用户名: 密码: 验证码:
前交叉韧带断裂对股骨外髁生物力学和组织学影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前交叉韧带(anterior cruciate ligament,ACL)是维护膝关节稳定的重要结构,具有限制胫骨前移和旋转的作用。ACL损伤常继发关节软骨和半月板的损伤,后期可导致膝关节退变。目前对ACL的研究多集中在ACL完全断裂后对关节软骨退变的影响以及ACL功能的重建,而ACL损伤后对股骨外髁生物力学和组织学影响的研究鲜有报道。本研究采用生物力学测定的方法,观察ACL完全断裂或部分断裂对股骨外髁前部、中部及后部应变的影响,采用组织学方法,观察ACL完全断裂后股骨外髁组织学改变,同时,检测IL-1β、MMP13的表达,以了解其在股骨外髁软骨退变中的作用机制,为ACL损伤继发股骨外髁损伤提供理论依据。
     第一章前交叉韧带功能性分束的生物力学研究
     目的探讨前交叉韧带的功能性分束,为ACL损伤重建提供理论依据。
     方法新鲜正常成人膝关节标本6具,根据ACL在膝关节中的位置将ACL分为:前内侧区纤维束(前内侧束)、前外侧区纤维束(前外侧束)、后内侧区纤维束(后内侧束)、后外侧区纤维束(后外侧束)。在膝关节标本上施加800N轴向载荷,分别测试膝关节0°、30°、60°、90°位ACL各纤维束应变。比较各束应变的差异,采用聚类分析方法进行分类。
     结果
     1.膝关节0°位,ACL后外侧束和前外侧束应变大于后内侧束和前内侧束应变,有显著性差异,P<0.01;前内侧束与后内侧束应变无显著性差异,P>0.05;后外侧束与前外侧束应变无显著性差异,P>0.05;膝关节30°、90°位,ACL前内侧束和后内侧束应变大于后外侧束和前外侧束应变,有显著性差异,P<0.05;前内侧束与后内侧束应变无显著性差异,P>0.05,后外侧束与前外侧束应变无显著性差异,P>0.05;膝关节60°位,ACL后内侧束应变最大,其后依次为前内侧束、后外侧束和前外侧束,各束间比较均具有显著性差异,均P<0.05。
     2、前内侧束与后内侧束应变变化一致,依序膝关节0°、30°、60°、90°位逐渐增大,均有显著性差异,均p<0.05;前外侧束应变在膝关节0°、30°、60°、90°均无显著性差异,均p>0.05。后外侧束应变膝60°位大于0°、30°、90°位,均有显著性差异,均p<0.05;0°位与90°位应变无显著性差异,均p>0.05;0°、90°应变均大于30°,均有显著性差异,均p<0.05。
     3、聚类分析:后外侧束与前外侧束聚为一类,后内侧束与前内侧束聚为一类。
     结论
     随膝关节不同屈伸角度ACL内部各纤维束张力不等,且在膝关节0°—90°屈伸过程中ACL始终处于有张力状态。膝关节0°位,后外侧区纤维束和前外侧区纤维束应变大于后内侧区纤维束和前内侧区纤维束,膝关节30°、60°、90°位,后内侧区纤维束和前内侧区纤维束应变大于后外侧区纤维束和前外侧区纤维束应变,提示后外侧区纤维束和前外侧区纤维束主要维持膝关节伸直稳定性,后内侧区纤维束和前内侧区纤维束主要维持膝关节屈曲稳定性。ACL可分为内侧束和外侧束两功能束,根据两束在ACL胫骨止点一前一后的解剖特点,两束分别定义为前内侧束和后外侧束。
     第二章前交叉韧带断裂对股骨外髁生物力学特性的影响
     目的探讨ACL断裂对股骨外髁生物力学的影响,为ACL断裂继发股骨外髁损伤的早期诊治提供理论依据。
     方法新鲜正常成人膝关节标本10具作为ACL完整组,在200N、400N、600N、800N载荷下,测试膝关节0°、30°、60°、90°位股骨外髁应变,测试完毕后随机将标本造模成前内侧束(AMB)切断组和后外侧束(PLB)切断组,各5具,在上述条件下测试应变,最后再将10具标本的ACL完全切断(全断组)进行测试。
     结果
     1.膝关节0°位,200N和400N载荷下,股骨外髁前部、中部、后部的应变在PLB切断组与ACL全断组、ACL完整组与AMB切断组之间均无显著性差异,均P>0.05;600N、800N载荷下,股骨外髁前部、后部的应变在各实验组间均有显著性差异,均P<0.05,股骨外髁前部应变值表现为全断组>PLB切断组>AMB切断组>完整组,股骨外髁后部应变值表现为完整组>AMB切断组>PLB切断组>全断组;600N、800N载荷下,股骨外髁中部应变在各实验组间无显著性差异,均P>0.05,应变值表现为全断组>PLB切断组>AMB切断组>完整组。
     2.膝关节30°位,200N和400N载荷下,股骨外髁前部、中部、后部的应变在ACL完整组与PLB切断组、AMB切断组与ACL全断组之间无显著性差异,均P>0.05;600N、800N载荷下各实验组间均有显著性差异,均P<0.05,相同载荷下应变值表现为全断组>AMB切断组>PLB切断组>完整组。
     3.膝关节60°位,200N和400N、600N、800N载荷下,股骨外髁前部、中部、后部的应变各实验组间均有显著性差异,均P<0.05;相同载荷下应变值表现为全断组>AMB切断组>PLB切断组>完整组。
     4.膝关节90°位,在200N、400N、600N、800N载荷下,股骨外髁前部、中部、后部的应变各实验组间均有显著差异,均P<0.05;股骨外髁前部应变均表现为完整组>PLB切断组>AMB切断组>全断组,股骨外髁中部、后部应变均表现为全断组>AMB切断组>PLB切断组>完整组。
     结论
     1、ACL完全断裂对股骨外髁前部、中部和后部的应变均有影响;
     2、膝关节0°位,PLB断裂对股骨外髁前部、后部的应变均有影响;
     3、膝关节30°、60°、90°位,AMB断裂对股骨外髁前部、中部、后部的应变均有影响。
     第三章前交叉韧带断裂后股骨外髁退变的组织学研究
     目的探讨ACL断裂对股骨外髁组织学的影响。
     方法48只家兔后侧膝关节配对为实验侧和对照侧,实验侧行ACL切断造模,造模后分别在第1、3、6、8周随机处死12只,行股骨外髁大体观察,并进行HE染色,免疫组化检测IL-1β、MMP13表达。
     结果
     1.大体观察:随时间延长,实验组股骨外髁软骨出现色泽改变,呈灰黄色,软骨表面光泽减退,不平整,有磨损甚至溃疡。
     2.组织学观察:从第三周开始出现软骨表面及软骨细胞排列异常,Mankin评分实验组随时间推移而增大;第一周实验组与对照组无显著性差异,P>0.05,第3、6、8周实验组大于对照组,有显著性差异,均P<0.01。
     3.IL-1β表达:实验组第3周、第6周均高于第1周和第8周,均有显著性差异,均P<0.05;实验组第8周高于第1周,有显著性差异,P<0.05;实验组第3周和第6周无显著性差异,P>0.05;实验组第1,3,6,8周IL-1β表达均高于相应时间点的对照组,均有显著性差异,均P<0.05。
     4.MMP13表达:实验组第3周、第6周高于第1周、第8周,均有显著性差异,均P<0.05;实验组第8周高于第1周,有显著性差异,P<0.05:第3周和第6周无显著性差异,P>0.05;实验组第1,3,6,8周MMP13表达均高于相应时间点的对照组,均有显著性差异,均P<0.05。
     结论
     1、ACL断裂可引起股骨外髁软骨组织退变;
     2、IL-1β、MMP-13在ACL断裂股骨外髁退变中的表达呈先增高后降低的变化规律;
     3、IL-1β、MMP13表达增高提示IL-1β、MMP13可能是ACL断裂继发股骨外髁退变的因素之一。
The anterior cruciate ligament(ACL) is a stable structure whose main role is controlling the antedisplacement of tibial and regulating the rotation of tibial.ACL deficiency always results in the secondary injuries of articular cartilage and meniscus,followed by the severe degeneration of the knee joint in the end.For the sake of preventing the development of osteoarthrosis and the injury of femoral lateral condyle,it is important to understand the histological and biomechanics mechanism of the effect on femoral lateral condyle,which directly relates to the early diagnosis, clinical decision and appraisement of ACL injury.At present,the