用户名: 密码: 验证码:
类风湿关节炎患者的HLA-DR4表型和TNFα-308、TNFRII+196多态性的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:类风湿关节炎(RA)是一种病因不明的自身免疫性疾病,遗传、免疫分子调节在发病机制上起着主要作用。研究认为具有特定的HLA抗原者(如HLA-DR_4),当受到外界刺激或发生自身改变时,HLA的抗原决定簇发生了改变,借助共同表位和基因剂量效应,使具有HLA的有核细胞成为免疫活化的靶子,产生T细胞激活及一系列免疫介质如细胞因子的释放,导致RA发生。本研究试图进一步探索HLA-DR_4表型与细胞因子肿瘤坏死因子(TNF-α)及其受体(TNFRII)的单核甘酸多态性(SNP)的相互作用在RA的发病中的影响。
     目的:通过对RA患者HLA-DR_4表型和TNFα-308、TNFRⅡ+196的多态性之间相互作用的研究,探讨基因对RA患病风险、基因对相应的细胞因子浓度和临床病情指标的影响,从而进一步探索3个基因在RA发病中的作用。
     方法:确定112例RA患者和129例健康对照者为研究对象,首先抽提外周血白细胞的基因组DNA,然后用PCR-SSP检测HLA-DR_4表型和PCR-RFLP检测TNFα的-308位点和TNFRⅡ的+196位点的多态性,采用ELISA检测外周血清TNF-α、sTNFRⅡ浓度,最后收集临床病情指标资料(包括性别、年龄、病程、休息痛VAS评分、压痛关节数、肿胀关节数、握力、晨僵时间、ESR、CRP、RF、关节功能、x线分期)进行分析。
     结果:
     (1) HLA-DR_4表型在RA患者组(50%)与健康者组(26.36%)阳性率的差异有明显的统计学意义(P=0.000),HLA-DR_4(+)使得患者发生RA的风险较健康者升高了2.794倍(95%CI:1.630-4.790),性别的分层分析发现HLA-DR_4(+)使得女性患者发生RA的风险升高了3.556倍(95%CI:1.811-6.979)。
     (2) RA患者组与健康者组的TNFα-308等位基因型AA/GA/GG(0/8/104 vs 2/23/104,P=0.010)、少见等位基因型(AA+GA)/GG(8/104vs 25/104,P=0.006)和等位基因A/G(8/216 vs 27/231,P=0.004)构成比的差异有明显的统计学意义,TNFα-308少见等位基因型(AA+GA)和等位基因A使得患者发生RA的风险性较健康者升高3.125倍(95%CI:1.347-7.248)和3.156倍(95%CI:1.403-7.097)。性别的分层分析发现RA男患者组与男健康者组的TNFα-308等位基因型AA/GA/GG(0/2/34 vs 1/12/32,P=0.015)、少见等位基因型(AA+GA)/GG(2/34 vs13/32,P=0.007)和等位基因A/G(2/70 vs 14/76,P=0.007)构成比的差异有明显的统计学意义,TNFα-308少见等位基因型(AA+GA)和等位基因A使得男性发生RA的风险升高了6.906倍(95%CI:1.444-33.031)和6.447倍(95%CI:1.415-29.383)。
     (3)RA患者组与健康者组的TNFRⅡ+196等位基因型GG/TG/TT(5/62/45 vs 9/56/64)、少见等位基因型(GG+TG)/TT(67/45 vs 65/64)、等位基因G/T(72/152 vs 74/184)构成比的差异没有明显的统计学意义,性别的分层分析发现等位基因型GG/TG/TT在女患者与女健康者之间的差异(3/49/24 vs 8/28/48,P=0.000)具有明显的统计学意义;少见等位基因型(GG+TG)/TT在女性患者与女健康者(52/24 vs 36/48,P=0.001)、男性患者与男健康者(15/21 vs 29/16,P=0.041)之间的差异具有明显的统计学意义,使得女性发生RA的风险升高2.889倍(95%CI:1.510-5.526),男性发生RA的风险降低到0.394倍(95%CI:0.160-0.970);而等位基因G/T的性别分层差异没有统计学意义。
     (4)HLA-DR_4、TNFα-308组成的5种组合基因型中,HLADR_4(+)TNFα-308(GG)基因型使得患者发生RA的风险较HLADDR_4(-)TNFα-308(GG)基因型增高2.931倍(95%CI:1.642-5.233)。
     (5)HLA-DR_4、TNFRⅡ+196组成的6种组合基因型中,HLA-DR_4(+)TNFRⅡ+196(TT)基因型与HLA-DR_4(+)TNFRⅡ+196(TG)基因型使得患者发生RA的风险较HLA-DR_4(-)TNFRⅡ+196(TT)基因型分别增高2.476倍(95%CI:1.120-5.473)和6.136倍(95%CI:2.548-14.775),HLA-DR_4(+)TNFRRⅡ+196(TG)基因型使得患者发生RA的风险较HLA-DR_4(-)TNFRⅡ+196(TG)基因型增高4.313倍(95%CI:1.851-10.050)。
     (6) TNFα-308、TNFRⅡ+196组成的7种组合基因型中,TNFα-308(GA)TNFRⅡ+196(TT)基因型和TNFα-308(GA)TNFRⅡ+196(TG)基因型使得患者发生RA的风险较TNFα-308(GG)TNFRⅡ+196(TG)基因型分别降低到0.212倍(95%CI:0.056-0.804)和0.282倍(95%CI:0.084-0.945)。
     (7) HLA-DR_4、TNFα-308、TNFRⅡ+196组成的11种组合基因型中,HLA-DR_4(+)TNFα-308(GG)TNFRⅡ+196(TT)基因型和HLA-DR_4(+)TNFα-308(GG)TNFRⅡ+1 96(TG)基因型较HLA-DR_4(-)TNFα-308(GG)TNFRⅡ+196(TT)基因型使患者发生RA的风险升高2.64倍(95%CI:1.124-6.202)和5.8倍(95%CI:2.297-14.646);HLA-DR_4(+)TNFα-308(GG)TNFRⅡ+196(TG)基因型较HLA-DR_4(-)TNFα-308(GG)TNFRⅡ+196(TG)基因型使得患者发生RA的风险性升高了4倍(95%CI:1.637-9.775)。
     (8) RA患者组与健康者组的TNF-α浓度(pg/ml)的差别(34.56±21.04 vs 20.63±15.46,P=0.000)具有统计学意义。特定组合基因型的RA患者与健康者组的血清TNF-α浓度差异具有统计学意义。析因设计的方差分析发现TNFα-308基因型~*TNFRⅡ+196基因型(P=0.037)、HLA-DR_4表型~*TNFα-308基因型~*TNFRⅡ+196基因型(P=0.009)以及组别(P=0.000)、组别~*HLA-DR_4表型~*TNFα-308基因型(P=0.001)的交互作用对TNF-α浓度的影响具有统计学意义。
     (9)RA患者组与健康者组之间的sTNFRⅡ浓度(ng/ml)的差别(8.544±6.29 vs 5.48±4.41,P=0.000)具有统计学意义。特定组合基因型的RA患者与健康者组的血清sTNFRⅡ浓度差异具有统计学意义。析因设计的方差分析发现组别(P=0.000)、组别~*性别~*HLA-DR_4表型(P=0.038)、组别~*TNFa-308基因型(P=0.025)、组别~*TNFα-308基因型~*TNFRⅡ+196基因型(P=0.037)的交互作用对sTNFRⅡ浓度的影响具有统计学意义。
     (10)单一基因型对于RA病情的影响:HLA-DR_4(+)与HLA-DR_4(-)患者比较,发病年龄(岁)提早(42.59±14.07 vs 47.36±10.89,P=0.047),RF浓度(IU/mL)较高(471.32±435.22 vs 308.13±331.34,P=0.028)。TNFα-308的2种基因型GA/GG的患者比较没有发现有统计学意义的差异。TNFRⅡ+196的3种基因型GG/TG/TT的RA患者比较,其性别比(男/女)构成的差异(2/3 vs 13/49 vs 21/24,P=0.018)和RF浓度(IU/mL)的差异(917.00±674.77 vs 353.58±362.85 vs 380.93±365.39,P=0.008)有统计学意义。
     (11)组合基因型对RA病情的影响:HLA-DR_4与TNFα-308的组合基因型中,HLA-DR_4(+)TNFα-308(GG)基因型与HLA-DR_4(-)TNFα-308(GG)基因型之间相比在发病年龄(岁)的差异(42.35±14.27vs 47.71±10.95,P=0.033)有统计学意义;而TNFRⅡ+196与其它2个基因的两两组合的基因型和3个基因组合的基因型,其间的比较只有性别构成差异的统计学意义最终保留下来。析因设计资的方差分析,发现HLA-DR_4表型(P=0.013)、TNFRⅡ+196基因型(P=0.005)、性别~*TNFRⅡ+196基因型(P=0.043)的交互作用对RF滴度的影响具有统计学意义。
     结论:
     (1) HLA-DR_4表型(+)提高了RA患者,尤其是RA女性患者的患病风险。
     (2) TNF-α基因-308位点的多态性提高了RA患者、尤其是RA男性患者的患病风险。
     (3) TNFRⅡ基因+196位点的多态性与RA患者患病风险之间的关系比较复杂。
     (4)特定的HLA-DR_4、TNFα-308、TNFRⅡ+196组合基因型改变了RA发生的风险:TNFα-308(GG)轻微升高、TNFRⅡ+196(TT)轻微降低和TNFRⅡ+196(TG)显著升高基于HLADR_4基础上的RA患病风险。
     (5)血清TNF-α水平的差异与基因、疾病、疾病和基因二者之间的交互作用有关,而sTNFRⅡ水平的差异与疾病、疾病和性别和基因三者之间的交互作用有关。
     (6)单一基因和组合基因型对于RA病情的影响仅体现在某些方面,如发病年龄、性别比构成及RF浓度的高低,而多因素的共同作用对RF滴度的差异有影响。
Backgroud:
     Rheumatoid Arthritis(RA) is an autoimmune disease which etiology is unknown. Heredity and immunological regulation have played significant roles in pathogenesis. Special human leucocyte antigen(HLA) which was confronted with external stimuli or altered by itself had been changed by shared epitope and dosage effect of gene. Nucleated cells who carried HLA become the target of immunological activation and T cell was activated, then a series of immunogenic molecules were released such as cytokines which induced the occurrence of RA. So we want to keep up investigating furthurly if the interaction among HLA-DR_4 phenotype and Tumor Necrosis Factor(TNF) and its receptor Tumor Necrosis Factor Recepor(TNFR) by Single Nucleotide Polymorphism (SNP) could influence the occurrence of RA.
