用户名: 密码: 验证码:
白细胞介素-2对前列腺增生上皮细胞增殖、凋亡及旁分泌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章前列腺增生上皮细胞中白细胞介素-2及其受体的表达
     目的:炎症与良性前列腺增生(benign prostatic hyperplasia,BPH)关系密切,BPH组织中浸润的炎症细胞可产生大量白细胞介素-2(Interleukin-2,IL-2),IL-2及其受体在上皮细胞中表达增高,可能在BPH发生和发展中起重要作用。本研究拟探讨BPH组织中IL-2的表达及其与BPH合并炎症的病理组织学关系。观察人良性前列腺增生上皮细胞株BPH-1中白细胞介素-2受体(Interleukin-2 receptor,IL-2R)α、IL-2Rβ和IL-2Rγ的表达。
     方法:应用免疫组织化学技术分别检测16例单纯BPH和42例合并炎症的BPH组织中IL-2蛋白的表达。采用逆转录聚合酶链式反应(RT-PCR)检测BPH-1细胞中IL-2Rα、IL-2Rβ和IL-2Rγ基因的表达;采用Western blot检测IL-2Rα、IL-2Rβ和IL-2Rγ蛋白的表达。
     结果:(1)所有BPH组织均有IL-2蛋白表达,主要位于上皮细胞,在合并炎症的BPH中的表达显著高于单纯BPH。(2)RT-PCR结果表明BPH-1细胞表达IL-2Rα、IL-2Rβ和IL-2Rγ基因。(3)Westernblot检测到BPH-1细胞中IL-2Rα、IL-2Rβ和IL-2Rγ蛋白的表达。
     结论:BPH组织中IL-2表达与浸润的炎症细胞有关。BPH-1细胞表达IL-2Rα、IL-2Rβ和IL-2Rγ,可作为一种较好的模型研究IL-2对BPH的影响。
     第二章白细胞介素-2通过ERK1/2信号途径促进前列腺增生上皮细胞增殖
     目的:研究人重组IL-2对BPH-1细胞增殖的作用及其信号转导途径。
     方法:细胞增殖水平用MTT法检测。p-JNK,JNK,p-p38,p38,p-ERK1/2,ERK1/2用Western blot检测,联合ERK1/2信号转导阻断剂PD098059,p38信号转导阻断剂SB203580和JNK信号转导阻断剂SP600125干预,以探讨IL-2对BPH-1细胞增殖的信号转导机制。
     结果:(1)MTT检测表明IL-2显著促进BPH-1细胞的增殖,且呈剂量依赖性。(2)IL-2干预诱导BPH-1细胞ERK1/2磷酸化。ERK1/2信号转导阻断剂PD098059能抑制IL-2促进BPH-1细胞增殖的作用,而p38信号转导阻断剂SB203580和JNK信号转导阻断剂SP600125无明显作用,说明ERK1/2在IL-2促进BPH-1细胞增殖中起关键作用。
     结论:IL-2通过ERK1/2信号转导途径促进BPH-1细胞增殖。
     第三章白细胞介素-2对前列腺增生上皮细胞凋亡及Bcl-2,Bax和Caspase-3蛋白表达的影响
     目的:研究IL-2对BPH-1细胞凋亡及凋亡相关基因(Bcl-2,Bax,Caspase-3)表达的影响,探讨IL-2对BPH-1细胞凋亡的作用机制。
     方法:细胞凋亡用吖啶橙/溴乙啶染色和酶联免疫吸附法(ELISA)检测。Bcl-2,Bax,Caspase-3蛋白表达用Western blot检测。
     结果:(1)吖啶橙/溴乙啶染色和ELISA检测均表明,IL-2抑制BPH-1细胞凋亡,且呈时间及剂量依赖性。(2)IL-2干预可诱导Bcl-2蛋白表达,抑制Bax表达和Caspase-3的裂解活化。
     结论:IL-2抑制BPH-1细胞凋亡与Bcl-2表达上调、Bax表达下调以及Caspase-3激活被抑制有关。
     第四章白细胞介素-2通过调节前列腺增生上皮细胞的旁分泌抑制前列腺间质细胞分化
     目的:前列腺间质和上皮细胞通过旁分泌和自分泌各种细胞因子相互影响。本研究观察IL-2对BPH-1细胞TGF-β1基因表达和TGF-β1蛋白分泌的影响,以及有无IL-2刺激的BPH-1条件培养液(conditioned medium,CM)对前列腺间质细胞分化的影响。
     方法:采用RT-PCR测定BPH-1细胞TGF-β1基因的表达。酶联免疫吸附法(ELISA)检测BPH-1CM中TGF-β1水平。Western blot检测肌球蛋白重链(smooth muscle myosin heavy chain,SM-MHC)蛋白在前列腺间质细胞中的表达来判断间质细胞的分化。
     结果:(1)IL-2抑制BPH-1细胞TGF-β1基因的表达(2)IL-2抑制BPH-1细胞TGF-β1的分泌。(3)BPH-1CM可促进前列腺间质细胞SM-MHC蛋白的表达,TGF-β1中和抗体能抑制该作用,而经过IL-2刺激的BPH-1CM抑制间质细胞SM-MHC蛋白的上调。
     结论:IL-2可抑制BPH-1细胞TGF-β1的基因表达和蛋白分泌,从而间接抑制前列腺间质细胞的分化。
Chapter one
     Interleukin-2 and Its Receptors Expression in Prostatic Epithelial Cells
     Objective:Interleukin-2(IL-2) plays a significant role in benign prostatic hyperplasia(BPH).In the present study,the expression of IL-2 in BPH and its relationship with inflammation was firstly evaluated and then the expression of Interleukin-2 receptors(Rα,Rβ,Rγ) in human prostatic epithelial cell line BPH-1 was investigated.