researching about the effect of ACL injury mostly concentrates on the degeneration of articular cartilage and reconstruction of ACL after complete rupture of ACL,and few on the effect on biomechanics and histology of lateral condyle.In this study,straining changes of the anterior part,middle part and posterior part on the lateral condyle caused by ACL injury were analyzed by way of biomechanics approach,as well as histological evaluation of cartilage in femoral lateral condyle and expression of IL-1βand MMP13 in cartilage,which provides theoretical evidence for the formation of the secondary injury of the femoral lateral condyle following the ACL injury.
     Chapter 1 The biomechanical study of ACL bundles' functional classification
     Objective:To investigate the functional bundle division of the ACL, to provide the theoretical evidence for ACL reconstruction.
     Method:In this experiment the specimens were 6 normal knee joints of adult male.The bilateral areas in front of the ACL tibial insertion and the bilateral areas at the back of the ACL femoral insertion were chosen as the four straingauge point,which correspond to anteromedial bundle, anterolateral bundle,posteromedial bundle and posterolateral bundle respectively.The strain of each bundle under the load of 800N were measured when the knee joint position at 0°、30°、60°、90°angle respectively,followed by the cluster analysis to explore the functional division of the ACL.
     Results:1.①When the knee located at 0°,the strain of ACL anterolateral bundle and posterolateral bundle were bigger than anteromedial and posteromedial bundle,p<0.01.However,there were no significant difference between the anterolateral bundle and posterolateral bundle,as well the anteromedial and posteromedial bundle,p>0.05.②When the knee located at both 30°and 90°,the strain of ACL anteromedial bundle and posteromedial bundle were bigger than anterolateral and posterolateral bundle,p<0.05.However,there were no significant difference between the anterolateral bundle and posterolateral bundle,as well the anteromedial and posteromedial bundle,p>0.05.③When the knee located at 60°,the strain of each bundle were ordered from maximum to minimum as follows:posteromedial bundle, anteromedial bundle,posterolateral bundle and anterolateral bundle. There were significant difference among the four bundles,p<0.05.
     2.①The strain of the anteromedial bundle coincided with the strain of the posteromedial bundle.Ranking from maximum to minimum,the strain of these two bundles at different knee positions were 90°,60°, 30°,0°.There were significant difference among the four bundles, p<0.05.②For the strain of the anterolateral bundle,there were no significant difference at the knee positions,p>0.05.③The strain of the posterolateral bundle reached its peak at the position angle at 60°, p<0.05;its bottom at the position of 30°,p<0.05;position angle at 0°and 90°respectively,for the strain of the posterolateral bundle,both of them were moderate and there was no significant difference between them,p>0.05.
     3.Cluster analysis:The anteromedial bundle and the posteromedial bundle can be regarded as the same kind of bunch by way of cluster analysis.And so do the anterolateral bundle and the posterolateral bundle.
     Conclusion:When the knee at the position angle at 0°,the strain of the anterolateral bundle and the posterolateral bundle were bigger than the medial ones.However,when the knee at the other bended positions, the strain of the anteromedial bundle and the posteromedial bundle were bigger the lateral ones.Therefore,we could draw a conclusion that the lateral bundles maintain the stability mainly when the knee straightens and the medial ones mainly keep the stable when the knee flexes. Combined with the cluster analysis,the ACL can be regarded as two functional bundles:the anteromedial bundle and the posterolateral bundle.
