用户名: 密码: 验证码:
双驱动球形机器人及其运动控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形机器人是一种以球形或近似球形为其外壳形状的独立运动体,在运动方式上以滚动为主,隶属于移动机器人门类。与其它移动机器人相比,球形机器人在结构形状和运动机理上较为新颖,在实际应用中也表现出很多独特的优势,所以从该类机器人出现以来,迅速得到各国机器人研究人员的广泛关注。
     本文的内容主要是在所设计的双驱动球形机器人基础上,通过理论分析,仿真模拟和实验验证等主要手段,对机器人在力学方程建模和控制器设计方法两个方面展开研究,具体如下:
     在总结现有各种球形机器人样机构型的基础之上,提出一种新型的双驱动球形机器人构型方案。该构型方案主要是将两个直流电机在球体内呈水平共线的方式放置。由于在球体内部缺乏一个相对稳定平台,所以驱动电机的输出力矩将会导致机器人的重心偏离球体的形心,此时机器人相对接触点的重力力矩就成为驱动球体前向滚动的直接力矩来源。该球形机器人的转向电机采用齿轮齿条啮合的方式来带动球体内部构件实现转向。
     为了更好的了解和认识所设计的双驱动球形机器人,需要对其在任意时刻位置和姿态的描述方法进行研究。当描述球形机器人在某一平面的运动状态时,可以将独立变量分为对外部特征和内部特征的描述两部分:外部特征确定平面-球系统的具体位姿,内部特征确定内部构件的位置关系。描述这些特征的独立变量之间可以通过转换矩阵进行相互转换。
     由于球形机器人是一个受非完整约束、强耦合、欠驱动、非线性的系统,全面而准确的描述该系统全部特征的动力学方程冗长而复杂,所以在该动力学方程基础上进行机器人的分析和控制器的设计难度很大,这极大的限制球形机器人在工程实际中的应用。为此,本文提出将机器人内部构件的转向和球体的前向滚动分步执行的运动策略,此时,一个受非完整约束的系统被转变为两个受完整约束的子系统,对机器人控制的难度得以降低。在这种分步执行策略下,通过点对点直线插补式的路径规划方法,球形机器人可以实现某一任意长直线段的运动轨迹,进而也可以实现某一封闭曲线的近似逼近。为验证所提出方法的有效性,相应的构建实验平台来对某一椭圆轨迹进行逼近,实验结果表明,当对行走轨迹跟踪精度要求不是很高的情况下,完全可以利用分步执行的运动策略和直线插补式的路径规划方法,来使双驱动球形机器人完成一般性的探测任务。
     前向滚动运动是双驱动球形机器人的主要运动方式,同时利用重力力矩进行驱动的运动机理与以往的移动方式也有很多不同,因此需要着重对其动力学方程进行研究。在分析中,首先,使用基于能量耗散形式下的拉格朗日方程建立该动力学模型,利用仿真手段对状态变量的变化曲线进行分析,对理论方程的正确性进行验证;其次,根据临界摆角的概念将滚动摩阻作用下和爬坡状态下的机器人动力学方程在形式上进行统一,使方程更具通用性;再次,将临界摆角和系统的平衡点联系起来,在新的平衡点处使系统的动力学方程更有效的转化为线性定长的状态空间形式。
     基于状态空间形式的方程,本文展开一系列控制器设计方法和仿真分析的研究。其中主要包括:对双驱动球形机器人的镇定性进行分析;利用扩展状态变量的方法,来实现系统对任意期望输入的跟踪问题;分析利用状态观测器来对不可量测状态进行估计的控制器设计方法;开展针对具体的性能指标构建目标函数,设计最优控制器的研究。在构建的实验中,具体的测试数据也有力的证明临界摆角的存在和状态增益法设计控制器的有效性。
     另外,本文还对非完整系统的光滑时变控制器设计方法和滚动摩阻的作用机理等相关问题进行相应的理论分析和研究。
Spherical robot, belonging to mobile robot category, is an independent movement unit with sphere or approximate sphere shape, and its main motion is characterized by rolling style. Spherical robot attracts robot researchers’universal attention at once since it appeared in the world, not only because of its novel configuration and movement mechanism, but also because its special advantages in engineering application with respect to the other mobile robots.