     Objective:
     By investigating the interactions among HLA-DR_4 phenotype and TNF and TNFR by SNP, we want to acquire the information about the effects of three genes on RA risk of onset and concentration of cytokines and clinical manifestation which could help us to apprehend furthurly the pathogenesis of RA.
     Methods:
     Our study objects were 112 RA patients and 129 Healthy Subjects. Genomic DNA of white blood cell were extracted, then PCR-SSP was used to determine phenotype of HLA-DR_4 and PCR-RFLP were used to genotype for the A/G polymorphism at -308 position of TNF-αgene and the T/G polymorphism at +196 position of TNFRⅡgene. Levels of TNF-α、sTNFRⅡwere measured by using ELISA. Finally clinical features of RA patients including sex、age、disease duration、VAS of rest pain、tender joints of 28、swollen joints of 28、grip、time of morning stiffness、ESR、CRP、RF、function of joints、radiologiucal stages were measured.
     Results:
     (1) The difference in positive rate of HLA-DR_4 phenotype between RA patients (50%) and healthy subjects (26.36%) had statistical significance (P=0.000). Positive HLA-DR_4 increased risk of onset in RA patients 2.794 times than that in healthy subjects[95%Confidence Index(CI):1.630-4.790]. Stratified analysis for sex showed Positive HLA-DR_4 increased risk of onset in female RA patients 3.556 times than that in female healthy subjects [95%CI: 1.811 -6.979].
     (2) The difference of composition in allelotype AA/GA/GG (0/8/104 vs 2/23/104, P=0.010)、rare allelotype (AA+GA)/GG (8/104 vs 25/104, P=0.006) and allele A/G (8/216 vs 27/231, P = 0.004) on TNFα-308 between RA patients and healthy subjects had statistical significance. Rare allelotype (AA+GA) and allele A on TNFα-308 increased risk of onset in RA patients 3.125 times (95%CI: 1.347-7.248) and 3.156 times (95%CI: 1.403-7.097) than that in healthy subjects. Stratified analysis for sex showed the difference of composition in allelotype AA/GA/GG (0/2/34 vs 1/12/32, P=0.015)、rare allelotype (AA+GA)/GG (2/34 vs 13/32, P=0.007) and allele A/G (2/70 vs 14/76, P=0.007) on TNFα-308 between male RA patients and male healthy subjects still existed. Rare allelotype (AA+GA) and allele A/G on TNFα-308 increased risk of onset in male RA patients 6.906 times (95%CI: 1.444-33.031) and 6.447 times (95%CI: 1.415-29.383) than that in male healthy subjects .
     (3) The difference of composition in allelotype GG/TG/TT (5/62/45 vs 9/56/64)、rare allelotype (GG+TG)/TT (67/45 vs 65/64) and allele G/T (72/152 vs 74/184) on TNFRⅡ+196 between RA patients and healthy subjects had no statistical significance. Stratified analysis for sex showed the difference in allelotype GG/TG/TT (3/49/24 vs 8/28/48, P=0.000) on TNFRⅡ+196 between female RA patients and female healthy subjects had statistical significance. The difference in rare allelotype (GG+TG) /TT on TNFRⅡ+196 between female RA patients and female healthy subjects (52/24 vs 36/48, P=0.001) and between male RA patients and male healthy subjects (15/21 vs 29/16, P=0.041) had statistical significance,which increased risk of onset in female RA patients 2.889 times(95%CI: 1.510-5.526) than that in female healthy subjects and lowered risk of onset in male RA patients 0.394 times (95%CI: 0.160-0.970) than that in male healthy subjects. However, there was no statistical significancant difference in allele G/T on TNFRⅡ+196 between RA patients and healthy subjects.
     (4) Among 5 kinds of allele genotypes combination with HLA-DR_4 and TNFα-308 ,HLA-DR_4(+)TNFα-308(GG) increased risk of onset in RA patients 2.931 times (95%CI:1.642-5.233) than that in HLADR_4(-) TNFα-308(GG) of healthy subjects.
     (5) Among 6 kinds of allele genotypes combination with HLA-DR_4 and TNFRⅡ+196, HLA-DR_4(+)TNFRⅡ+196(TT) and HLA-DR_4(+) TNFRⅡ+196(TG) increased risk of onset in RA patients 2.476 times (95%CI:1.120-5.473) and 6.136 times (95%CI:2.548-14.775) than that in HLA-DR_4(-)TNFRⅡ+196(TT) of healthy subjects,HLA- DR_4(+)TNFRⅡ+196(TG) increased risk of onset in RA patients 4.313 times (95%CI: 1.851-10.050) than that in HLA-DR_4(-)TNFRⅡ+196(TG) of healthy subjects.
     (6) Among 7 kinds of allele genotypes combination with TNFα-308 and TNFRⅡ+196, TNFα-308(GA)TNFRⅡ+196(TT) and TNFα-308(GA) TNFRⅡ+196(TG) lowered risk of onset in RA patients 0.212 times (95%CI: 0.056-0.804) and 0.282 times (95%CI:0.084-0.945) than that in TNFα-308(GG) TNFRⅡ+196 (TG) of healthy subjects.
     (7) Among 11 kinds of allele genotypes combination with HLA-DR_4、TNFα-308 and TNFRⅡ+196, HLA-DR_4(+)TNFα-308(GG) TNFRⅡ+196(TT) and HLA-DR_4(+)TNFα-308(GG)TNFRⅡ+196(TG) increased risk of onset in RA patients 2.64 times (95%CI:1.124-6.202) and 5.8 times (95%CI:2.297- 14.646) than that in HLA-DR_4(-)TNFα-308(GG)TNFRⅡ+196(TT) of healthy subjects. HLA-DR_4(+)TNFα-308 (GG)TNFRⅡ+196 (TG) increased risk of onset in RA patients 4 times (95%CI: 1.637-9.775) than that in HLA-DR_4(-)TNFα-308(GG)TNFRⅡ+196(TG) of healthy subjects.