     Chapter 2 The biomechanical influence of ACL ruptures on the femoral lateral condyle
     Objective:To investigate the biomechanical influences of ACL rupture on the femoral lateral condyle and provide theoretic evidence for early ACL repair.
     Methods:10 fresh cadaveric knees from adult human beings were divided into ACL intact group(10 samples)、AMB broken group(5 samples)、PLB broken group(5samples) and ACL total broken group(10 samples).The knees were applied with 200N~800N axial loading force when they flexed 0°、30°、60°、90°.The strain on the femoral lateral condyle was measured in different loading force along with the position angles.
     Result:1.In 0°position,under the load of 200N and 400N,for the straining of the anterior part,middle part and posterior part on the femoral lateral condyle,there were no significant difference between PLB rupture group and ACL complete rupture group,as well as complete ACL group and AMB rupture group,P>0.05;under the loads of 600N and 800N,there was significant difference between the anterior part and posterior part on the femoral lateral condyle,P<0.05,while the straining of middle part on the femoral lateral condyle showed no significant difference among all the groups under the loads of 600N and 800N,P>0.05;under the same load and angle of flexion,the correlation of the absolute value of straining in every group of the anterior part and middle part on the femoral lateral condyle increased as follows:ACL complete rupture group>PLB rupture group>AMB rupture group> complete ACL group.But the posterior part on the femoral lateral condyle increased as follows:complete ACL group>AMB rupture group>PLB rupture group>ACL complete rupture group.
     2.In 30°position,under the load of 200N and 400N,for the straining of the anterior part,middle part and posterior part on the femoral femoral lateral condyle,there were no significant difference between AMB rupture group and ACL complete rupture group,as well as complete ACL group and PLB rupture group,P>0.05;under the load of 600N and 800N,there were significant differences among the four groups.Under the same load and angle of flexion,the correlation of the value of straining in each group increased as the follows:ACL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.
     3.In 60°position,under the load of 200N and 400N and 600N and 800N,for the straining of the anterior part and middle part and posterior part on the femoral lateral condyle,there were significant difference among four groups,P<0.05;under the same load and angle of flexion, the correlation of the value of straining in each group increased as the follows:ACL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.
     4.In 90°position,under the load of 200N and 400N and 600N and 800N,for the straining of the anterior part and middle part and posterior part on the femoral lateral condyle,there were significant difference among four groups,P<0.05.under the same load and angle of flexion, the correlation of the value of straining in each group of the anterior part on the femoral lateral condyle increased as follows:ACL complete group>PLB rupture group>AMB rupture group>complete rupture group. while each group of middle part and posterior part on the femoral lateral condyle increased as follows:ACL complete rupture group>AMB rupture group>PLB rupture group>complete ACL group.
     Conclusion:ACL total rupture may cause abnormal straining on the femoral lateral condyle.The AMB rupture showed the various straining of the anterior part,middle part and posterior part on the femoral lateral condyle at 30°and 60°and 90°of flexion.The PLB rupture showed the various straining of the anterior part and posterior part on the femoral lateral condyle at 0°of flexion.
     Chapter 3 Study on the histological influence of ACL rupture on the femoral lateral condyle
     Objective:To explore the histological variety of femoral lateral condyle followed by rupture of ACL.
     Method:Lateral meniscus of 48 rabbits were matched as experiment side and control side,ACL rupture used for experiment side.At the 1st, 3rd,6th and 8th week,12 rabbits were executed randomly,followed by naked-eye observation of lateral meniscus and by way of HE staining,as well immunohistochemistry staining to detect the expression of IL-1βand MMP13.
     Result:1.Gross observation:with longer time,the lateral condyle cartilage had the color changed、the gloss decreased、the surface abrased and even had different depth ulcer on the cartilage.
     2.Histological observation:3~(rd) week late,in the experiment side, fibrous degeneration of cartilage surface layer occurred,along with middle layer rupture,chaotic arrangement of chondrocyte,irregular tidal line with blood capillary and more clustered chondrocytes.For the Mankin scores,there was significant difference between the experiment side and control side,P<0.05.
     3.In experiment side,IL-1βexpressed significantly higher in 3~(rd) week,6~(th) week than that in 1~(st) week,8~(th) week respectively,p<0.05,in which IL-1βexpressed higher in 8~(th) week than that in 1~(st) week,P<0.05; there was no significant difference between 3~(rd) week and 6~(th) week.While compared to control side,in 1~(st),3~(rd),6~(th) and 8~(th) week respectively,there were more higher IL-1βexpression respectively,P<0.05.
     4.In experiment side,MMP-13 expressed significantly higher in 3~(rd) week,6~(th) week than that in 1~(st) week,8~(th) week respectively,p<0.05,in which MMP-13 expressed higher in 8~(th) week than that in 1~(st) week, P<0.05;there was no significant difference between 3~(rd) week and 6~(th) week.While compared to control side,in 1~(st),3~(rd),6~(th) and 8~(th) week respectively,there were more higher MMP-13 expression respectively, P<0.05.
     Conclusion:ACL rupture may cause cartilage degeneration on the femoral lateral condyle.A regularity of expression of IL-1βand MMP13 show the increasing expression in primal stage and decreasing in late stage after ACL rupture.The increased IL-1βand MMP-13 expression suggest that IL-1β、MMP-13 may participate in cartilage degeneration on the femoral lateral condyle after ACL rupture.
引文
[1]Mae T,Shino K,Miyama T,et al.Single- versus two-femoral socket anterior cruciate ligament reconstruction technique:Biomechanical analysis using a robotic simulator.Arthroscopy,2001,17:708-716
    [2]Girgis FG,Marshall JL,Monajem A.The cruciate ligaments of the knee joint.Anatomical,functional and experimental analysis.Clin Orthop Relat Res,1975:216-231.
