尾酒法.机械工程学报. 2004, 40(12):48-52
    69曾宪菁,黄田,曾子平. 3-RRR型数控回转台的精度分析.机械工程学报. 2001, 37(11):42-45
    70黄田,汪劲松, Derek G. Chetwynd, David J. Whitehouse.并联构型装备几何参数可辨识性研究.机械工程学报. 2002, 38(supp):1-6.
    71汪劲松,白杰文,高猛等. Stewart平台铰链间隙的精度分析.清华大学学报. 2002, 42(6):758-761
    72高猛,李铁民,郑浩峻,汪劲松.并联机床铰链制造误差的补偿.清华大学学报. 2003, 43(5):617-620
    73 Ying Bai, Hanqi Zhuang, On the comparison of model-based and modeless robotic calibration based on the fuzzy interpolation technique, IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004:892-897
    74 C. C. Iurqcu, F. C. Park. Geometric Algorithms for Kinematic Calibration of Robots Containing Closed Loops, Journal of Mechanical Design, 2003, 125:23-32
    75 Yu Liu, Bin Liang, Cheng Li, Lijun Xue, Songhua Hu Yanshu Jiang, Calibration of a Steward Parallel Robot Using Genetic Algorithm, International Conference on Mechatronics and Automation, Harbin, 2007:2495-2500
    76 Qingyong Ding, Zhipeng Li, RBF Neural Network Based Kinematic Calibration of A Planar Parallel Robot, the 6th World Congress on Intelligent Control and Automation, Dalian, 2006:8059-8063
    77 O. Sato, K. Shimojima, G. Olea, R. Furutani, K. Takamasu, Full parameter calibration of parallel mechanism. Proc. of 4th euspen International Conference, Scotland, 2004:396-397
    78 Oren Masory, Jian Wang and Hanqi Zhuang. On the Accuracy of a Stewart Platform - Part II Kinematic Calibration and Compensation. Submitted IEEE Conf. on Robotics and Automation. Atlanta , 1993, 1:725-731
    79 Hanqi Zhuang. Self-Calibration of Parallel Mechanisms with a Case Study on Stewart Platforms. IEEE Transactions on Robotics and Automation. 1997, 13(3):387-397
    80裴葆青等. 6UPS并联机构静态误差的矢量法标定.中国机械工程. 2006, 17(8):854-857
    81 Abdul Rauf, Aslam Pervez, and Jeha Ryu. Experimental Results on Kinematic Calibration of Parallel Manipulators Using a Partial Pose Measurement Device. IEEE TRANSACTIONS ON ROBOTICS, 2006, 22(2):379-384
    82 Dayong Yu, Xiwei Sun and Yu Wang, Kinematic Calibration of Parallel Robots Based on Total Least Squares Algorithm, International Conference onMechatronics and Automation, Harbin, 2007:789-794
    83 L. Beji, A. Abichou, M. Pascal. Tracking Control of a Parallel Robot in the Task Space. IEEE International Conference on Robotics and Automation. 1998, 38:2309-2314
    84 L. Beji Yung Ting, Yu-Shin Chen, Shih-Ming Wang. Task-Space Control Algorithm for Stewart Platform. Proceedings of the 38th Conference on Decision and Control. 1999:3857-3862
    85 Denis GaragiC, Krishnaswamy Srinivasan. Contouring Control Of Stewart Platform Based Machine Tools Proceeding of the 2004 American Control Conference, Boston, 2004:3831-3838
    86陈光达,段宝岩,苏玉鑫,翟天嵩.基于嵌入式系统的Stewart平台伺服控制器设计,弹箭与制导学报, 2003, 23 (4):41-44
    87 E. Burdet, M. Honegger, A. Codourey. Controllers with Desired Dynamic Compensation and their Implementation on a 6DOF Parallel Manipulator, International Conference on Intelligent Robots and Systems, 2000:39-45
    88 D. Sato, Y. Ishii, T. Shitashimizu, I). Kim and M. Uchiyama. 3D Graphics-Based Off-line Task Teaching for a Force-Controlled High-speed Parallel Robot. International Symposium on Assembly and Task Planning, Japan, 2001:122-127