     This study develops mechanic modeling and controller design of a new dual-drive spherical robot. The methods applied in research are theoretical analysis, simulation and experimental verification. The contents can be expressed as follow,
     Based on summarizations of the present spherical robots in view of structure, a new dual-drive spherical robot has been proposed. The main character is that the axial lines of two DC motors have been placed on the same straight line. Without a relative stable platform in the robot, the output torque of driving motor would lead robot’s gravity center to deviate from sphere’s center, and then, the gravity torque with regard to point of contact would cause the robot rolling forward. The turning motor leads inner components to change direction steering by rack and pinion to transfer torque.
     In order to understand and analyze the dual-drive spherical robot better, it is necessary to study its situation and orientation description on arbitrary time. The individual variables can be divided into two parts, inner and outer character, when describing movement states of the robot rolling on a plane. The outer character variables define postures of plate-ball system, and the inner character variables decide positional relationship of the component. Those variables can be transformed each other by transition matrix.
     Because the spherical robot involves some problems of nonholonomic constraints, strongly coupled manner, underactuated and nonlinear property, dynamic equations described the whole character variables entirely appear extraordinary complex and tedious. Based on those dynamic equations, the problems of system analysis and controller design become more difficult, which would greatly limit application of the robot. Therefore, a movement strategy, executing turning direction and rolling forward alternatively, has been proposed. Here, the system suffered by nonholonomic constraints has been transformed into two subsystems suffered only by holonomic constraints, and then, difficulty of controlling design has been decreased. Furthermore, the spherical robot can realize a straight arbitrary-length path, and can approach an enclosed trajectory approximately through the proposed trajectory planning method, named‘point-to-point straight-line interpolation’. At last, in order to verify the proposed method, experiment platform has been built up to tracking an ellipse trajectory. The results illustrate that when tracking precision doesn’t be restricted strictly, the dual-drive spherical robot can fulfill some generally explore assignments applied the above strategies and methods.
     Rolling forward is the main movement of the dual-drive spherical robot. Hence, the dynamic of this motion should be investigated carefully because its driving mechanism using gravity torque is more differently than other mobile manners. Firstly, the dynamic equation has been obtained from Lagrangian function based on energy dissipation. Then, changeable curves of state variables have been analyzed by simulation method. Secondly, the dynamic equation forms, suffered by rolling frictional resistance and climbing state, have been unified. Such makes the derived equation more universality. Lastly, dynamic equation has been transformed into state space form with linear invariant property at new equilibrium point of system, which is relative to critical pendulum angle.
     A series of research work about controller design and simulation analysis has been developed base on the derived state-space form equation. The contents are as followings: analysis about stabilization of the robot system; resolve tracking a reference input problem by means of expending state variables; study controller design method to estimate unmeasurable state using state observer; develop optimal controller for a special objective function constructed from some performance indexes. Experiment data prove existence of the critical pendulum angle and validity of state gain controller.
     In addition, this paper has also studied some other problems related to the spherical robot, such as, smooth time-variable controller to nonholonomic system, mechanism of rolling friction, and so on.