     (8) The difference of concentration of serum TNF-α(pg/ml) between RA patients and healthy subjects (34.56±21.04 vs 20.63±15.46,P=0.000) had statistical significance. The difference of TNF-αconcentration between certain allele genotype combination of RA patients and healthy subjects had statistical significance. By analysis of variance of factorial design, interactions existing in mfgene~*tnfrgene(P=0.037)、dr_4~*tnfgene ~*tnfrgene(P=0.009) and group(P=0.000)、group~*dr_4~*tnfgene(P=0.001) had statistical significant influence to level of TNF-α.
     (9) The difference of concentration of serum sTNFRⅡ(ng/ml) between RA patients and healthy subjects (8.54±6.29 vs 5.48±4.41, P=0.000) had statistical significance. The difference of sTNFRⅡconcentration between certain allele genotype combination of RA patients and healthy subjects had statistical significance. By analysis of variance of factorial design, interactions existing in group(P=0.000)、group~*sex ~*dr4(P=0.038)、group~*tnfgene(P=0.025)、group~*tnfgene~*tnfrgene (P=0.037) had statistical significant influence to level of sTNFRⅡ.
     (10) A single allelotype had a certain influence to clinical manifestations of RA. Patients of HLA-DR_4(+) had more earlier onset age (42.59±14.07 vs 47.36±10.89, P=0.047) and higher level (IU/mL)of RF (471.32±435.22 vs 308.13±331.34, P=0.028 ) than those of HLA-DR_4(-).There were no statistical significance between patients of TNFα-308(GG) and TNFα-308(GA). Among patients of three kind of TNFRⅡ+196 allelotype GG/TG/TT, there were statistical significance in sex composition male/female (2/3 vs 13/49 vs 21/24,P=0.018) and level(IU/mL)of RF(917.00±674.77 vs 353.58±362.85 vs 380.93±365.39, P=0.008).
     (11) Allele genotypes combination also had a certain influence to clinical manifestations of RA. The difference of onset of disease between HLA-DR_4(+)TNFα-308(GG) and HLA-DR_4(-)TNFα-308(GG) (42.35±14.27 vs 47.71±10.95, P=0.033) had statistical significance. Combinations of TNFRⅡ+196 with one or two of other Allele only had statistical significance in sex composition.By analysis of variance of factorial design, interactions existing in dr4(P=0.013)、tnfrgene (P=0.005)、sex~*tnfrgene(P=0.043) had statistical significant influence to level of RF.
     Conclusions:
     (1) Positive HLA-DR_4 phenotype increased risk of onset in RA patients especially female RA patients.
     (2) Polymorphism of TNF-αat position -308 increased risk of onset in RA patients especially male RA patients.
     (3) The relationship between polymorphism of TNFRⅡat position +196 and RA was sophisticated.
     (4) Certain allele genotype combination of HLA-DR_4、TNFα-308 and TNFRⅡ+196 altered the risk of onset, TNFα-308(GG) increased slightly、TNFRⅡ+196(TT) decreased slightly and TNFRⅡ+196(TG) increased obviously the risk of onset based on HLADR4 phenotype.
     (5) The difference in level of TNF-αwas related to allele gene、disease、interactions between disease and allele gene. However, the difference in level of sTNFRⅡwas related to disease、interactions among disease、sex and allele.
     (6) The influence of Single allelotype and Allele genotypes combination mainly embodyied in some aspcets such as onset age、sex composition and level of RF. Interaction of multi-factor leaded to difference in level of RF.
引文
[1] P Stastny. Association of the B-cell alloantigen DRw4 with rheumatoid arthritisN. Engl. J. Med., 1978,298: 869 - 871.
    [2] Hilliard Festenstein and Bill Oilier. Cellular typing and functional heterogeneity of MHC-encoded products. Br. Med. Bull., 1987,43(1): 122 - 155.
    [3] L Fugger and A Svejgaard .The HLA-DQ7 and -DQ8 associations in DR4-positive rheumatoid arthritis patients. A combined analysis of data available in the literature.Tissue Antigens, 1997,50(5): 494-500.
    [4]S. Agrawal, A. Agrawal, S. Dabadghao, et al.Compound heterozygosity of HLA-DR4 and DR1 ntigens in asian indians increases the risk of extra-articular features in rheumatoid arthritis . Rheumatology, 1995,34(1): 41 - 44.
    [5]D Jawaheer, MF Seldin, CI Amos,A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases.Am J Hum Genet, 2001,68(4): 927-36.
    [6] C Dresch, R Xavier, JC Brenol, et al. Analysis of two T-cell receptor BV gene segment polymorphisms in caucasoid Brazilian patients with rheumatoid arthritis. Immunol Lett, 2003,90(2): 77-80.
    [7] Y Chen, CM Wang, JM Wu, et al.Association of rheumatoid factor production with FcgammaRⅢa polymorphism in Taiwanese rheumatoid arthritis. J Clin Exp Immunol, 2006, 144(1): 10-16.
    [8] Interleukin-10 promoter polymorphism in patients with rheumatoid arthritis.A Pawlik, M Kurzawski, BG Szklarz, et al.Clin Rheumatol, 2005,24(5):480-484.
    [9] P Barrera, S Faure, JF Prud'homme, et al.European genetic study on rheumatoid arthritis: is there a linkage of the interleukin-1 (IL-1), IL-10 or IL-4 genes to RA?Clin Exp Rheumatol, 2001,19(6): 709-14.
    [10] Martinez A, Fernandez-Arquero M, Pascual-Salcedo D, et al. Primary association of tumor necrosis factor region genetic markers with suscep tibility to rheumatoid arthritis. Arthritis Rheum , 2000, 43:1366 -1370.
    [11] Singal DP, Li J, Zhu Y, et al. HLA class III region and susceptibility to rheumatoid arthritis. Clin Exp Rheumatol, 2000, 18: 485- 491.
    [12] Ota M, Katsuyama Y, Kimura A. A second suscep tibility gene for develop ing rheumatoid arthritis in the humanMHC is localized within a 70 kb interval telomeric of the TNF genes in the HLA class Ⅲ region. Genomics, 2001, 71: 263 - 270.
    [13]BM Brinkman, TW Huizinga, SS Kurban,et al.Tumour necrosis factor alpha gene polymorphisms in rheumatoid arthritis: association with susceptibility to, or severity of, disease? Rheumatology, 1997, 36(5): 516 - 521.
    [14]邓军卫,吴轰,游学科,等.HLA-Ⅱ类基因DR_α、DRB_1~*0401转基因鼠模型的建立及体内表达研究.中华医学遗传学杂志,1999,16(6):360-363.
    [15]李芬,吴轰,邓军卫,等.以转基因动物研究类风湿关节炎的易感基因.中华风湿病学杂志,1999,3(2):75-79.
    [16] Li fen,Wu Hong, Deng Junwei, et al.Effect of Yangqixue Qufengshi Recipe(养气血祛风湿方)on Rheumatoid Arthritis Model Mice under Different Genetic Backgrouds. Chin J Integr Med,2006,12(1):46-49.
    [17]吴轰,高洁生,黎明,等.HLA-DR4等位基因与类风湿关节炎疗效的关系.中华风湿病学杂志,2001,5(4):213-215.
    [18]涂向东,江清华,兰风华.三种简易提取全血基因组DNA方法的比较.中国实验诊断学,2006,10(3):264-266.
    [19]宋瑛,吴开春,张沥,等.肿瘤坏死因子基因多态性与炎症性肠病的相关性分析.中华消化杂志,2005,25(4):202-206.
    [20]魏长空,叶任高,李幼姬,等.肿瘤坏死因子受体Ⅱ196位点基因多态性与SLE相关性及功能研究.中国病理生理杂志,2005,21(9):1669-1674.
    [21]左晓霞,陶立坚,高洁生主译.凯利风湿病学.北京:人民卫生出版,2006.853-870.
    [22] Silvia Hayer, Makiyeh Tohidast-Akrad, Silva Haralambous, et al. Aberrant Expression of the Autoantigen Heterogeneous Nuclear Ribonucleoprotein-A2 (RA33) and Spontaneous Formation of Rheumatoid Arthritis-Associated Anti-RA33 Autoantibodies in TNF-Transgenic Mice.J. Immunol., 2005, 175(12): 8327 - 8336.