    89 R. Garrido, D. Torres-Cruz. On PD control of parallel robots with redundant actuation, International Conference on Electrical and Electronics Engineering, 2004,356-360
    90孙立宁,崔晶,曲东升,楚中毅,高速高精度平面并联机器人模糊自调整PID控制方法的研究,机器人, 2003, 25(6):33-36,41
    91苏玉鑫,段宝岩,张永芳,陈光达,米建伟,并联机器人的非线性PID控制,控制与决策, 2003, 18(4):490-493
    92张秀峰,孙立宁.精密并联机器人控制算法及控制系统研究,机械工程学报, 2004, 40(4):177-180
    93 M. Honegger, R. Brega, G. Schweitzer. Application of a Nonlinear Adaptive Controller to a 6 dof Parallel Manipulator. IEEE International Conference on Robotics and Automation. 2000:1930-1935
    94 Min Kyu Park, Min Cheol Lee, Seok Jo Go. The design of sliding modecontroller with perturbation observer for a 6-DOF parallel manipulator. International Symposium on Industrial Electronics. 2001:1502-1507
    95 Se-Han Lee, Jae-Bok Song, Woo-Chun Choi, Daehie Hong. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Mechatronics. 2003, 13:605-619
    96 Andres Vivas, Philippe Poignet. Model Based Predictive Control of a Fully Parallel Robot, Symposium on Robot Control, 2003:277-282
    97 Kim S.W., Kim E.T., Park M.. A new adaptive fuzzy controller using the parallel structure of fuzzy controller and its application, Fuzzy Sets and Systems, 1996, 81:202-226
    98 Babaci S., Amirat Y., J. Pontnau, C. Bansois. Fuzzy adaptation impedance of a 6 DOF parallel robot application to peg in hole insertion, International Conference on Fuzzy Systems, 1996:1770-1776
    99 Vardan Mkrttchian, Anri Lazaryan, Application of Neural Network in Sliding Mode Control, International Conference on Control Applications, USA, 2000:653-658
    100 Wai Rong-Jong, Lin Chih-Min, Peng Ya-Fu. Adaptive Hybrid Control for Linear Piezoelectric Ceramic Motor Drive Using Diagonal Recurrent CMAC Network. IEEE Translations on Neural Networks, 2004, 15(6):1491-1506
    101 Cheng X.P., Patel R.V.. Neural network based tracking control of a flexible macro-micro manipulator system, Neural Networks. 2003, 16:271-286
    102 Sun Fu-Chun, Li Han-Xiong, Li Lei. Robot discrete adaptive control based on dynamic inversion using dynamical neural networks. Automatica, 2002, 38: 1977 -1983
    103 Geng Liang. A Kind of Fault-tolerant Decouple and Control Algorithms for Non-linear and Time-varying Mimo System Based on Neuron Adaptive PID and Neural Network, Proceedings International Conference on Wavelet Analysis and Pattern Recognition, Beijing, 2007:677-682
    104 Shi Chunchao, Zhang Guoshan. A New Method of PID Control Based on Improved BP Neural Network. Proceedings Chinese Control Conference, Harbin, 2006:1167-1170
    105 Mitsue Kato, Toru Yamamoto, Shoichiro Fujisawa. A Skill-Based PIDController Using Artificial Neural Networks. Proceedings International Conference on Computational Intelligence for Modelling Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, 2005:702-707
    106 Guo Bingjun, Yu Jinshou. Model Adaptive Control Based on a Compound Orthogonal Neural Network, International Journal of Information Technology. 2006, 12(5):99-107
    107闫继宏.基于Internet多机器人遥操作系统及其协调控制的研究.哈尔滨工业大学博士学位论文.2004.12:63-65
    108 Ji Zhiming. Study of the Leg Inertia in Stewart Platforms. Proc. IEEE Int. Conf. on Robotics and Automation, 1993:121-126
    109姜虹,高本河,贾嵘,陈丽萍,王小椿.六自由度并联机器人活动空间求解中的干涉分析.机械科学与技术,2000(1):75-77
    110黄真,孔令富,方跃法.并联机器人机构学理论及控制,机械工业出版社.