引文
1. A. Halme, T. Schonberg, Y. Wang. Motion control of a spherical mobile robot. Proc. of 4th IEEE Workshop on Advanced Motion Control. Mie Univ, Japan, 1996: 259~264
    2. A. Halme, J. Suomela, T. Schnoberg, et al. A Spherical Mobile Micro-Robot for Scientific Applications. ASTRA 96, ESTEC. ,Noordwijk, Netherlands, 1996,7
    3. P. Harmo, J. Knuuttila, T. Taipalus, et al. Automation and Telematics for assisting People living at Home. Proc. of 16th IFAC World Congress. Praha, 2005: 7~13
    4. A. Bogatchev, V. Koutcherenko, S. Matrossov, et al. Joint Rcl and Hut Developments for Mobile Robot Locomotion Systems during 1995-2002. Proc. of 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2002: 1~7
    5. P. Harmo, A. Halme, H. Pitkanen, et al. Moving Eye-Interactive Telepresence Over Internet With a Ball Shaped Mobile Robot. Proc. of Int. Workshop on Tele-Education in Mechatronics Based on Virtual Labortories. Weingarten, Germany, 2001,6: 18~21
    6. C. Camicia, F. Conticelli, A. Bicchi. Nonholonomic Kinematics and Dynamics of the Sphericle. Proc. of IEEE on Intelligent Robots and Systems, 2000: 805~810
    7. A. Bicchi, A. Balluchi, D. Prattichizzo, et al. Introducing the "Sphericle": an Experimental Testbed for Research and Teaching in Nonholonomy. Proc. of IEEE Inernational Conference on Robotics and Automation. Albuquerque, New Mexico, 1997,1
    8. S. Bhattacharya, S.K. Agrawal. Spherical Rolling Robot: A Design and Motion planning Studies. IEEE Transaction on Robotics and Automation. 2000,16: 835~839
    9. T. Das, R. Mukherjee, H. Yuksel. Design Considerations in the Developent of a Spherical Mobile Robot. Proceeding of 15th SPIE Annual Int. Symposium on Aerospace/Defense Sensing. Orlando, 2001: 61~71
    10. F. Tomik. Design Challenges in the Development of a Spherical Mobile Robot. Michigan State University [Master degree]. 2003
    11. A.H. Javadi, P. Mojabi. Introducing August: A novel Strategy for an omnidirectional spherical rolling robot. IEEE Int. Conf. on Robotics and Automation. Washington D.C., 2002: 3527~3533
    12. J.A. H., M. P. Introducing glory: A novel strategy for an omnidirectional spherical rolling robot. Journal of Dynamic Systems, Measurement and Control. 2004,126(3): 678-683
    13. F. Michaud, S. Caron. Roball, the Rolling Robot. Autonomous Robots. 2002,12: 211~222
    14. F. Michaud, S. Caron. An Automomous Toy-Rolling Robot. Proc. of the Workshop Interactive Robot Entertainment. Quebec, Canada, 2000: 127~134
    15. http://japan.people.com.cn/2002/03/30/riben20020330_18194.html
    16. http://www.chinanews.com.cn/news/2005/2005-07-26/26/603980.shtml
    17.孙汉旭,贾庆轩,肖爱平.一种双驱动全方位球形机器人的设计与应用.机械工程学会年会, 2003
    18.肖爱平.一种新颖的球形行走机器人的研究.北京邮电大学工学博士论文. 2005
    19.肖爱平,孙汉旭,廖启征.一种球形机器人的设计与原理分析.机电产品开发与创新. 2004,17(1): 14~16
    20.肖爱平,孙汉旭,谭月胜.一种球形机器人运动轨迹规划与控制.机器人. 2004,26(5): 444~448
    21.战强,丁希仑,解玉文.一种新型的月球探测车运动机构.第二届月球探测技术研讨会论文集.北京, 2001: 328~330
    22. Q. Zhan, T. Zhou, M. Chen, et al. Dynamic trajectory planning of a spherical mobile robot. IEEE Conference on Robotics, Automation and Mechatronics. Bangkok, Thailand 2006: 1~6
    23.王亮清,孙汉旭,贾庆轩.球形机器人的爬坡与弹跳能力.北京邮电大学学报. 2007,30(2): 11~14
    24.王亮清,孙汉旭,贾庆轩.球形机器人的跳跃运动分析.机械设计. 2006,23(3): 28~30
    25.王亮清,孙汉旭,贾庆轩.球形机器人的圆周运动分析.机器人.2007,29(1): 56~66
    26.王广,莫锦秋.全对称球形机器人的设计及动力学分析.上海交通大学学报. 2007,41(8): 1271~1281