     Methods:The expression change of IL-2 protein in BPH specimens with or without inflammatory infiltrates was examined by immunohistochemistry.The expression of Interleukin-2 receptors(Rα, Rβ,Rγ) mRNA and protein in BPH-1 cells were determined by reverse transcription-polymerase chain reaction(RT-PCR) and Western blot.
     Results:The expression of IL-2 was increased in BPH specimens with inflammatory infiltrates.Both Interleukin-2 receptors(Rα,Rβ,Rγ) mRNA and protein were expressed in BPH-1 cells.
     Conclusions:IL-2 expression is associated with inflammatory pathology in BPH.Interleukin-2 receptors(Rα,Rβ,Rγ) are expressed in human prostatic epithelial cell line BPH-1.This cell line could be used for the investigation of the actions of IL-2 on prostatic epithelial cells.
     Chapter two
     Interleukin-2 Stimulates Proliferation of Prostatic Epithelial Cells through ERK1/2 Signal Pathway
     Objective:To investigate the mechanism of IL-2 on the proliferation of human prostatic epithelial cell line BPH-1.
     Methods:Cell proliferation was assessed by the MTT assay. Western blot was used to determine the status of activaton of ERK1/2, p38 and JNK.
     Results:IL-2 stimulated proliferation of BPH-1 cells.IL-2 induced activation of ERK1/2,but not activation of p38 and JNK.PD098059, which is a selective ERK inhibitor,significantly inhibited IL-2-induced cell proliferation.
     Conclusion:IL-2 can activate ERK1/2 pathway leading to proliferation of BPH-1 cells.
     Chapter three
     Effects of Interleukin-2 on Apoptosis and Bcl-2,Bax, Caspase-3 Expression in Prostatic Epithelial Cells
     Objective:To investigate the effects of IL-2 on the apoptosis and the expression of apoptosis-related proteins(Bcl-2,Bax,Caspase-3) in human prostatic epithelial cell line BPH-1.
     Methods:Cell apoptosis was analyzed by acidine orange/ethidium bromide staining and ELISA.The expression of Bcl-2,Bax and Caspase-3 were measured using Western blot.
     Results:IL-2 inhibited BPH-1 cells apoptosis induced by serum deprivation in a dose- and time-dependent manner and decreased Caspase-3 activation.Under the treatment of IL-2,Western blot analysis showed an increased Bcl-2 protein and decreased Bax protein expression.
     Conclusion:IL-2 can protect BPH-1 cells against apoptosis by regulating Bcl-2/Bax expression,and by blocking the activation of Caspase-3.
     Chapter four
     Interleukin-2 Inhibits Differentiation of Prostatic Stromal Cells through Regulation of Prostatic Epithelial Cells Paracrine
     Objective:To characterize the effects of IL-2 on differentiation in stromal cells through regulation of human prostatic epithelial cell line BPH-1 paracrine.