    [23] F S Di Giovine, G Nuki, and G W Duff. Tumour necrosis factor in synovial exudates.Ann Rheum Dis, 1988; 47: 768 - 772.
    [24] T Saxne, MA Palladino Jr, D Heinegard, et al.Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum.Arthritis Rheum, 1988; 31(8): 1041-5.
    [25] DE Yocum, L Esparza, JB Benjamin,et al. Characteristics of tumor necrosis factor production in rheumatoid arthritis.Cell Immunol, 1989; 122(1): 131-45.
    [26]朱乃硕,黄啸宇,王福庆,等.中国人群HLA_DR_4等位基因结构及其与类风 湿关节炎相关性研究.中华医学杂志,1994,74(7):428-430.
    [27]李兴福,张芳,潘正论,等.山东地区类风湿关节炎与HLA_DRB1基因共同表位的关联性研究.中华风湿病学杂志,2003,7(9):531-536.
    [28] Ruiwen Chen, Meng Fang, Qing Cai, et al . Tumor necrosis factor alpha-308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China.Rheumatol Int, 2007; 28(2): 121-126.
    [29]朱月勇,叶德富,卓光生,等.类风湿性关节炎患者TNF基因多态性表达及意义的初步探讨.中国医师杂志,2004,6(5):618-619.
    [30] SF Lo, CM Huang, MC Wu, et al. Lack of association of tumor necrosis factor alpha gene polymorphism in patients with rheumatoid arthritis in central Taiwan. Rheumatol Int, 2003; 23(4): 151-3.
    [31] A Pawlik, M Florczak, L Ostanek, et al.TNF-alpha -308 promoter polymorphism in patients with rheumatoid arthritis. Scand. J Rheumatol, 2005; 34(1): 22-6.
    [32] EL Kaijzel, JP Bayley, MV van Krugten, et al.. Allele-specific quantification of tumor necrosis factor alpha (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis patients and healthy individuals. Genes Immun, 2001; 2(3): 135-44.
    [33] JK Lacki, R Moser, I Korczowska, et al. TNF-alpha gene polymorphism does not affect the clinical and radiological outcome of rheumatoid arthritis. Rheumatol Int, 2000; 19(4): 137-40.
    [34] J. Cuenca, M. Cuchacovich, C. P(?)rez, et al. The -308 polymorphism in the tumour necrosis factor (TNF) gene promoter region and ex vivo lipopolysaccharide-induced TNF expression and cytotoxic activity in Chilean patients with rheumatoid arthritis.Rheumatology 2003; 42: 308-313
    [35] A Balog, J Gal, Z Gyulai, et al. Tumour necrosis factor-alpha and heat-shock protein 70-2 gene polymorphisms in a family with rheumatoid arthritis. Acta Microbiol Immunol Hung, 2004; 51(3): 263-9.
    [36] JE Fonseca, J Cavaleiro, J Teles, et al .Contribution for new genetic markers of rheumatoid arthritis activity and severity: sequencing of the tumor necrosis factor-alpha gene promoter. Arthritis Res Ther, 2007; 9(2): R37.
    [37] JT Cvetkovic, S Wallberg-Jonsson, B Stegmayr, et al. Susceptibility for and clinical manifestations of rheumatoid arthritis are associated with polymorphisms of the TNF-alpha, IL-1beta, and IL-1Ra genes. J Rheumatol, 2002; 29(2): 212-9.
    [38] YH Lee, JD Ji, and GG Song Tumor necrosis factor-alpha promoter -308 A/G polymorphism and rheumatoid arthritis susceptibility: a metaanalysis. J Rheumatol, 2007; 34(1): 43-9.
    [39] J.-P. Bayley, A. M. Bakker, E. L. Kaijzel, et al .Association of polymorphisms of the tumour necrosis factor receptors I and Ⅱ and rheumatoid arthritis. Rheumatology, 2003; 42(8): 969 - 971.
    [40] A. H. M. van der Helm-van Mil, P. Dieude, J. J. M. Schonkeren, et al. No association between tumour necrosis factor receptor type 2 gene polymorphism and rheumatoid arthritis severity: a comparison of the extremes of phenotypes Rheumatology, 2004; 43(10):1232-1234.
    [41] T Shibue, N Tsuchiya, T Komata, et al. Tumor necrosis factor alpha 5'-flanking region, tumor necrosis factor receptor Ⅱ, and HLA-DRB1 polymorphisms in Japanese patients with rheumatoid arthritis. Arthritis Rheum, 2000; 43(4): 753-7.
    [42] JH Yen, WC Tsai, CJ Chen, et al.. Tumor necrosis factor receptor 2 microsatellite and exon 6 polymorphisms in rheumatoid arthritis in Taiwan . J Rheumatol, 2003; 30(3): 438-42
    [43] JR Glossop, NB Nixon, PT Dawes, et al. No association of polymorphisms in the tumor necrosis factor receptor I and receptor Ⅱ genes with disease severity in rheumatoid arthritis. J Rheumatol, 2003; 30(7): 1406-9.
    [44] E. Oregon-Romero, N. Torres-Carrillo, M. Vazquez-Del Mercado,et al.Distribution of Metl96Arg polymorphism in the TNF2 gene in Rheumatoid Arthritis and Osteoarthritis patients. Annals of the Rheumatic Diseases 2005;64(Suppl 3):520.
    [45] A Barton, S John, WE Oilier, et al.. Association between rheumatoid arthritis and polymorphism of tumor necrosis factor receptor Ⅱ, but not tumor necrosis factor receptor I, in Caucasians. Arthritis Rheum, 2001; 44(1): 61-5.
    [46] P Dieude, E Petit, S Cailleau-Moindrault, et al. Association between tumor necrosis factor receptor Ⅱ and familial, but not sporadic, rheumatoid arthritis:evidence for genetic heterogeneity. Arthritis Rheum, 2002; 46(8): 2039-44.
    [47] A Constantin, P Dieude, V Lauwers-Cances, et al . Tumor necrosis factor receptor Ⅱ gene polymorphism and severity of rheumatoid arthritis. Arthritis Rheum,2004; 50(3): 742-7.
    [48] L. Arlestig, M. Johansson, S. Rantapaa-Dahlqvist. Polymorphisms of genes related to cardiovascular disease in Rheumatoid Arthritis. Annals of the Rheumatic Diseases 2005;64(Suppl 3):366.
    [49] JR Glossop, PT Dawes, AB Hassell, et al. Anemia in rheumatoid arthritis:association with polymorphism in the tumor necrosis factor receptor I and II genes. J Rheumatol, 2005; 32(9): 1673-8.
    [50] B Tolusso, S Sacco, E Gremese, et al. Relationship between the tumor necrosis factor receptor Ⅱ (TNF-RⅡ) gene polymorphism and sTNF-RⅡ plasma levels in healthy controls and in rheumatoid arthritis. Hum Immunol, 2004; 65(12): 1420-6.
    [51] SL Bridges Jr, G Jenq, M Moran, et al. Single-nucleotide polymorphisms in tumor necrosis factor receptor genes: definition of novel haplotypes and racial/ethnic differences. Arthritis Rheum, 2002; 46(8): 2045-50.
    [52] JH Yen, CJ Chen, WC Tsai, et al. Tumor necrosis factor promoter polymorphisms in patients with rheumatoid arthritis in Taiwan. J Rheumatol,2001;28(8): 1788-92.
    [53] F Waldron-Lynch, C Adams, C Amos, et al.Tumour necrosis factor 5' promoter single nucleotide polymorphisms influence susceptibility to rheumatoidarthritis (RA) in immunogenetically defined multiplex RA families Genes Immun,2001; 2(2): 82-7.
    [54] AA Rodriguez-Carreon, J Zuniga, G Hernandez-Pacheco, et al. Tumor necrosis factor-alpha -308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J Autoimmun, 2005; 24(1):63-8.
    [55] AJ Czaja and PT Donaldson Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis.Immunol Rev, 2000; 174(4): 250-9.
    [56] KM Kroeger, KS Carville, and LJ Abraham The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription.Mol Immunol, 1997; 34(5):391-9.
    [57] F Pociot, L Briant, CV Jongeneel, et al .Association of tumor necrosis factor (TNF) and class Ⅱ major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus.Eur J Immunol, 1993; 23(1): 224-31.
    [58] GC Webb,DD Chaplin. Genetic variability at the human tumor necrosis factor loci. J. Immunol., 1990; 145(8): 1278 - 1285.