    27.戴武城.球形机器人的设计和运动学、动力学分析及运动学计算机仿真.上海交通大学工学硕士论文. 2001
    28.李团结,朱超.一种具有稳定平台可全向滚动的球形机器人设计与分析.西安电子科技大学学报. 2006,33(1): 53~56
    29.李团结,朱超.基于虚拟样机技术的球形机器人运动仿真研究.系统仿真学报. 2006,18(4): 1026~1029
    30.李团结,张雪峰,陈永琴.一种全向滚动球形机器人的运动分析与轨迹规划.西安电子科技大学学报. 2007,34(1): 29~33
    31.李团结,严天宏,张学锋.一种全向滚动球形机器人的动力学建模与仿真.系统仿真学报. 2007,19(18): 4239~4242
    32.李团结,苏理,张琰.直线电机驱动的全向滚动球形机器人的设计与分析.机械设计与研究. 2006,22(4): 46~52
    33.林杰,芮延年,周国梁.一种全方位球形机器人的运动学分析.苏州大学学报(工学版). 2005,25(4): 71~73
    34.王佳,胡侠,柳洪义.球形管道机器人设计.机械设计与制造. 2006(12): 133~135
    35. http://www.cssti.cn/JYHZT/kjh-xmread.asp?id=4046
    36. T. Yamanaka, S. Nakaura, M. Sampei. Hopping Motion Analysis of 'Superball'-like Spherical Robot Based on Feedback Control. Proc. of IEEE on Intelligent Robot and Systems, 2003: 3805~3810
    37. P. Fiorini, S. Hayati, M. Heverly, A Hopping Robot for Planetary Exploration. 1999, Jet Propulsion Laboratory California Institue of Technology: California, U. S.
    38. Y. Nakamura, S. Shimoda, S. Shoji. Mobility of a Microgravity Rover using Internal Electro-Magnetic Levitation. Proc. of IEEE on Intelligent Robots and Systems, 2000: 1639~1645
    39. H.B. Brown, Y.S. Xu. A single-wheel, gyroscopically stabilized robot. IEEE International Conference on Robotics and Automation. Minneapolis, Minnesota, 1996: 3658~3663
    40. Y.S. Xu, K.W. Au, G.C. Nandy, et al. Analysis of Actuation and DynamicBalancing for a Single Wheel. Proc. of IEEE/RSJ on Intelligent Robots and Systems. Victoria, Canada, 1998,17: 89~94
    41. R. Balasubramanian, A.A. Rizzi, M.T. Mason. Legless Locomotion: Models and Experimental Demonstration. Proc. of ICRA 2004 IEEE Int. Conf., 2004,2
    42. R. Balasubramanian, Legless Locomotion: Concept and Analysis. 2004, The Robotics Instite, Carnegie Mellon University.
    43. http://www.cetin.net.cn/storage/journal/xdjs/xd2001/tp2001-6-1.htm
    44. D.J. Montana. The Kinematics of Contact and Grasp. The International Journal of Robotics Research. 1988,7(3): 17~32
    45. Z.X. Li, J. Canny. Motion of Two Rigid Bodies with Rolling Constraint. IEEE Transaction on Robotics and Automation. 1990,6(1): 62~72
    46. T. Hu, S.X. Yang. Real-time Torque Control of Nonholonomic Mobile Robots with Obstacle Avoidance. Proc. of IEEE Int. Symposium on Intelligence Control. Wancouver, Canada, 2002,1: 10~14
    47. P. Choudhury, K. Lynch. Rolling Manipulation with a Single Control. International Journal of Robotics Research. 2002,21(5): 475~487
    48. A. Tayebi, A. Rachid. A Time-varying-based Robust Control for the Paking Problem of a Wheel Mobile Robot. Proc. of IEEE Int. Conf. on Robotics and Automation. Minneapolis, 1996: 3099~3104
    49. A. Marigo, A. Bicchi. Rolling Bodies with Regular Surface: Controllability Theory and Application. IEEE Transaction on Automatic Control. 2000,45(9): 1586~1599
    50. A. Bicchi, R. Sorrentino. Dexterous Manipulation Through Rolling. IEEE Inernational Conference on Robotics and Automation, 1995: 452~457
    51. Y.S. Xu, L.W. Sun. Stabilization of a Gyroscopically Stabilized Robot on an Inclined Plane. Proc. of IEEE Int. Conf. on Robots and Automation. San Francisco, 2000,4: 3549~3554
    52. Y.S. Xu, S.K.-W. Au. Stabilization and Path Following of a Single Wheel Robot. IEEE/ASME Transactions on Mechatronics. 2004,9(2): 407~419