     Methods:BPH-1 cells were stimulated with different concentrations of IL-2.Conditioned medium(CM) were harvested and their effects on stromal cells were tested,mRNA of transforming growth factorβ1 (TGF-β1) was analyzed by RT-PCR.Western blot was used to determine smooth muscle myosin heavy chain(SM-MHC).ELISA was used to measure TGF-β1 protein secretion.
     Results:IL-2 inhibited the mRNA expression and secretion of TGF-β1 in BPH-1 cells.A neutralizing antibody to TGF-β1 inhibited the stimulation of SM-MHC in stromal cells by BPH-1CM.The expression of SM-MHC decreased when stromal cells were cultured with CM harvested from IL-2 treated BPH-1 cells.
     Conclusion:IL-2 inhibits differentiation of stromal cells by involving regulation of TGF-β1 expression and secretion.
引文
[1] Homma Y, Kawabe K, Tsukamoto T, et al. Epidemiologic survey of lower urinary tract symptoms in Asia and Australia using the international prostate symptom score. Int J Urol, 1997,4:40-6.
    [2] Kohnen P W, Drach G W. Patterns of inflammation in prostatic hyperplasia: a histologic and bacteriologic study. J Urol, 1979,121: 755-60.
    [3] Blumenfeld W, Tucci S, Narayan P. Incidental Lymphocytic Prostatitis: Selective Involvement with Nonmalignant Glands. The American Journal of Surgical Pathology, 1992,16: 975.
    [4] Gerstenbluth R E, Seftel a D, Maclennan G T, et al. Distribution of chronic prostatitis in radical prostatectomy specimens with up-regulation of bcl-2 in areas of inflammation. J Urol, 2002, 167: 2267-70.
    [5] Nickel J C, Downey J, Young I, et al. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int, 1999, 84: 976-81.
    [6] Mcconnell J, Roehrborn C, Bautista O, et al. Medical Therapy of Prostatic Symptoms (MTOPS) Research Group. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med, 2003, 349: 2387-98.
    [7] Yaman O, Gogus C, Tulunay O, et al. Increased prostate-specific antigen in subclinical prostatitis: The role of aggressiveness and extension of inflammation. Urologia Internationalis, 2003,71:160-7.
    [8] Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol, 2007, 51: 1202-16.
    [9] Royuela M, De Miguel M P, Bethencourt F R, et al. IL-2, its receptors, and bcl-2 and bax genes in normal, hyperplastic and carcinomatous human prostates: immunohistochemical comparative analysis. Growth Factors, 2000, 18: 135-46.
    [10]Kramer G, Steiner G E, Handisurya A, et al. Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate, 2002, 52: 43-58.
    [11]Steiner G E, Stix U, Handisurya A, et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest, 2003, 83:1131-46.
    [12]Nickel J C, True L D, Krieger J N, et al. Consensus development of a histopathological classification system for chronic prostatic inflammation. BJU International, 2001, 87: 797-805.
    [13]Malek T R. The biology of interleukin-2. Annu Rev Immunol, 2008, 26: 453-79.
    [14]Lin W C, Yasumura S, Suminami Y, et al. Constitutive production of IL-2 by human carcinoma cells, expression of IL-2 receptor, and tumor cell growth. J Immunol, 1995,155:4805-16.
    [15]Garcia-Tunon I, Ricote M, Ruiz A, et al. Interleukin-2 and its receptor complex (alpha, beta and gamma chains) in in situ and infiltrative human breast cancer: an immunohistochemical comparative study. Breast Cancer Res, 2004, 6: R1-7.
    [16]Hoyer K K, Dooms H, Barron L, et al. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev, 2008,226: 19-28.
    [17]Otero G C, Merrill J E. Molecular cloning of IL-2R alpha, IL-2R beta, and IL-2R gamma cDNAs from a human oligodendroglioma cell line: presence of IL-2R mRNAs in the human central nervous system. Glia, 1995, 14: 295-302.
    [1] Nickel J C. Inflammation and benign prostatic hyperplasia. Urol Clin North Am, 2008, 35: 109-15; vii.
    [2] Kramer G, Steiner G E, Handisurya A, et al. Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate, 2002, 52: 43-58.
    [3] Steiner G E, Stix U, Handisurya A, et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest, 2003, 83: 1131-46.