    [59] JR Glossop, PT Dawes, NB Nixon, et al. Polymorphism in the tumour necrosis factor receptor Ⅱ gene is associated with circulating levels of soluble tumour necrosis factor receptors in rheumatoid arthritis. Arthritis Res Ther, 2005; 7(6): R1227-34.
    [60] V. Go(?)b, P. Dieud(?), R. Daveau, et al .Contribution of PTPN22 1858T, TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anti-citrullinated protein antibodies to very early rheumatoid arthritis diagnosis.Rheumatology, 2008; 47(6):1208-1212.
    [1]高俐,王维忠.肿瘤坏死因子受体研究进展.白求恩医科大学学报,1998;24(1):108-110.
    [2] E Louis, D Franchimont, A Piron, et al .Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans.Clin Exp Immunol, 1998; 113(3): 401-6.
    [3] KM Kroeger, KS Carville, and LJ Abraham The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription.Mol Immunol, 1997; 34(5): 391-9.
    [4] AJ Czaja and PT Donaldson Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis.Immunol Rev, 2000; 174(4): 250-9.
    [5] F Pociot, L Briant, CV Jongeneel, et al .Association of tumor necrosis factor (TNF) and class Ⅱ major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus.Eur J Immunol,1993; 23(1): 224-31.
    [6] T Skoog, FM van't Hooft, B Kallin, et al .A common functional polymorphism (C→A substitution at position -863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha.Hum. Mol. Genet., 1999; 8: 1443 - 1449.
    [7] GC Webb,DD Chaplin. Genetic variability at the human tumor necrosis factor loci. J. Immunol., 1990; 145(8): 1278 - 1285.
    [8] CE Whichelow, GA Hitman, I Raafat, et al . The effect of TNF*B gene polymorphism on TNF-alpha and -beta secretion levels in patients with insulin-dependent diabetes mellitus and healthy controls.Eur J Immunogenet, 1996;23(6): 425-35.
    [9] S Kamizono, Y Hiromatsu, N Seki, et al. A polymorphism of the 5' flanking region of tumour necrosis factor alpha gene is associated with thyroid-associated ophthalmopathy in Japanese. Clin Endocrinol (Oxf), 2000; 52(6): 759-764.
    [10] A Balog, J Gal, Z Gyulai, et al. Tumour necrosis factor-alpha and heat-shock protein 70-2 gene polymorphisms in a family with rheumatoid arthritis. Acta Microbiol Immunol Hung, 2004; 51(3): 263-9.
    [11] JT Cvetkovic, S Wallberg-Jonsson, B Stegmayr, et al. Susceptibility for and clinical manifestations of rheumatoid arthritis are associated with polymorphisms of the TNF-alpha, IL-lbeta, and IL-IRa genes. J Rheumatol, 2002; 29(2): 212-9.
    [12] AA Rodriguez-Carreon, J Zuniga, G Hernandez-Pacheco, et al. Tumor necrosis factor-alpha -308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J Autoimmun, 2005; 24(1):63-8.
    [13] F Waldron-Lynch, C Adams, C Amos, et al.Tumour necrosis factor 5' promoter single nucleotide polymorphisms influence susceptibility to rheumatoid arthritis (RA) in immunogenetically defined multiplex RA families Genes Immun,2001; 2(2): 82-7.
    [14] D Khanna, H Wu, G Park, et al. Association of tumor necrosis factor alpha polymorphism, but not the shared epitope, with increased radiographic progression in a seropositive rheumatoid arthritis inception cohort. Arthritis Rheum, 2006; 54(4):1105-16.
    [15] JE Fonseca, J Cavaleiro, J Teles, et al .Contribution for new genetic markers of rheumatoid arthritis activity and severity: sequencing of the tumor necrosis factor-alpha gene promoter. Arthritis Res Ther, 2007; 9(2): R37.
    [16] Ruiwen Chen, Meng Fang, Qing Cai, et al . Tumor necrosis factor alpha -308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China.Rheumatol Int, 2007; 28(2): 121-126.
    [17] A Pawlik, M Florczak, L Ostanek, et al.TNF-alpha -308 promoter polymorphism in patients with rheumatoid arthritis. Scand. J Rheumatol, 2005; 34(1):22-6.
    [18] SF Lo, CM Huang, MC Wu, et al. Lack of association of tumor necrosis factor alpha gene polymorphism in patients with rheumatoid arthritis in central Taiwan. Rheumatol Int, 2003; 23(4): 151-3.
    [19]EL Kaijzel, JP Bayley, MV van Krugten, et al.. Allele-specific quantification of tumor necrosis factor alpha (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis patients and healthy individuals. Genes Immun,2001; 2(3): 135-44.
    [20] JK Lacki, R Moser, I Korczowska, et al. TNF-alpha gene polymorphism does not affect the clinical and radiological outcome of rheumatoid arthritis. Rheumatol Int, 2000; 19(4): 137-40.
    [21] J. Cuenca, M. Cuchacovich, C. Perez, et al. The -308 polymorphism in the tumour necrosis factor (TNF) gene promoter region and ex vivo lipopolysaccharide-induced TNF expression and cytotoxic activity in Chilean patients with rheumatoid arthritis.Rheumatology 2003; 42: 308-313
    [22] JH Yen, CJ Chen, WC Tsai, et al. Tumor necrosis factor promoter polymorphisms in patients with rheumatoid arthritis in Taiwan. J Rheumatol, 2001;28(8): 1788-92.
    [23] YH Lee, JD Ji, and GG Song Tumor necrosis factor-alpha promoter -308 A/G polymorphism and rheumatoid arthritis susceptibility: a metaanalysis. J Rheumatol, 2007; 34(1): 43-9.
    [24]B Mugnier, N Balandraud, A Darque, et al. Polymorphism at position -308 of the tumor necrosis factor alpha gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum, 2003; 48(7): 1849-52.
    [25] S Guis, N Balandraud, J Bouvenot, et al .Influence of -308 A/G polymorphism in the tumor necrosis factor alpha gene on etanercept treatment in rheumatoid arthritis.Arthritis Rheum, 2007; 57(8): 1426-30.
    [26] M Cuchacovich, L Ferreira, M Aliste,et al. Tumour necrosis factor-alpha (TNF-alpha) levels and influence of -308 TNF-alpha promoter polymorphism on the responsiveness to infliximab in patients with rheumatoid arthritis. Scand J Rheumatol,2004; 33(4): 228-32.
    [27]M. Cuchacovich, L. Soto, M. Edwardes,et al. TNF-alpha -308 G/G promoter polymorphism correlates with a better response to adalimumab in patients with Rheumatoid Arthritis. Annals of the Rheumatic Diseases 2005;64:1339.
    [28] M Cuchacovich, L Soto, M Edwardes, et al .Tumour necrosis factor (TNF)alpha -308 G/G promoter polymorphism and TNFalpha levels correlate with a better response to adalimumab in patients with rheumatoid arthritis.Scand J Rheumatol, 2006; 35(6): 435-40.
    [29]M. Seitz,U.Wirthm(?)ller,B.M(?)ller,et al .The -308 tumour necrosis factor-a gene polymorphism predicts therapeutic response to TNFa-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology, 2007; 46(1): 93 - 96.
    [30]L Padyukov, J Lampa, M Heimb(?)rger, et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Annals of the Rheumatic Diseases 2003 ;62:526-529
    [31]J E Fonseca, T Carvalho, M Cruz,et al. .Polymorphism at position -308 of the tumour necrosis factor-a gene and rheumatoid arthritis pharmacogenetics.Annals of the Rheumatic Diseases 2005;64:793-794
    [32] C Miceli-Richard, E Comets, C Verstuyft, et al . A single tumour necrosis factor haplotype influences the response to adalimumab in rheumatoid arthritisAnn Rheum Dis, 2008; 67(40: 478 - 484.
    [33]J Vinasco, Y Beraun, A Nieto, et al.Polymorphism at the TNF loci in rheumatoid arthritis. Tissue Antigens, January 1, 1997; 49(1): 74-8.
    [34] BM Brinkman, TW Huizinga, SS Kurban, et al. Tumour necrosis factor alpha gene polymorphisms in rheumatoid arthritis: association with susceptibility to,or severity of, disease? Rheumatology, 1997; 36(5): 516-521.