    53. Y.S. Xu, L.W. Sun. Dynamics of a Rolling Disk and a Single Wheel Robot on a Inclined Plane. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Takamatsu, Japan, 2000,56
    54. G. Reina, M. Foglia, A. Milella, et al. Dynamic Modeling for a cylindricla mobile robot on rough-terrain. Proceeding of IMECE. 2004: 1~7
    55.程涛,孙汉旭,贾庆轩.非完整控制系统的发展现状及展望.中国机械工程. 2006,17(8): 438~444
    56. J.P. Laumond, J.J. Risler. Nonholonomic systems: controllability and complexity. Theoretical Computer Science. 1996,157(1): 101~114
    57. U. Kotta, T. Mullari. Equivalence of different realization methods for higher order nonlinear input-output differential equations. European Journal of Control. 2005,11(3): 185~193
    58. W. Brockett, R. Millman. Differential Geometric Control Theory. Boston: Birkhauser, 1983: 181~208
    59. A. Bloch, N.H. McClamroch. Control of Mechanical Systems with Classical Nonholonomic Constraints. Proc. of 28th IEEE Conference on Decision and Control. Florida, 1989: 201~205
    60. C. Samson. Time-Varying Feedback Stabilization of Car-like Wheel Mobile Robot. International Journal of Robotics Research. 1993,12(1): 55~64
    61.胡跃明.非线性控制系统理论与应用.北京:国防工业出版社, 2001
    62.马保离,宗光华,霍伟.非完整链式系统的跟踪控制——动态扩展线形化方法.自动化学报. 1999,25(3): 316~322
    63. Q. Zhan, C. Jia, X.H. Ma, et al. Mechanism design and motion analysis of a spherical mobile robot. Chinese Journal of Mechanical Engineering (English Edition). 2005,18(4): 542~545
    64.郭仁生.基于Matlab和Pro/Engineer优化设计实例.北京:机械工业出版社, 2007
    65. G. Oriolo, M. Vendittelli. A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism. IEEE Transaction on Robotics. 2005,21(2): 16~21
    66. H. Date, M. Sampei, M. Ishikawa, et al. Simultaneous control of position and orientation for ball-plate manipulation problem based on time-state control form. Transactions on Robotics and Automation. 2004,20(3): 465~479
    67. M. Mitsuji, M. Shintaro, S. Mitsuru, et al. Feedback solution to ball-plate problem based on time-state control form. Proceedings of the 1999American Control Conference San Diego, USA 1999: 1203~1207
    68. M. Ranjan, A.M. Mark, T.P. Jay. Motion planning for a spherical mobile robot: Revisiting the classical ball-plate problem. Journal of Dynamic Systems, Measurement and Control. 2002,102(4): 502~511
    69. S. Mikhail, H. Shigeyuki. On motion planning for ball-plate systems with limited contact area. International Conference on Robotics and Automation. Rome, Italy, 2007: 1820~1825
    70.黄真,李艳文,高峰.空间运动构件姿态的欧拉角表示.燕山大学学报. 2002,26(3): 189~192
    71.刘延柱.关于刚体姿态的数学表达.力学与实践. 2008,30(1): 98~101
    72. S. Prasenjit, R.V. Srinivas, T.A. Kyle. Modeling and control of satellite formations in high eccentricity orbits. Advances in the Astronautical Sciences. 2003,15(3): 324~348
    73. G. Pini, K. Itzik. Nonsingular modeling of the equinoctial precession of planets using the Euler parameters. Planetary and Space Science. 2007,55(2): 223~236
    74. O. Toshiaki, U. Takateru, S. Maekawa, et al. Position and attitude control of a spherical rolling robot equipped with a gyro. 9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey 2006: 416~421
    75.刘延柱.高等动力学.上海:高等教育出版社, 2000: 86~90
    76. N. Muskinja, B. Tovornik. Swinging up and stabilization of a real inverted pendulum. IEEE Transaction on Industrial Electronics. 2006,53(2): 631~639
    77. M.G. Henders, A.C. Soudack. Dynamics and stability state-space of a controlled inverted pendulum. International Journal of Non-Linear Mechanics. 1996,31(2): 215~227