    [4] Schaeffer H J, Weber M J. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Molecular and Cellular Biology, 1999,19: 2435-44.
    [5] Ballif B A, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth & Differentiation, 2001,12: 397-408.
    [6] Roux P P, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 2004, 68: 320.
    [7] Kai L, Li-Chun Z, Ping W. Expression of MAPKs in benign prostatic hyperplasia and its clinical significance. Prog Anat Sci, 2005,11: 203-5.
    [8] Papatsoris a G, Papavassiliou a G. Molecular 'palpation' of BPH: a tale of MAPK signalling? Trends in Molecular Medicine, 2001, 7: 288-92.
    [9] Aoki Y, Qiu D, Uyei A, et al. Human airway epithelial cells express interleukin-2 in vitro. American Journal of Physiology- Lung Cellular and Molecular Physiology, 1997, 272: 276-86.
    [10] Lin W C, Yasumura S, Suminami Y, et al. Constitutive production of IL-2 by human carcinoma cells, expression of IL-2 receptor, and tumor cell growth. J Immunol, 1995,155:4805-16.
    [11] Weidmann E. Receptors for interleukin 2 on human squamous cell carcinoma cell lines and tumor in situ. Cancer Research, 1992, 52: 5963-70.
    [12]Reinecker H, Podolsky D. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proceedings of the National Academy of Sciences of the United States of America, 1995,92:8353.
    [13] Barton D, Blanchard D, Wells A, et al. Expression of interleukin-2 receptor alpha (IL-2R alpha) mRNA and protein in advanced epithelial ovarian cancer. Anticancer research, 14: 761.
    [14]Katano M, Matsuo T, Morisaki T, et al. Increased proliferation of a human breast carcinoma cell line by recombinant interleukin-2. Cancer Immunology, Immunotherapy, 1994, 39: 161-6.
    [15] Wang L, Yang J R, Yang L Y, et al. Expression of Ki-67, Bcl-2,Bax and caspase-3 in benign prostatic hyperplasia combined with prostatitis and their significances. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2008, 33: 222-6.
    [16]Gesbert F, Delespine-Carmagnat M, Bertoglio J. Recent advances in the understanding of interleukin-2 signal transduction. J Clin Immunol, 1998, 18: 307-20.
    [17] Ballif B A, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ, 2001, 12: 397-408.
    [18] Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001, 22: 153-83.
    [19]Bokemeyer D, Sorokin A, Dunn M J. Multiple intracellular MAP kinase signaling cascades. Kidney Int, 1996,49:1187-98.
    [20]Royuela M, Arenas M I, Bethencourt F R, et al. Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Hum Pathol, 2002, 33: 299-306.
    [21]Habib F K, Chisholm G D. The role of growth factors in the human prostate. Scand J Urol Nephrol Suppl, 1991, 138: 53-8.
    [22] Wadsworth T L, Carroll J M, Mallinson R A, et al. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells. Endocrinology, 2004,145: 3205-14.
    [23] Ling M, Wang X, Ouyang X, et al. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene, 2002, 21: 8498-505.
    [1] Kiechle F L, Zhang X. Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta, 2002, 326: 27-45.
    [2] Barrack E R, Berry S J. DNA synthesis in the canine prostate: effects of androgen and estrogen treatment. Prostate, 1987, 10: 45-56.
    [3] Tsujimoto Y, Finger L R, Yunis J, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science, 1984, 226: 1097-9.
    [4] Chao D T, Korsmeyer S J. BCL-2 family: regulators of cell death. Annu Rev Immunol, 1998,16: 395-419.
    [5] Korsmeyer S. BCL-2 gene family and the regulation of programmed cell death. Cancer Research, 1999, 59: 1693s.
    [6] Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science, 1998,281:1322-6.
    [7] Iacopino F, Angelucci C, Lama G, et al. Apoptosis-related gene expression in benign prostatic hyperplasia and prostate carcinoma. Anticancer Res, 2006, 26: 1849-54.
    [8] Ding W X, Ni H M, Difrancesca D, et al. Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes. Hepatology, 2004,40: 403-13.
    [9] O'neill a J, Boran S A, O'keane C, et al. Caspase 3 expression in benign prostatic hyperplasia and prostate carcinoma. Prostate, 2001, 47: 183-8.