    [35] EL Kaijzel, MV van Krugten, BM Brinkman, et al. Functional analysis of a human tumor necrosis factor alpha (TNF-alpha) promoter polymorphism related to joint damage in rheumatoid arthritis. Mol Med, 1998; 4(11): 724-33.
    [36] M Fabris, PE Di, A D'Elia, et al.Tumor necrosis factor-alpha gene polymorphism in severe and mild-moderate rheumatoid arthritis. J Rheumatol, 2002;29(1): 29-33.
    [37] LB Hughes, LA Criswell, TM Beasley, et al . Genetic risk factors for infection in patients with early rheumatoid arthritis.Genes Immun, 2004; 5(8): 641-7.
    [38] H Marotte, P Farge, P Gaudin, et al .The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA-DR shared epitope and severity of bone destruction. Ann Rheum Dis, 2006;65(7): 905 - 909.
    [39] MV van Krugten, TW Huizinga, EL Kaijzel, et al. Association of the TNF +489 polymorphism with susceptibility and radiographic damage in rheumatoid arthritis. Genes Immun,, 1999; 1(2): 91-6.
    [40] AS Low, MA Gonzalez-Gay, M Akil, et al.TNF +489 polymorphism does not contribute to susceptibility to rheumatoid arthritis. Clin Exp Rheumatol, 2002; 20(6): 829-32.
    [41] EL Kaijzel, JP Bayley, MV van Krugten, et al .Allele-specific quantification of tumor necrosis factor alpha (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis patients and healthy individuals.Genes Immun, 2001; 2(3): 135-44.
    [42] N Seki, S Kamizono, A Yamada, et al. Polymorphisms in the 5'-flanking region of tumor necrosis factor-alpha gene in patients with rheumatoid arthritis. Tissue Antigens, 1999; 54(2): 194-7.
    [43] C. P. Kang, K. W. Lee, D. H. Yoo, et al.The influence of a polymorphism at position -857 of the tumour necrosis factor αgene on clinical response to etanercept therapy in rheumatoid arthritis Rheumatology, 2005;44(4):547-552.
    [44] I. A. Udalova, A. Richardson, H. Ackerman, et al .Association of accelerated erosive rheumatoid arthritis with a polymorphism that alters NF-κB binding to the TNF promoter region. Rheumatology, 2002; 41(7): 830 - 831.
    [45] 鞠少卿,钱责力虎,王惠民.肿瘤坏死因子基因多态性与系统性红斑狼疮.国外医学临床生物化学与检验学分册,2002;23(2):71-73.
    [46] DA Campbell, S Nelson, R Madhok, et al. TNF Nco-Ⅰ RFLP is not an independent risk factor in rheumatoid arthritis. Eur J Immunogenet, 1994; 21(6): 461-7.
    [47] C Vandevyver, P Raus, P Stinissen, et al..Polymorphism of the tumour necrosis factor beta gene in multiple sclerosis and rheumatoid arthritis. Eur J Immunogenet, 1994; 21(5): 377-82.
    [48] M.D. Collado, J. Sainz, J. Salvatierra,et al. Effect of TNF and TNFR 2 polymorphisms, -308 (G/A) and +489 (G/A) of TNF-alpha gene, +245 (G/A) of TNF-beta gene and M196R of TNFR 2 gene, on inflixmab response in Rheumatoid Arthritis patients. Annals of the Rheumatic Diseases 2005;64(Suppl 3):376.
    [49] A. H. M. van der Helm-van Mil, P. Dieude, J. J. M. Schonkeren, et al. No association between tumour necrosis factor receptor type 2 gene polymorphism and rheumatoid arthritis severity: a comparison of the extremes of phenotypes Rheumatology, 2004; 43(10): 1232-1234.
    [50] J.-P. Bayley, A. M. Bakker, E. L. Kaijzel, et al .Association of polymorphisms of the tumour necrosis factor receptors I and Ⅱ and rheumatoid arthritis. Rheumatology, 2003; 42(8): 969 - 971.
    [51] T Shibue, N Tsuchiya, T Komata, et al. Tumor necrosis factor alpha 5'-flanking region, tumor necrosis factor receptor Ⅱ, and HLA-DRB1 polymorphisms in Japanese patients with rheumatoid arthritis. Arthritis Rheum, 2000; 43(4): 753-7.
    [52]JH Yen, WC Tsai, CJ Chen, et al.. Tumor necrosis factor receptor 2 microsatellite and exon 6 polymorphisms in rheumatoid arthritis in Taiwan . J Rheumatol, 2003; 30(3): 438-42
    [53] JR Glossop, NB Nixon, PT Dawes, et al. No association of polymorphisms in the tumor necrosis factor receptor I and receptor Ⅱ genes with disease severity in rheumatoid arthritis. J Rheumatol, 2003; 30(7): 1406-9.
    [54] SL Bridges Jr, G Jenq, M Moran, et al. Single-nucleotide polymorphisms in tumor necrosis factor receptor genes: definition of novel haplotypes and racial/ethnic differences. Arthritis Rheum, 2002; 46(8): 2045-50.
    [55] V. Goeb, P. Dieude, R. Daveau, et al .Contribution of PTPN22 1858T,TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anti-citrullinated protein antibodies to very early rheumatoid arthritis diagnosis.Rheumatology, 2008; 47(8): 1208-1212.
    [56] E. Oregon-Romero, N. Torres-Carrillo, M. Vazquez-Del Mercado,et al.Distribution of Metl96Arg polymorphism in the TNF2 gene in Rheumatoid Arthritis and Osteoarthritis patients. Annals of the Rheumatic Diseases 2005;64(Suppl 3):520.
    [57] A Barton, S John, WE Oilier, et al.. Association between rheumatoid arthritis and polymorphism of tumor necrosis factor receptor Ⅱ, but not tumor necrosis factor receptor I, in Caucasians. Arthritis Rheum, 2001; 44(1): 61-5.
    [58] P Dieude, E Petit, S Cailleau-Moindrault, et al . Association between tumor necrosis factor receptor II and familial, but not sporadic, rheumatoid arthritis:evidence for genetic heterogeneity. Arthritis Rheum, 2002; 46(8): 2039-44.
    [59] A Constantin, P Dieude, V Lauwers-Cances, et al . Tumor necrosis factor receptor Ⅱ gene polymorphism and severity of rheumatoid arthritis. Arthritis Rheum,2004; 50(3): 742-7.
    [60] L. Arlestig ,M. Johansson, S. Rantapaa-Dahlqvist. Polymorphisms of genes related to cardiovascular disease in Rheumatoid Arthritis. Annals of the Rheumatic Diseases 2005;64(Suppl 3):366.
    [61] JR Glossop, PT Dawes, AB Hassell, et al. Anemia in rheumatoid arthritis: association with polymorphism in the tumor necrosis factor receptor I and Ⅱ genes. J Rheumatol, 2005; 32(9): 1673-8.
    [62] JR Glossop, PT Dawes, NB Nixon, et al. Polymorphism in the tumour necrosis factor receptor Ⅱ gene is associated with circulating levels of soluble tumour necrosis factor receptors in rheumatoid arthritis. Arthritis Res Ther, 2005; 7(6):R1227-34.
    [63] B Tolusso, S Sacco, E Gremese, et al. Relationship between the tumor necrosis factor receptor Ⅱ (TNF-RⅡ) gene polymorphism and sTNF-RⅡ plasma levels in healthy controls and in rheumatoid arthritis. Hum Immunol, 2004; 65(12): 1420-6.
    [64] M Fabris, B Tolusso, E Di Poi, et al. Tumor necrosis factor-alpha receptor Ⅱ polymorphism in patients from southern Europe with mild-moderate and severe rheumatoid arthritis. J Rheumatol, 2002; 29(9): 1847-50.
    [65] A. Ongaro, A. Pellati, M. Padovan, et al.Tumor necrosis factor-alpha receptor Ⅱ polymorphism influences outcome of anti-TNF therapy in rheumatoid arthritis. Ann Rheum Dis, 2007; 66(6): 333.
    [66] A. Chatzikyriakidou, I. Georgiou, P. V. Voulgari, et al .Combined tumour necrosis factor-alpha and tumour necrosis factor receptor genotypes could predict rheumatoid arthritis patients' response to anti-TNF-alpha therapy and explain controversies of studies based on a single polymorphism.Rheumatology, 2007; 46(6):1034-1035.