    [3]Kurosawa H,Yamakoshi K,Yasuda K,et al.Simultaneous measurement of changes in length of the cruciate ligaments during knee motion.Clin Orthop Relat Res,1991:233-240.
    [4]Fineberg MS,Zadns B,Sherman OH.Practical considerations in anterior cruciate ligament replacement surgery.Arthroscopy,2000,16:715-724.
    [5]Hirokawa S,Yamamoto K,Kawada T.Circumferential measurement and analysis of strain distribution in the human ACL using a photoelastic coating method.J Biomech,2001,34:1135-1143.
    [6]Odensten M,Gillquist J.Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction.J Bone Joint Surg Am,1985,67:257-262.
    [7]刘秀梅,陶澄,肖东民.人膝关节前、后交叉韧带解剖研究及临床意义.医学临床研究,2006,23:1085-1087.
    [8]Takahashi M,Doi M,Abe M,et al.Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament.Am J Sports Med,2006,34:787-792.
    [9]Mochizuki T,Muneta T,Nagase T,et al.Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction.Arthroscopy,2006,22:356-361.
    [10]Harner CD,Baek GH,Vogrin TM,et al.Quantitative analysis of human cruciate ligament insertions.Arthroscopy,1999,15:741-749.
    [11]郭林,杨柳,杨昌棋,等.四象限分区法用于前交叉韧带多纤维束动态受力分析.医用生物力学,2007,22:356-360.
    [12]王健全,敖英芳,刘平,等.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志,2007,26:266-270.
    [13]吴波,杨柳.前交叉韧带解剖和生物力学特性.中国矫形外科杂志,2006,14:1725-1726,1750.
    [14]Musahl V,Lehner A,Watanabe Y,et al.Biology and biomechanics.Curr Opin Rheumatol,2002,14:127-133.
    [15]陈执平,张安祯.前交叉韧带的生物力学研究.中国骨伤,1998,11:7-9.
    [16]Noyes FR,Grood ES.The strength of the anterior cruciate ligament in humans and Rhesus monkeys.J Bone Joint Surg Am,1976,58:1074-1082.
    [17]Amis AA,Dawkins GP.Functional anatomy of the anterior cruciate ligament.Fibre bundle actions related to ligament replacements and injuries.J Bone Joint Surg Br,1991,73:260-267.
    [18]Getelman MH,Friedman MJ.Revision anterior cruciate ligament reconstruction surgery.J Am Acad Orthop Surg,1999,7:189-198.
    [19]Vergis A,Gillquist J.Graft failure in intra-articular anterior cruciate ligament reconstructions:a review of the literature.Arthroscopy,1995,11:312-321.
    [20]Hogervorst T,Pels Rijcken TH,Rucker D,et al.Changes in bone scans after anterior cruciate ligament reconstruction:a prospective study.Am J Sports Med,2002,30:823-833.
    [21]Ichinohe S,Yoshida M,Murakami H,et al.Meniscal tearing after ACL reconstruction.J Orthop Surg(Hong Kong),2000,8:53-59.
    [22]Franceschi JP,Sbihi A,Champsaur P.[Arthroscopic reconstruction of the anterior cruciate ligament using double anteromedial and posterolateral bundles].Rev Chir Orthop Reparatrice Appar Mot,2002,88:691-697.
    [23]Ichinohe S,Yoshida M,Murakami H,et al.Meniscal tearing after ACL reconstruction.J Orthop Surg(Hong Kong),2000,8:53-59.
    [1]刘卉,苏玉林,于冰。非接触性前交叉韧带损伤特点及机制的研究进展。医用生物力学,2008,23(3):240-247。
    [2]Yamato M,Yamagishi T,Kobayashi T.MR imaging of bone bruise associated with ACL tearNippon Igaku Hoshasen Gakkai Zasshi.1993,53(1):23-27.
    [3]Kurosawa H,Yamakoshi K,Yasuda K,et al.Simultaneous measurement of changes in length of the cruciate ligaments during knee motion.Clin Orthop Relat Res,1991:233-240.
    [4]De Maria M,Barbiera F,Lo Casto A,et al.Biomechanical correlations of lesions associated with traumatic diseases of the anterior cruciate ligament.Analysis with magnetic resonance.Radiology Medicine,1996,91(6):693-699.
    [5]阮新忠,徐海,黄求理,等。合并前交叉韧带损伤的膝关节隐性骨折模式MRI诊断。现代实用医学,2002,14(2):72-75。
    [6]Murphy BJ,Smith RL,Uribe JW,et al.Bone signal abnormalities in the posterolateral tibia and lateral femoral condyle in complete tears of the anterior cruciate ligament:a specific sign? Radiology.1992 Jan;182(1):221-224.
    [7]Kaplan PA,Walker CW,Kilcoyne RF,et al.Occult fracture patterns of the knee associated with anterior cruciate ligament tears:assessment with MR imaging.Radiology.1992,183(3):835-838.
    [8]杨渝平,敖英芳,王健,等。急性前交叉韧带断裂合并内侧副韧带、半月板损伤的临床研究。中国运动医学杂志,2007,26(5):527-529。
    [9]Speer KP,Spritzer CE,Bassett FH 3rd,et al.Osseous injury associated with acute tears of the anterior cruciate ligament.Am J Sports Med.1992,20(4):382-389.
    [10]Rosen MA,Jackson DW,Berger PE.Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures.Arthroscopy.1991,7(1):45-51.
    [11]郭秦炜,敖英芳,余家阔,等。急性前交叉韧带断裂合并膝关节骨挫伤的临床研究。中国运动医学杂志,2005,24(2):176-181。
    [12]范宏斌,张春礼,李明全,等。前交叉韧带断裂后半月板和软骨损伤的临床研究。中华创伤杂志,2004,20(2):73-76。
    [13]李培,张礼鹃,涂昌灼,等。膝关节骨挫伤与前交叉韧带损伤的相关性研究。中国基层医药,2005,12(8):62-63。
    [14]薛海滨,敖英芳,等.前交叉韧带断裂和重建对膝关节软骨退变影响的实验研究.中华外科杂志,2002,40(4):304-307.