    [10]Sohn J H, Kim D H, Choi N G, et al. Caspase-3/CPP32 immunoreactivity and its correlation with frequency of apoptotic bodies in human prostatic carcinomas and benign nodular hyperplasias. Histopathology, 2000, 37: 555-60.
    [11] Winter R N, Kramer A, Borkowski A, et al. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer. Cancer Res, 2001, 61: 1227-32.
    [12]Gerstenbluth R E, Seftel a D, Maclennan G T, et al. Distribution of chronic prostatitis in radical prostatectomy specimens with up-regulation of bcl-2 in areas of inflammation. J Urol, 2002,167: 2267-70.
    [13] Wang L, Yang J R, Yang L Y, et al. Expression of Ki-67, Bcl-2,Bax and caspase-3 in benign prostatic hyperplasia combined with prostatitis and their significances. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2008, 33: 222-6.
    [14]Oite T. Sensitive analysis of apoptosis using confocal laser scan microscopy. Experimental Nephrology, 2000, 8: 312-4.
    [15]Kerr J F, Wyllie a H, Currie a R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26: 239-57.
    [16]Kyprianou N, Isaacs J T. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology, 1988, 122: 552-62.
    [17]Martikainen P, Kyprianou N, Isaacs J T. Effect of transforming growth factor-beta 1 on proliferation and death of rat prostatic cells. Endocrinology, 1990, 127: 2963-8.
    [18]Chao D, Korsmeyer S. BCL-2 family: regulators of cell death. Annual review of immunology, 1998, 16: 395-419.
    [19] Johnson V L, Ko S C W, Holmstrom T H, et al. Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. Journal of Cell Science, 2000, 113: 2941-53.
    [20]Janicke R U, Sprengart M L, Wati M R, et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem, 1998,273: 9357-60.
    [21]Kilic M, Schafer R, Hoppe J, et al. Formation of noncanonical high molecular weight caspase-3 and-6 complexes and activation of caspase-12 during serum starvation induced apoptosis in AKR-2B mouse fibroblasts. Cell Death and Differentiation, 2002, 9: 125-37.
    [22]Danial N, Korsmeyer S. Cell death critical control points. Cell, 2004, 116: 205-19.
    [23]Achiwa Y, Hasegawa K, Komiya T, et al. Ursolic acid induces Bax-dependent apoptosis through the caspase-3 pathway in endometrial cancer SNG-Ⅱ cells. Oncology Reports, 2005, 13:51-7.
    [24] Zhang W, Chen M, Ng P, et al. Hyperproliferative prostate epithelium and stroma induced in c3-bcl-2 tissue specific transgenic mice. J Urol, 1996, 156: 1378-83.
    [25]Royuela M, De Miguel M P, Bethencourt F R, et al. IL-2, its receptors, and bcl-2 and bax genes in normal, hyperplastic and carcinomatous human prostates: immunohistochemical comparative analysis. Growth Factors, 2000, 18: 135-46.
    [1] Shapiro E, Hartanto V, Lepor H. Quantifying the smooth muscle content of the prostate using double-immunoenzymatic staining and color assisted image analysis. The Journal of urology, 1992,147: 1167.
    [2] Story M, Hopp K, Meier D, et al. Influence of transforming growth factor β1 and other growth factors on basic fibroblast growth factor level and proliferation of cultured human prostate-derived fibroblasts. The Prostate, 1993, 22:
    [3] Peehl D, Sellers R. Basic FGF, EGF, and PDGF modify TGFp-induction of smooth muscle cell phenotype in human prostatic stromal cells. The Prostate, 1998, 35:
    [4]Verrecchia F,Mauviel A.Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation.The Journal of investigative dermatology,2002,118:211.
    [5]Yokoi H,Mukoyama M,Sugawara A,et al.Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis.Am J Physiol Renal Physiol,2002,282:F933-42.
    [6]Chung K,Agarwal A,Uitto J,et al.An AP-1 binding sequence is essential for regulation of the human alpha2(I) collagen(COL1A2) promoter activity by transforming growth factor-beta.The Journal of biological chemistry,1996,271:3272.
    [7]Royuela M,De Miguel M P,Bethencourt F R,et al.IL-2,its receptors,and bcl-2and bax genes in normal,hyperplastic and carcinomatous human prostates:immunohistochemical comparative analysis.Growth Factors,2000,18:135-46.
    [8]Malek T R.The biology of interleukin-2.Annu Rev Immunol,2008,26:453-79.