    111史忠科,神经网络控制理论,西北工业大学出版社. 2000:24
    112 Pratik J. Parikh and Sarah S. Y. Lam. A hybrid strategy to solve the forward kinematics problem in parallel manipulators. IEEE Transactions on Robotics. 2005, 21(1):18-25
    113张景中,函数迭代与一维动力系统,四川教育出版社, 1992:51
    114黄象鼎,曾钟钢,马亚南.非线性数值分析,武汉大学出版社, 2000, 12:64-74
    115苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制,西安电子科技大学工学博士论文, 2002, 7
    116赵强,阎绍泽.双端虎克铰型六自由度并联机构的动力学模型.清华大学学报, 2005, 45(5):610-613
    117张立新,汪劲松,王立平.加减速条件下6-UPS型并联机床刚体动力学模型简化研究.机械工程学报, 2003, 39(11):117-122
    118 Hsu Wei-Yao,Chen Jenq-Shyong. Error analysis and auto-calibration for a Cartesian-guided tripod machine tool[J], International Journal of Advanced Manufacturing Technology, 2004, 24(11):899-909
    119 Xi Fengfeng, Verner Marcel, Mechefske Chris. Error sensitivity analysis for optimal calibration of parallel kinematic machines[C],Proceedings of theASME Design Engineering Technical Conference, 2002, 2:745-752
    120 A. J. Patel, K. F. Ehmann. Volumetric Error Analysis of a Stewart Platform Based Machine Tool. Annals of the CIRP, 1997, 46(1):287~290
    121郭庆鼎.王成元.交流伺服系统.北京:机械工业出版社, 1998, 6.
    122韩京清.自抗扰控制器及其应用.控制与决策, 1998, 13(1):19-23.
    123韩京清,张文革.大时滞系统的自抗扰控制.控制与决策, 1999, 14(4): 354-358
    124苏位峰,孙旭东,李发海.基于自抗扰控制器的异步电机矢量控制,清华大学学报, 2004, 44(10):1329-1332
    125黄焕袍,武利强等.自抗扰在火电厂主汽温控制中的应用,系统仿真学报, 2005, 17(1):241-244
    126苏玉鑫,段宝岩等.大射电望远镜馈源指向系统轨迹跟踪自抗扰控.控制理论与应用, 2004, 21(6):956-960.
    127雷春林,吴捷,陈渊睿,杨金明.自抗扰控制在永磁直线电机控制中的应用.控制理论与应用, 2005, 22(3):423-428
    128韩京清,王伟.非线性跟踪-微分器.系统科学与数学, 1994, 14(2):177-183
    129韩京清.从PID技术到自抗扰控制技术,控制工程, 2002, 9(3):13-18
    130韩京清.一类不确定对象的扩张状态观测器.控制与决策, 1995, 10(1): 85-88
    131张荣,韩京清.用模型补偿自抗扰控制器进行参数辨识,控制理论与应用, 2000, 17(1):79-81
    132张荣,韩京清.基于神经网络的自抗扰控制器,系统仿真学报, 2000, 12(2):149-151
    133老大中,刘艳芬,李东海,唐多元.基于Monte-Carlo方法的自抗扰控制系统优化设计,北京理工大学学报, 2004, 24(3):226-229
    134 Robert Miklosovie, Zhiqiang Gao, A Robot Two-Degree-of-Freedom Control Design Technique and its Practical Application, Industry Applications Society, 2004:1495-1502
    135宋金来,杨雨,许可康,韩京清.自抗扰控制在惯性导航系统初始对准中的应用,中国惯性技术学报2001, 9(4):11-15
    136苏位峰.异步电机自抗扰矢量控制调速系统,清华大学工学博士学位论文, 2004
    137 John J. Craig. Adaptive control of mechanical manipulators,Addison-Wesley Publishing Company, 1988
    138 Slotine J J E, Li W P. On the adaptive control of robot manipulator. Int. J. Robotics Research, 1987, 6:49-59
    139霍伟.机器人动力学与控制,高等教育出版社, 2005
    140 Nader Sadegh, Roberto Horowitz. Stability and robutstness analysis of a class of adaptive controllers for robotic manipulators, The International Journal of Robotics Research. 1990, 9(3):74-92
    141 Jong-Phil Kim, Sung-Gaun Kim, and Jeha Ryu. Robust Adaptive Control of A HexaSlide Type Parallel Manipulator. The Institute of Control, Automation and Systems Engineers, Korea, 2001, 3(4):262-267
    142 Codourey A., Burdet E.. Adaptive Control of the Hexaglide, a 6 dof Parallel Manipulator. International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997, 543-548
    143 Lu Ren, James K. Mills, Dong Sun. Adaptive Synchronized Control for a Planar Parallel Manipulator:Theory and Experiments. ASME, 2006, 128:976-979
    144 Su Y. X., Sun Dong, Lu Ren, Wang Xiaoyun, and James K. Mills. Nonlinear PD Synchronized Control for Parallel Manipulators. IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:1374-1379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700