    [15]Han SK,Federico S,Epstein M,et al.An articular cartilage contact model based on real surface geometry.J Biomech,2005,38(1):179-184.
    [16]Logan M,Dunstan E,Robinson J,et al.Tibiofemoral kinematics of the anterior cruciate ligament(ACL)-deficient weightbearing,living knee employing vertical access open "interventional" multiple resonance imaging.Am J Sports Med,2004,32(3):720-726.
    [17]Wu JZ,Herzog W,Epstein M.Joint contact mechanics in the early stages of osteoarthritis.Med Eng Phys,2000,22(1):1-12.
    [18]Mannel H,Matin F,Claes L,et al.Anterior cruciate ligament rupture translates the axes of motion within the knee.Clin Biomech(Bristol,Avon),2004,19(2):130-135.
    [19]Harman MK,Markovich GD,Banks SA,et al.Wear patterns on tibial plateaus from varus and valgus osteoarthritic knees.Clin Orthop Relat Res,1998(352):149-158.
    [20]王旭,顾湘杰.前交叉韧带本体感觉与膝关节功能.中国矫形外科杂志,2002,9(4):398-400.
    [21]Beard DJ,Dodd CA,Trundle HR,et al.Proprioception enhancement for anterior cruciate ligament deficiency.A prospective randomised trial of two physiotherapy regimes.J Bone Joint Surg Br,1994,76(4):654-569.
    [22]Fremerey RW,Lobenhoffer P,Zeichen J,et al.Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament:a prospective,longitudinal study.J Bone Joint Surg Br,2000,82(6):801-806.
    [23]Pap G,Machner A,Nebelung W,et al.Detailed analysis of proprioception in normal and ACL-deficient knees.J Bone Joint Surg Br,1999,81(5):764-768.
    [24]徐雁,敖英芳.前十字韧带断裂继发半月板损害的临床研究.中华骨科杂志,2002,22(4):216-219.
    [25]冯华,张辉,郭铁能,王满宜.膝关节前十字韧带切断对内侧半月板后角应力的影响.中华骨科杂志,2006,26(7):476-478.
    [26]汪爱嫒,卢世璧,马志鹏等.压敏片成像分析系统的研制及生物力学应用.北京生物医学工程,2001,20(4):282-284.
    [27]Warner JJ,Bowen MK,Deng XH,et al.Articular contact patterns of the normal glenohumeral joint.J Shoulder Elbow Surg,1998,7(4):381-388.
    [28]肖东民,陈素芳,李雄等.前交叉韧带重建方法的生物力学研究.医学临床研究,2005,22(12):1667-1670.
    [29]郭磊,赵玉岩,范广宇.髋臼发育不良的三维光弹力学实验研究及其临床意义.中国医科大学学报,2002,31(6):464-465.
    [30]张祚福,王万春.膝关节三维有限元分析.国际骨科学杂志,2006,27(2):43-5.
    [31]Donahue TL,Hull ML,Rashid MM,et al.A finite element model of the human knee joint for the study of tibio-femoral contact.J Biomech Eng,2002,124(3):273-280.
    [32]国家体育总局群体司.2000年国民体质监测报告.北京:北京体育大学出版社(第1版),2002:89-91.
    [33]张文强,王成琪,唐胜建,等.单束单隧道与双束双隧道重建膝前交叉韧带的生物力学对比研究,中国矫形外科杂志,2006,14(10):757-759.
    [34]王健全,敖英芳,刘平,陈临新.前交叉韧带股骨止点临床解剖学研究.中国运动医学杂志,2007,26(3):266-270.
    [35]Kwak sd,coman ww,Ateshian GA,etal Anatemy of thehuman patellofemoral joint artticular cartilage surface curvatureanalysis[J]Jorthop Res 1997,15(3):468-472
    [36]Barrack RL Burak C,Patella in total knee arthroplasty[J]Clin orthop Relat Res2001,(389)62-73
    [37]Ahmed AM,Burke DL,YuAl Invit rome asurent of static pressure distribution in synovial joints Partll:Retropatellar surface[J].J BiomechEng,1983,105:226-236
    [38]D'Agata SD,Pearsall AW,Reider B,etal.An invitro analys is of patellof moral contact areas and pressure following procurement of central one-third patellar tendon[J].AM J Sports Med,1993,21:212-219.
    [39]Brechter JH,Powers CM.Patellofemoral stress during walking in persons with and without patellofemoral pain[J].Medicine and Science in Sports and Exercise,2002,34(10):1582-1593.
    [40]Getelman MH,Friedman MJ.Revision anterior cruciate ligament reconstruction surgery.J Am Acad Orthop Surg,1999,7:189-198
    [41]Vergis A,Gillquist J.Gratf failure in intra-articular ACL reconstructions:are view of the literature.Arthroscopy,1995,11:312-321.
    [42]Hogervorst,T;Rijcken,THP;Rucker,D,et al.Changes in bone scans after anterior cruciate ligament reconstruction-A prospective study.Am J Sports Med,2002,30:823-833.
    [43]Frank,CB;Jackson,DW.Current concepts review-The science of reconstruction of the anterior cruciate ligament.J Bone Joint Surg Am,1997,79:1556-1576.
    [44]Papageorgiou,CD;Gil,JE;Kanamori,A,et al.The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus.Am J Sports Med,2001,29:226-231.
    [1]薛海滨,敖英芳,于长隆等。前交叉韧带断裂和重建对膝关节软骨退变影响的实验研究。中华外科杂志,2002,40(4):304-307。
    [2]Mishael GE.Biochemical confirmation of an experimental osteoarthritis model[J].J Bone and Joint Surg,1975,57(a):392.