    78. Y. Kim, S.H. Kim, Y.K. Kwak. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems: Theory and Applications. 2005,44(1): 25~46
    79. R.J. Wai, L.J. Chang. Adapative stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique. IEEE Transaction on Industrial Electronics. 2006,53(2): 674~691
    80. H. Shibly, K. Iagnemma, S. Dubowsky. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application toplanetary exploration rovers. Journal of Terramechanics. 2005,42(1): 1~3
    81.余志生,赵六奇,夏群生.汽车理论.北京:机械工业出版社, 2000
    82.战强,贾川,马晓辉.一种球形移动机器人的运动性能分析.北京航空航天大学学报. 2005,31(7): 744~747
    83.游世明,陈思忠,梁贺明.基于ADAMS的并联机器人运动学和动力学仿真.计算机仿真. 2005,22(8): 181~185
    84.孙汉旭,肖爱平,贾庆轩.二驱动球形机器人的全方位运动特性分析.北京航空航天大学学报. 2005,21(7): 735~739
    85.臧辉.基于虚拟样机的地面移动机器人技术研究.南京理工大学工学硕士论文. 2006
    86.姚晓光,郭晓松,冯永保.基于Pro/E和ADAMS联合仿真的夹钳机构设计与优化.机床与液压. 2004,233(3): 233~235
    87.贾学武,冯江,辜松. Pro-E和ADAMS仿真技术在手持式嫁接机上的应用.农机化研究. 2008,181(2): 181~185
    88. E.M. Jafarov, M.N. Parlakci, Y. Istefanopulos. A new variable structure PID-controller design for robot manipulators. IEEE Transactions on Control Systems Technology. 2005,13(1): 122~130
    89. J. Lin, Z.Z. Huang. A novel PID control parameters tuning approach for robot manipulators mounted on oscillatory bases. Robotica. 2007,25(4): 467~477
    90. I.C. Aguilar, F.O. Gutierrez, C.M. Suarez. Lyapunov-based controller for the inverted pendulum cart system. Nonlinear Dynamics. 2005,40(4): 367~374
    91. S. Jung, T.W. John. Nonlinear model predictive control for the swing-up of a rotary inverted pendulum. Journal of Dynamic Systems, Measurement and Control. 2004,126(3): 666~673
    92. P. Kaustubh, F. Jaume, S.K. Agrawal. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics. 2005,21(3): 505~513
    93. U. A.V. Method of state space expansion in the design of autonomous control. Automation and Remote Control. 2007,68(6): 1006-1022
    94. M.S. Hong, K.H. You. Optimal sliding-mode controller design based on state observer. Automatic Control and Computer Sciences. 2005,39(6): 32~41
    95.段广仁.线形系统理论.哈尔滨:哈尔滨工业大学出版社, 2004
    96. J. Elzbieta. Design of a tracking controller-observer system for a mobile robot. Proceedings of the Fifth International Workshop on Robot Motion and Control. Dymaczewo, Poland, 2005: 85~90
    97. H. Berghuis, H. Nijmeijer, P. Lohnberg. Observer design in the tracking control problem of robots. Proceedings of the IFAC Symposium on Nonlinear Control Systems Design Bordeaux, 1993: 197~202
    98. N. S.P.M, L. P.F, N. H. An observer-controller combination for a unicycle mobile robot. International Journal of Control,. 2005,78(2): 81-87
    99. V. Lebastard, Y. Aoustin., F. Plestan. Observer-based control of a walking biped robot without orientation measurement. Robotica. 2006,24(3): 385~440
    100. O. Masahiro, S.C. Yi, K. Toshihiro. State observer-based robust control scheme for electrically driven robot manipulators. Transactions on Robotics and Automation. 2004,20(4): 796~804
    101. W. Shi-Min, L. Li-Chun, W. Chia-Ju, et al. Kinematic control of omni-directional robots for time-optimal movement between two configurations. Journal of Intelligent and Robotic Systems: Theory and Applications. 2007,49(4): 397-410
    102. C. Jyh-Horng, H. Chen-Huei, S. Jung-Hung. On-line optimal tracking control of continuous-time systems. Mechatronics. 2004,14(5): 587-597