    [1]王苏梅,刘学军,吴爱华.亚甲基四氢叶酸还原酶基因多态性及临床意义.国外医学遗传学分册,2005,28(1):29-32.
    [2] L B Hughes, T M Beasley , H Patel , et al. Racial or ethnic differences in allele frequencies of single-nucleotide polymorphisms in the methylenetetrahydro folate reductase gene and their influence on response to methotrexate in rheumatoid arthritis. Ann Rheum Dis, 2006;65:1213-12181.
    [3]K Fukino, T Kawashima, M Suzuki,et al. Methylenetetrahydrofolate reductase and reduced folate carrier-1 genotypes and methotrexate serum concentrations in patients with rheumatoid arthritis.J Toxicol Sci, 2007; 32(4): 449-52.
    [4] A. Tetik, G. Keser, V. Inal, et al. Influence of Methylenetetrahydrofolate reductase gene polymorphisms on methotrexate toxicity in patients with rheumatoid arthritis. Ann Rheum Dis, 2007; 66(6): 370.
    [5] JA Wessels, SM van der Kooij, S le Cessie, et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis.Arthritis Rheum, Jun 2007; 56(6): 1765-75.
    [6]K Kumagai, K Hiyama, T Oyama, et al. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis.Int J Mol Med,2003,11(5):593-600.
    [7] M. Rubini, M. Padovan, O. Baricordi,et al. Association between MTHFR 1298A>C polymorphism in the methylene-tetrahydrofolate (MTHFR) gene and increasd risk for rheumatoid arthritis. Ann Rheum Dis, 2005, 64(6): 531.
    [8] Y Berkun , D Levartovsky, A Rubinow , et al. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis, 2004;63:1227-1231.
    [9] J.A.M. Wessels, J.K. De Vries-Bouwstra, B.T. Heijmans, et al. Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes .Ann Rheum Dis, 2005, 64(6): 270.
    [10]杨旭燕,许东航.亚甲基四氢叶酸还原酶基因多态性对甲氨喋呤不良反应的影响.中国药学杂志,2007,42(1):69-72.
    [11]W Urano, A Taniguchi, H Yamanaka, rt al. Polymorphisms in the methylenetetrahydrofo-late reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses.Pharmacogenetics, 2002,12(3): 183-90.
    [12] J. Sainz, R. C(?)liz, J. Martin, et al. Influence of 677 (C/T) and 1298 (A/C) MTHFR polymorphisms on the response to infliximab therapy in rheumatoid arthritis patients. Ann Rheum Dis, 2005,64(6): 378.
    [13]A Chango, N Emery-Fillon, GP de Courcy, et al. A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab, 2000,70(4): 310-315.
    [14]Lesley J. Ashton, Andrew J. Gifford, Edward Kwan, et al. A polymorphism in the reduced folate carrier gene but not the methylenetetrahydrofolate reductase gene predicts clinical outcome in children with ALL. AACR Meeting Abstracts, Apr2005: 117.
    [15] B. Baslund, J. Gregers, and C. H. Nielsen Reduced, folate carrier polymorphism determines methotrexate uptake by B cells and CD4+ T cells. Rheumatology, 2008; 47(4): 451 - 453.
    [16]T Dervieux, J Kremer, DO Lein, et al.Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis.Pharmacogenetics,2004,14(11): 733-739.
    [17]T Dervieux, D Furst, DO Lein, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum, 2004, 50(9): 2766-74.
    [18]M Drozdzik, T Rudas, A Pawlik, et al. Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis.Pharmacogenomics J,2007,7(6): 404-407.
    [19] A Chatzikyriakidou, I Georgiou, PV Voulgari, et al.Transcription regulatory polymorphism -43T>C in the 5'-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy.Rheumatol Int, 2007;27(11): 1057-61.
    [20] R Takatori, KA Takahashi, D Tokunaga, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients.Clin Exp Rheumatol, 2006; 24(5): 546-54.
    [21] Petra Bohanec Grabar, Dusan Logar, Boris Lestan, et al.Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism.Eur J Clin Pharmacol, 2008; 64(11): 1057-68.
    [22] J Wolf, T Stranzl, M Filipits, et al. Expression of resistance markers to methotrexate predicts clinical improvement in patients with rheumatoid arthritis. Ann Rheum Dis, 2005; 64(4): 564 - 568.
    [23] RJ van der Straaten, JA Wessels, JK de Vries-Bouwstra, et al.Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients.Pharmacogenomics, 2007; 8(2): 141-50.
    [24] S. L. Hider, W. Thomson, L. F. Mack, et al. Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology, 2008; 47(8): 1156 - 1159.
    [25] 蒋明,张奉春.中华风湿病学.北京,华夏出版社 2004年:1747.
    [26] E Ricart, WR Taylor, EV Loftus, et al. N-acetyltransferase 1 and 2 genotypes do not predict response or toxicity to treatment with mesalamine and sulfasalazine in patients with ulcerative colitis. Am J Gastroenterol, 2002; 97(7): 1763-8.
    [27] S Kumagai, F Komada, T Kita, et al. N-acetyltransferase 2 genotype-related efficacy of sulfasalazine in patients with rheumatoid arthritis. Pharm Res, 2004; 21(2): 324-9.
    [28] E Tanaka, A Taniguchi, W Urano, et al. Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J Rheumatol, 2002; 29(12): 2492-9.
    [29] A Taniguchi, W Urano, E Tanaka, et al.Validation of the associations between single nucleotide polymorphisms or haplotypes and responses to disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a proposal for prospective pharmacogenomic study in clinical practice. Pharmacogenet Genomics, 2007; 17(6): 383-90.
    [30] Y Yamasaki, I Ieiri, H Kusuhara, et al. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther, 2008; 84(7): 95-103.
    [31] M Drozdzik, T Rudas, A Pawlik, et al. The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur J Clin Pharmacol, 2006; 62(11): 933-7.
    [32] HM James, D Gillis, P Hissaria, et al. Common polymorphisms in the folate pathway predict efficacy of combination regimens containing methotrexate and sulfasalazine in early rheumatoid arthritis.J Rheumatol, 2008; 35(4): 562-71.
    [33]张波,徐小薇,李大魁.巯嘌呤甲基转移酶遗传多态性对硫唑嘌呤药动学和药效学影响的研究概况.中国药学杂志,2006,41(6):801-803.
    [34]Escouss A,Guedon F,Mounie J, et al. 6-Mercaptopurine pharmacokinetics after use of azathioprine in renal transplant recipients with intermediate or high thiopurine methyltransferase activity phenol 2 type.J Pharm Pharmacol, 1998,50:1261-1266.
    [35] Escouss A,Rifle G,Sgro C S,et al. Azathioprine toxicity ,6-mercaptopurine accumulation and the "poor" t-thiopurine methylator phenotype. Eur J Clin Pharmacol ,1995,48:309-310.
    [36] Kontorinis N,Agarwal K,Gondolesi G,et al .Diagnosis of 6-mercaptopurine hepatotoxicity post liver transplantation utilizing metabolite assays. Am J Transplant ,2004,4 (9): 1539-1542.
    [37] Lennard L,Vanloonj A,Lilieymanj S,et al. Thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations . Clin Pharmacol Ther ,1989,46:149-154.
    [38] Bergan S,Rugetad H,Bentdal Q,et al.Monotored high-dose azathioprine treatment reduces acute rejection episodes after renal transplantation. Transplantation ,1998, 66(3): 334-339.
    [39]McLeod HL,Siva C.The thiopurine S-methyltransferase gene locus implications for clinical pharmacogenomics.Pharmacogenomics, 2002 ,3: 89-98.
    [40]Holme SA,Duley JA,Sanderson J, et al. Erythrocyte thiopurine methyltransferase assessment prior to azathioprine use in the UK. QJM,2002 , 95:439-444.
    [41]Black AJ,McLeod HL,Capell HA, et al. Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine.Ann Intern Med,1998, 129:716-718.
    [42]Ishioka S,Hiyam aK,Sato H, et al. Thiopurine methyltransferase genotype and the toxicity of azathioprine in Japanese.InternMed,1999 , 38: 944-947.
    [43]Colombel JF,Ferrarin F,Debuysere H, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Chohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology,2000,118:1025-1030.
    [44] CA Marra, JM Esdaile, and AH Anis .Practical pharmacogenetics: the cost effectiveness of screening for thiopurine s-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine.J Rheumatol, Dec2002; 29(12): 2507-12.