    [3]Moos V,Rudwaleit M,Herzog V,et al.Association of genotypes affecting the expression of interleukin-1beta or interleukin-1 receptor antagonist with osteoarthritis.Arthritis Rheum,2000,43(11):2417-2422.
    [4]陈启明,梁国穗,秦岭,等主译.骨科基础科学.北京:人民卫生出版社,2001.382-406.
    [5]Muir H.The chondrocyte,architect of cartilage.Biomechanics,structure,function and molecular biology of cartilage matrix macromolecules.Bioessays,1995,17(12):1039-1048.
    [6]Smith RL,Lin J,Trindade MC,et al.Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type Ⅱ collagen and aggrecan mRNA expression.J Rehabil Res Dev,2000,37(2):153-161.
    [7]陈百成,张静.骨关节炎.北京:人民卫生出版社,2004.154-177.
    [8]Pingguan-Murphy B,Lee DA,Bader DL,et al.Activation of chondrocytes calcium signaling by dynamic compression is independent of number of cycles.Arch Biochem Biophys,2005,444:45-51.
    [9]Wheaton AJ,Dodge GR,Elliott DM,et al.Quantification of cartilage biomechanical and biochemical properties via Tlrhomagnetic resonance imaging Magn Reson Med,2005,54:1087-1093.
    [10]Liu W,Burton-Wurster N,Glant TT,et al.JOrthop Res,2003;21(4);730-737
    [11]Kobayashi M,Squires GR,Mousa A,et al.Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartelage.Arthritis Rheum,2005,52:128-135.
    [12]Fell HB,Jubb RW.The effect of synovial tissue on thr breakdown of articular car tilage in organ culture.Arthritis Rheum,1977,20:1359-1371.
    [13]Schwab W,Schlze-Tanzil G,Mobasheri A,et al.Interleukin-1beta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes.Histol Histopathol,2004,19:105-112.
    [14]Blanco FJ,Lotz M.IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2.Exp Cell Res,1995,218(1):319-325.
    [15]Amer,EC;Tortorella,MD.Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1.Arthritis Rheum,1995,38:1304-1314.
    [16]Femandes,JC;Martel-Pelletier,J;Pelletier,JP:The role of cytokines in osteoarthdtis pathophysiology,Biorheology,2002,39:237-246.
    [17]Dayer,JM.The saga of the discovery of IL-1 and TNF and their specific inhibitors in the pathogenesis and treatment of rheumatoid arthritis,Joint Bone Spine,2002,69:123-132.
    [18]Vuolteenaho,K;Moilanen,T;Hamalainen,M,et al.Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage-Role of endogenous IL-1 inhibitors,Scand J Rheumatol,2003,32:19-24.
    [19]Murakami S,Lefebvre V,de Crombrugghe B.Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha.J Biol Chem,2000,275(5):3687-3692.
    [20]Jacques C,Gosset M,Berenbaum F,et al.The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation.Vitam Horm,2006,74:371-403.
    [21]Goldring MB.The role of cytokines as inflammatory mediators in osteoarthritis:lessons from animal models.Connect Tissue Res,1999,40(1):1-11.
    [22]谈志龙,邢国胜,李德达,等.细胞因子对关节软骨细胞作用的研究.骨与关节损伤杂志,2003,18(5):316-318.
    [23]邓廉夫.IL-1、TNF-α和IL-6与骨关节炎.国外医学:创伤与外科基本问题分册,1996,17(2):102-106.
    [24]刘智敏,周总光.基质金属蛋白酶的结构_功能和调节.生物医学工程学杂志,2002,19(4):680-683
    [25]Nagase H,Woessner JF Jr.Matrix metalloproteinases.J Biol Chem,1999,274(31):21491-21494.
    [26]Gomez DE,Alonso DF,Yoshiji H,et al.Tissue inhibitors of metalloproteinases:structure,regulation and biological functions.Eur J Cell Biol,1997,74(2):111-122.
    [27]Ishiguro N,Ito T,Oguchi T,et al.Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed by analyses of synovial fluids from patients with rheumatoid arthritis.Arthritis Rheum,2001,44(11):2503-2511.
    [28]Ogata Y,Miura K,Ohkita A,et al.Imbalance between matrix metalloproteinase 9 and tissue inhibitor of metalloproteinases 1 expression by tumor cells implicated in liver metastasis from colorectal carcinoma.Kurume Med J,2001,48(3):211-218.
    [29]Close DR.Matrix metalloproteinase inhibitors in rheumatic diseases.Ann Rheum Dis,2001,60 Suppl 3:ⅲ62-7.
    [30]Lafleur MA,Hollenberg MD,Atkinson SJ,et al.Activation of pro-(matrix metalloproteinase-2)(pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species.Biochem J,2001,357(Pt 1):107-115.
    [31]Murphy G,Stanton H,Cowell S,et al.Mechanisms for pro matrix metalloproteinase activation.APMIS,1999,107(1):38-44.
    [32]姚如愚,张晓.基质金属蛋白酶与骨关节炎.国外医学.内科学分册,2001,28(4):159-162.
    [33]Femandes J C,Martel -PELLETIER J,LASCAN-CO-MAN V,et al.Collagenase-1 and Collagenaes-3 synthesis in normal and early experimental osteoarthritic canine cartilage:an immunohistochemical study[J].J Rheumatol,1998,25:1585-1594.
    [34]ENGLISH W R,PUENTEXS,FREIJE J M,et al.Membrance type 4 matrix metalloproteinaes has tumor necrosis factor alpha conevrtase activity but does not activate Pro-MMP2[J].J Biol hem,.2000,272:14046-14055.
    [35]PELLETIER J P,LASCAU-COMAN V,JOVANOVIC D,etal.Selective inhibition of inducible nitric oxide synthaes in experimental osteoarthritis is associated with reduction in tissus levels of catabolic factors[J].J Rheumatol.1999,26:2002-2014.