    103.蔡永林,席光,孙卫青.一种新的平面曲线圆弧插补节点获取方法.工程图学学报. 2002,11(1): 97~103
    104. Y. Zhang, J.H. Chung, S.A. Velinsky. Variable Structure Control of a Differentially Steered Wheeled Mobile Robot. Journal of Intelligent and Robotic Systems. 2003,36(3): 301~314
    105. L. Huang. Speed control of differentially driven wheeled mobile robots model-based adaptive approach. Journal of Robotic Systems. 2005,22(6): 323~332
    106. W. Dong, K.D. Kuhnert. Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Transactions on Robotics. 2005,21(2): 261~266
    107. R. Fierro, F.L. Lewis. Control of a nonholonomic mobile robot using neuralnetworks. IEEE Transactions on Neural Networks. 1998,9(4): 589~600
    108. T. Fukao, H. Nakagawa, N. Adachi. Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation. 2000,16(5): 609~615
    109. F. Mnif, F. Touati. An adaptive control scheme for nonholonomic mobile robot with parametric uncertainty. International Journal of Advanced Robotic Systems. 2005,2(1): 59~63
    110. F. Pourboghrat, M.P. Karlsson. Adaptive control of dynamic mobile robots with nonholonomic constraints. Computers and Electrial Engineering. 2002,28(4): 241~253
    111. R.W.Brockett, R.S. Millman, H.J. Sussmann. Asymptotic stability and feedback stabilization. Birkhauser, 1982: 181~191
    112. A.M.Block, M.Reyhanoglu, N.H.McClamroch. Control and stabilization of nonholonomic dynamic system. IEEE Transaction on Automatic Control. 1992,37(11): 1746~1757
    113. W.C. Canudas, O.J. Sordalen. Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Transaction on Automatic Control. 1992,37(11): 1791~1797
    114. C.Samson. Velocity amd torque feedback control of a nonholonomic cart. Proc. Int. Workshop in Adaptive and Nonlinear control: Issues in Robotics. Grenoble, France, 1990
    115. I. Kolmanovsky, H. McClamroch. Development in nonholonomic control problems. IEEE Control Systems Magazine. 1995,15(6): 20~36
    116. A. Luca, G. Oriolo, M. Vendittelli. Control of Wheeled Mobile Robots: An Experimental Overview. London: Springer-Verlag, 2001
    117. L. Gurvits, Z.X. Li. Smooth Time-periodic Feedback Solutions for Nonholonomic Motion Planning. Norwell: Kluwer, 1993: 53~108
    118. J.M. Rico, J. Gallardo, B. Ravani. Lie algebra and the mobility of kinematic chains. Journal of Robotic Systems. 2003,20(8): 477~499
    119. C. Paulo, N. Urbano. Lie algebra application to mobile robot control: A tutorial. Robotica. 2003,21(5): 483~493
    120. C. Fabiana, M. Dirk. Local controllability for linear control systems on Lie groups ournal of Dynamical and Control Systems. 2005,11(3): 353~373
    121. C. Bowen. Simulation of inverter with switch open faults based on switching function. Pro. of the IEEE Int.l Conf. on Automation and Logistics, ICAL. Jinan, China, 2007: 2774~2778
    122.张晓华.控制系统数字仿真与CAD.北京:机械工业出版社, 2005
    123.张毅刚,刘杰. MCS-51单片机原理及应用哈尔滨:哈尔滨工业大学出版社, 2004
    124.姚晓耘,张铁,翟敬梅.机器人行走运动控制系统.机电工程技术. 2006,35(9): 63~65
    125.肖爱平,孙汉旭,谭月胜.基于蓝牙技术的机器人模块化无线通信设计.北京邮电大学学报. 2004,27(1): 75~78
    126. S. Mattias, B. Mathias, S. Alessandro, et al. An autonomous spherical robot for security tasks. IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. Alexandria, United States 2006: 51~55
    127.侯俊杰.深入浅出MFC.武汉:华中科技大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700