    [45] Naughton M, Battaglia E. Identification of thiopurine methyltransferase polymorphism cannot predict myllosuppression in system lupus erythematosus patients taking azathioprine.Rheumatology, 1999,38:640-644.
    [46]JB Jun, DY Cho, C Kang, Thiopurine S-methyltransferase polymorphisms and the relationship between the mutant alleles and the adverse effects in systemic lupus erythematosus patients taking azathioprine.Clin Exp Rheumatol, 2005,23(6):873-876.
    [47] Y Okada, K Nakamura, T Kodama,et al.Thiopurine methyltransferase genotype and phenotype status in Japanese patients with systemic lupus erythematosus.Biol Pharm Bull, 2005; 28(11): 2117-9.
    [48] PJ Kerstens, JN Stolk, RA De Abreu, et al. Azathioprine-related bone marrow toxicity and low activities of purine enzymes in patients with rheumatoid arthritis.Arthritis Rheum, 995; 38(1): 142-5.
    [49] JN Stolk, AM Boerbooms, RA de Abreu,et al.Reduced thiopurine methyltransferase activity and development of side effects of azathioprine treatment in patients with rheumatoid arthritis.Arthritis Rheum, 1998; 41(10): 1858-66.
    [50]Corominas H,Domenech M,Laiz A, et al. Is thiopurine methyltransferase genetic polymorphism a major factor forwithdrawal of azathioprine in rheumatoid arthritis patients ? Rheumatology,2003,42: 40-45.
    [51]M. van Oosten, R.J.E.M. Dolhain, J.W. Koper, et al.polymorphisms in the glucocorticoid receptor gene which modulate glucocorticoid sensitivity are associated with rheumatoid arthritis.Ann Rheum Dis, Jun 2007; 66: 138.
    [52]A Chatzikyriakidou, I Georgiou, PV Voulgari,et al. Glucocorticoid receptor variants may predispose to rheumatoid arthritis susceptibility.Scand J Rheumatol, Jan 2009; 38(1): 1-5.
    [53]R Donn, D Payne, and D Ray.Glucocorticoid receptor gene polymorphisms and susceptibility to rheumatoid arthritis.Clin Endocrinol (Oxf), Sep 2007; 67(3):342-5.
    [54] MJ Schaaf and JA Cidlowski. AUUUA motifs in the 3'UTR of human glucocorticoid receptor alpha and beta mRNA destabilize mRNA and decrease receptor protein expression.Steroids, 2002; 67(7): 627-36.
    [55]I.C.Chikanza and D.L.Kozaci.Corticosteroid resistance in rheumatoid arthritis:molecular and cellular perspectives. Rheumatology,2004,43(ll):1337-1345.
    [56] R H Derijk, M J Schaaf, G Turner, et al. A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis. J Rheumatol, 2001; 28: 2383 - 2388.
    [57] A Pawlik, M Kurzawski, W Gornik, et al. 677C > T and 1298A > C MTHFR polymorphisms affect arechin treatment outcome in rheumatoid arthritis. Pharmacol Rep, 2007; 59(6): 721-6.
    [58]NF Shroyer, RA Lewis, and JR Lupski.Analysis of the ABCR (ABCA4) gene in 4-aminoquinoline retinopathy: is retinal toxicity by chloroquine and hydroxychloroquine related to Stargardt disease?Am J Ophthalmol, 2001; 131(6):761-6.
    [59] MA Layton, PW Jones, JE Alldersea, et al. The therapeutic response to D-penicillamine in rheumatoid arthritis: influence of glutathione S-transferase polymorphisms. Rheumatology, 1999; 38: 43 - 47.
    [60] RA Price, RA Keith, RS Spielman,et al. Major gene polymorphism for human erythrocyte (RBC) thiol methyltransferase (TMT).Genet Epidemiol, 1989;6(6): 651-62.
    [61] C Sevilla-Mantilla, L Ortega, JA Agundez, et al. Leflunomide-induced acute hepatitis.Dig Liver Dis, 2004; 36(1): 82-4.
    [62] LA Criswell, RF Lum, KN Turner, et al. The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept.Arthritis Rheum, Sep 2004; 50(9):2750-6.
    [63] C. P. Kang, K. W. Lee, D. H. Yoo,et al. The influence of a polymorphism at position -857 of the tumour necrosis factor (?)gene on clinical response to etanercept therapy in rheumatoid arthritis. Rheumatology, 2005; 44(4): 547 - 552.
    [64] L Padyukov, J Lampa, M Heimb(?)rger, et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis,2003; 62(6): 526 - 529.
    [65] H Schotte, B Schluter, S Drynda, et al. Interleukin 10 promoter microsatellite polymorphisms are associated with response to long term treatment with etanercept in patients with rheumatoid arthritis. Ann Rheum Dis, 2005; 64(4):575-581.
    [66] A. Chatzikyriakidou, I. Georgiou, P. V. Voulgari, et al .Combined tumour necrosis factor-(?) and tumour necrosis factor receptor genotypes could predict rheumatoid arthritis patients' response to anti-TNF- (?) therapy and explain controversies of studies based on a single polymorphism.Rheumatology, 2007; 46(6):1034-1035.
    [67]J E Fonseca, T Carvalho, M Cruz ,et al. .Polymorphism at position -308 of the tumour necrosis factor-a gene and rheumatoid arthritis pharmacogenetics.Annals of the Rheumatic Diseases 2005;64:793-794
    [68] A Martinez, M Salido, G Bonilla, et al. Association of the major histocompatibility complex with response to infliximab therapy in rheumatoid arthritis patients.Arthritis Rheum, 2004; 50(4): 1077-82.
    [69] T Gordi and H Khamis .Simple solution to a common statistical problem:interpreting multiple tests.Clin Ther, May 1, 2004; 26(5): 780-6.
    [70]B Mugnier, N Balandraud, A Darque, et al. Polymorphism at position -308 of the tumor necrosis factor alpha gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum, 2003; 48(7): 1849-52.
    [71] S Guis, N Balandraud, J Bouvenot, et al .Influence of -308 A/G polymorphism in the tumor necrosis factor alpha gene on etanercept treatment in rheumatoid arthritis.Arthritis Rheum, 2007; 57(8): 1426-30.
    [72] M Cuchacovich, L Ferreira, M Aliste,et al. Tumour necrosis factor-alpha (TNF-alpha) levels and influence of -308 TNF-alpha promoter polymorphism on the responsiveness to infliximab in patients with rheumatoid arthritis. Scand J Rheumatol,2004; 33(4): 228-32.
    [73]M. Cuchacovich, L. Soto, M. Edwardes,et al. TNF-alpha -308 G/G promoter polymorphism correlates with a better response to adalimumab in patients with Rheumatoid Arthritis. Annals of the Rheumatic Diseases 2005;64:1339.
    [74] H Marotte, B Pallot-Prades, L Grange, et al. The shared epitope is a marker of severity associated with selection for, but not with response to, infliximab in a large rheumatoid arthritis population. Ann Rheum Dis, 2006; 65(3): 342 - 347.
    [75] M Cuchacovich, L Soto, M Edwardes, et al .Tumour necrosis factor (TNF)alpha -308 G/G promoter polymorphism and TNFalpha levels correlate with a better response to adalimumab in patients with rheumatoid arthritis.Scand J Rheumatol, 2006; 35(6): 435-40.
    [76] C Miceli-Richard, E Comets, C Verstuyft, et al . A single tumour necrosis factor haplotype influences the response to adalimumab in rheumatoid arthritisAnn Rheum Dis, 2008; 67(4): 478 - 484.
    [77] Z Tutuncu, A Kavanaugh, N Zvaifler,et al. Fcgamma receptor type ⅢA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor alpha-blocking agents.Arthritis Rheum, 2005; 52(9):2693-6.
    [78]M. Seitz,U.Wirthmiiller,B.M6ller,et al .The -308 tumour necrosis factor-a gene polymorphism predicts therapeutic response to TNFa-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology, 2007; 46(1): 93 - 96.
    [79] A. Ongaro, A. Pellati, M. Padovan, et al .Tumor necrosis factor receptor Ⅱ gene polymorphism inluences outcome of anti-TNF therapy in rheumatoid arthritis.Ann Rheum Dis, Jun 2007; 66: 333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700