    [36]VEMN G,NIETFELD J J,DUITS A J,et al.Elevated synovial fluid levels of intedeukin-6 and tumor necrosis factor associated with early experimental canime osteoarthritis[J].Arthritis Rheum,1993,17(2):102-106.
    [37]Freemont AJ,Byers RJ,Taiwo YO,et al.In situ zymographic localisation of type Ⅱ collagen degrading activity in osteoarthritic human articular cartilage.Ann Rheum Dis,1999,58(6):357-365.
    [38]王玉彬,陈安民,郭风劲,等.基质金属蛋白酶家族在骨关节炎软骨组织中表达的研究.中国矫形外科杂志,2007,15(11):853-855.
    [39]Sadouk MB,Pelletier JP,Tardif G,et al.Human synovial fibroblasts coexpress IL-1 receptor type Ⅰ and type Ⅱ mRNA.The increased level of the IL-1receptor in osteoarthdtic cells is related to an increased level of the type Ⅰ receptor.Lab Invest,1995,73(3):347-355.
    [40]He W,Pelletier JP,Martel-Pelletier J,et al.Synthesis of interleukin 1beta,tumor necrosis factor-alpha,and interstitial collagenase(MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants:interactions with antiinflammatory cytokines.J Rheumatol,2002,29(3):546-553.
    [41]张英,关继奎.白细胞介素-1、基质金属蛋白酶-13在膝关节骨性关节炎发病中的作用探讨.福建医药杂志,2005,27(6):128-131.
    [42]吴宏斌,杜靖远,胡勇,等。 兔前交叉韧带切断骨关节炎模型中MMP —1 MMP—13及TIMP—1的mRNA表达研究,中华风湿病学杂志,2002,6(3):169-172。
    [43]Femandes JC,Martel-Pelletier J,Lascau-Coman V,et al.Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthfitic canine cartilage:an immunohistochemical study.J Rheumatol,1998,25:1585-1594.
    [1]Steckel H,Starman JS,Baums MH,et al.Anatomy of the anterior cruciate ligament double bundle structure:a macroscopic evaluation[J].Scand J Med Sci Sports,2007,17(4):387-392.
    [2]Mochizuki T,Muneta T,Nagase T,et al.Cadaveric knee observation study for describing anatomic femoral tunnel placement for two??bundle anterior cruciate ligament reconstructio[J].Arthroscopy,2006,22(4):356-361.
    [3]Zantop T,Herbort M,Raschke MJ,et al.The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation[J].Am J Sports Med,2007,35(2):223-227.
    [4]Jordan SS,DeFrate LE,Mha KW,et al.The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during werghtberaring knee flexion[J].Am J Sports Med,2007,35(4):547-554.
    [5]刘卉,苏玉林,于冰。非接触性前交叉韧带损伤特点及机制的研究进展。医用生物力学,2008,23(3):240-247。
    [6]De Maria M,Barbiera F,Lo Casto A,et al.Biomechanical correlations of lesions associated with traumatic diseases of the anterior cruciate ligament.Analysis with magnetic resonance.Radiology Medicine,1996,91(6):693-699.
    [7]Han SK,Federico S,Epstein M,et al.An articular cartilage contact model based on real surface geometry.J Biomech,2005,38(1):179-184.
    [8]Mannel H,Marin F,Claes L,et al.Clin Bionmech,2004;179-184
    [9]Logan M,Dunstan E,Robinson J,et al.Tibiofemoral kinematics of the anterior cruciate ligament(ACL)-deficient weightbearing,living knee employing vertical access open "interventional" multiple resonance imaging.Am J Sports Med,2004,32(3):720-726.
    [10]Fremerey RW,Lobenhoffer P,Zeichen J,et al.Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament:a prospective,longitudinal study.J Bone Joint Surg Br,2000,82(6):801-6.
    [11]Wu JZ,Herzog W,Epstein M.Joint contact mechanics in the early stages of osteoarthritis.Med Eng Phys,2000,22(1):1-12.
    [12]Beard DJ,Dodd CA,Trundle HR,et al.Proprioception enhancement for anterior cruciate ligament deficiency.A prospective randomised trial of two physiotherapy regimes.J Bone Joint Surg Br,1994,76(4):654-9.
    [13]范宏斌,张春礼,李明全,等。前交叉韧带断裂后半月板和软骨损伤的临床研究。中华创伤杂志,2004,20(2):73-76。
    [14]敖英芳,于长隆,田得祥。关节镜观察前十字韧带断裂继发膝关节软骨损伤的临床研究。中华骨科杂志,2001,21(5):290-293。
    [15]杨渝平,敖英芳,王健,等。急性前交叉韧带断裂合并内侧副韧带、半月板损伤的临床研究。中国运动医学杂,2007,26(5):527-529.
    [16]李培,张礼鹃,涂昌灼,等。膝关节骨挫伤与前交叉韧带损伤的相关性研究。中国基层医药,2005,12(8):62-63。
    [17]Yamato M,Yamagishi T,Kobayashi T.MR imaging of bone bruise associated with ACL tear Nippon Igaku Hoshasen Gakkai Zasshi.1993,53(1):23-27.
    [18]Murphy BJ,Smith RL,Uribe JW,et al.Bone signal abnormalities in the posterolateral tibia and lateral femoral condyle in complete tears of the anterior cruciate ligament:a specific sign? Radiology.1992 Jan;182(1):221-224.
    [19]Kaplan PA,Walker CW,Kilcoyne RF,et al.Occult fracture patterns of the knee associated with anterior cruciate ligament tears:assessment with MR imaging.Radiology.1992,183(3):835-838.
    [20]Speer KP,Spritzer CE,Bassett FH 3rd,et al.Osseous injury associated with acute tears of the anterior cruciate ligament.Am J Sports Med.1992,20(4):382-389.
    [21]Rosen MA,Jackson DW,Berger PE.Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures.Arthroscopy.1991,7(1):45-51.
    [22]Cipolla M,Scala A,Gianni E,et al.Different patterns of meniscal tears in acute anterior cruciate ligament(ACL) ruptures and in chronic ACL-deficient knees.Classification,staging and timing of treatment.Knee Surg Sports Traumatol Arthrosc.1995;3(3):130-1344.
    [23]Nikoli(?) DK.Lateral meniscal tears and their evolution in acute injuries of the anterior cruciate ligament of the knee.Arthroscopic analysis.Knee Surg Sports Traumatol Arthrosc.1998;6(1):26-30.
    [24]Smith JP 3rd,Barrett GR.Medial and lateral meniscal tear pattems in anterior cruciate ligament-deficient knees.A prospective analysis of 575 tears.Am J Sports Med.2001 Jul-Aug;29(4):415-419.
    [25]Irie K,Uchiyama E,Iwaso H,Knee,2003;10(1):93-96
    [26]Stoop R,Buma P,Van der Kraan PM,etal.Osteoarthritis Cartilage,2001;9(4):308-315
    [27]徐雁,敖英芳。前十字韧带断裂继发半月板损害的临床研究。中华骨科杂志,2002,22(4):216-219。
    [28]Maffulli N,Binfield PM,King JB.Articular cartilage lesions in the symptomatic anterior cruciate ligament-deficient knee.Arthroscopy.2003Sep;19(7):685-690.
    [29]Smith GN,Mickler EA,Albrecht ME,et al.Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection.Osteoarthritis Cartilage.2002 Apr;10(4):321-326.
    [30]Von Porat A,Roos EM,Roos H.Ann Rheum Dis,2004;63(3):269-273
    [31]Von Eisenhart Rothe R,Bringrnann C,Siebert M,etal,J Orthop Res,2004;22(2):275-282
    [32]Liu W,Burton Wurster N,Glant TT,et al.J Orthop Res,2003;21(4):730-737
    [33]Murrell GA,Maddali S,Horovitz L,et al.The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss.Am J Sports Med,2001,29(1):9-14.
    [34]Bellabarba C,Bush Joseph CA,Bach BR Jr.Am J Orthop,1997;26(1):18-23
    [35]Hogervorst T,Pels Rijcken TH,Rucker D,et al.Changes in bone scans after anterior cruciate ligament reconstruction:a prospective study.Am J Sports Med.2002,30(6):823-833.
    [36]Ichinohe S,Yoshida M,Murakami H,et,al.Meniscal tearing after ACL reconstruction.J Orthop Surg(Hong Kong).2000,8(1):53-59.
    [37]郭秦炜,敖英芳,余家阔,等。急性前交叉韧带断裂合并膝关节骨挫伤的临床研究。中国运动医学杂志,2005,24(2):176-181.
    [38]Marcacci M,Molgora AP,Zaffagnini S,et al.Anatomic double??bundle anterior cruciate ligament reconstruction with hamstrings[J].Arthroscopy,2003, 19(5):540-546.
    [39]Hara K,Arai Y,Ohta M,et al.Anew double bundle anterior cruciate ligament reconstruction using the posteromedial portal technique with hamstrings [J].Arthroscopy,2005,21(10):1274.
    [40]Hara K,Kubo T,Suginoshita T,et al.Reconstruction of the anterior cruciate ligament using a double bundle[J].Arthroscopy,2000,16(8):860-864.
    [41]Sonnery CB,Chambat P.Anatomic double bundle:a new concept in anterior cruciate ligament reconstruction using quaddceps tendon[J].mrthroscopy,2006,22(11):1249.
    [42]Ferretti M,Zelle BA,Chhabra A,et al.Anatomic anterior cruciate ligament double??bundle reconstruction using 2 tibial and 2 femoral tunnels[J].Techniques in Orthopaedics,2005,20(3):218-223.
    [43]Muneta T,Koga H,Mochizuki T,et al.A prospective randomized study of 4??strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single??bundle and double??bundle techniques[J].arthroscopy,2007,23(6):618-628.
    [44]Brucker PU,Lorenz S,Imhoff AB.Anatomic fixation in double??bundle anterior cruciate ligament reconstruction[J].Oper Tech Orthop,2005,15(2):135-139.
    [45]Asagumo H,Kimura M,Kobayashi Y.Anatomic reconstruction of the anterior cruciate ligament using double bundle hamstring tendons:surgical techniques,clinical outcomes,and complications[J].Arthroscopy,2007,23(6):602-609.
    [46]吴在德,郑树,外科学[M],第5版.北京:人民卫生出版社2002:997-1000.
    [47]BLAN L,KAPLUM M,WILLIAMS DY,et al.Influence of dhondroitin sulfate on the biochemical mechanical and frictional properties of cartilage explants in long-term culture[J].Biomech.2008,6(2):105-106.
    [48]JACKSON L L,TAHIRI K,MONTEMBAULT A,et al.Cell therapy in cartilage repair:cellular and molecular basees[J].Soc Biol.(fre) 2008,202(4):313-321.
    [49]REVELL C M,ATHANASIOU K A.Success rates and immunologic responses of autogenic and xenogenic treatments to repair articular cartilage defects[J].Tissue Eng Part B Rev.2008,14(8):1141-1143.
    [50]KANAMOTO T,NAKAMURA N,NAKATA K,et al.Articular cartilage regeneration using stem cells[J].Clin Calcium.2008,18(12):1744-1745.
    [51]张艳,崔磊,曹谊林,软骨组织工程种子细胞的基础和应用研究进展[J].国外医学.生物医学工程分册,2002,25(1):16-20.
    [52]IWASA J,ENGERBRETSEN L,SHIMA Y,et al.Clinical application of scaffolds for cartilage tissue engineering[J].Knee Surg Sports T raumatol Arthrosc.2008,7(13):1120-1121.
    [53]MCCORMICK F,YANKE A,PROVENCHER M T,et al.Minced articular artilage-basic science,surgical technique and clinical application[J].Sports Med Arthrosc 2008,16(4):217-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700