    [9]Webber M M,Trakul N,Thraves P S,et al.A human prostatic stromal myofibroblast cell line WPMY-1:a model for stromal-epithelial interactions in prostatic neoplasia.Carcinogenesis,1999,20:1185-92.
    [10]Franks L M,Riddle P N,Carbonell a W,et al.A comparative study of the ultrastructure and lack of growth capacity of adult human prostate epithelium mechanically separated from its stroma.J Pathol,1970,100:113-9.
    [11]Cunha G R,Donjacour a A,Cooke P S,et al.The endocrinology and developmental biology of the prostate.Endocr Rev,1987,8:338-62.
    [12]Dennis J E,Charbord P.Origin and differentiation of human and murine stroma.Stem Cells,2002,20:205-14.
    [13]Wang J,Chen H,Seth A,et al.Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts.American Journal of Physiology-Heart and Circulatory Physiology,2003,285:1871-81.
    [14]周颖,杨睿,石建党,等.前列腺增生组织中间质细胞增殖和表型转化与雌激素受体α表达的关系.解剖学报,2008,39:666-9.
    [15]Bonkhoff H,Remberger K.Morphogenetic concepts of normal and abnormal growth in the human prostate.Virchows Arch,1998,433:195-202.
    [16]Grainger D J,Metcalfe J C,Grace a A,et al.Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo.J Cell Sci,1998,111:2977-88.
    [17]0bara K, Bilim V, Suzuki K, et al. Transforming growth factor-betal regulates cell growth and causes downregulation of SMemb/non-muscle myosin heavy chain B mRNA in human prostate stromal cells. Scand J Urol Nephrol, 2005, 39: 366-71.
    [18]Wu Q, Shi J, Chen L, et al. Regulation of proliferation and differentiation of prostatic stromal cells by oestradiol through prostatic epithelial cells in a paracrine manner. BJU Int, 2008,101:497-502.
    [1] Untergasser G, Madersbacher S, Berger P. Benign prostatic hyperplasia: age-related tissue-remodeling. Exp Gerontol, 2005,40: 121-8.
    [2] Kohnen PW, Drach GW. Patterns of inflammation in pros-tatic hyperplasia: a histologic and bacteriologic study. J Urol, 1979,121: 755-60.
    [3] Blumenfeld W, Tucci S, Narayan P. Incidental lymphocytic prostatitis. Selective involvement with nonmalignant glands. Am J Surg Pathol, 1992, 16: 975-81.
    [4] Nickel JC, Downey J, Young I, et al. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int, 1999, 84: 976-81.
    [5] Gerstenbluth RE, Steftel AD, MacLennan GT, et al. Distribution of chronic prostatitis in radical prostatectomy specimens with up-regulation of Bcl-2 in areas of inflammation. J Urol, 2002,167: 2267-70.
    [6] Roehrborn CG, Kaplan SA, Noble WD et al. The impact of acute or chronic inflammation in baseline biopsy on the risk of clinical progression of BPH: Results from the MTOPS study. AUA Meeting 2005, Abstract No. 1277.
    [7] Yaman O, Gogus C, Tulunay O, et al. Increased prostate-specific antigen in subclinical prostatitis: the role of aggressiveness and extension of inflammation. Urol Int, 2003, 71: 160-4.
    [8] Kramer G, Sterner GE, Handisurya A, et al. Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate, 2002, 52: 43-58.
    [9] Steiner GE, Stix U, Handisurya A, et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest, 2003, 83: 1131-46.
    [10] Konig JE, Senge T, Allhoff EP, et al. Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer. Prostate, 2004, 58: 121-9.
    [11] Wang W, Bergh A, Damber JE. Chronic inflammation in benign prostate hyperplasia is associated with focal upreg-ulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate, 2004, 61: 60-72.
    [12] Taoka R, Tsukuda F, Ishikawa M, et al. Association of prostatic inflammation with down-regulation of macro-phage inhibitory cytokine-1 gene in symptomatic benign prostatic hyperplasia. J Urol, 2004, 171: 2330-5.
    [13]Erol H,Beder N,Caliskan T,et al.Can the effect of antibiotherapy and anti-inflammatory therapy on serum PSA levels discriminate between benign and malign pros-tatic pathologies? Urol Int,2006,76:20-6.
    [14]Verhamme KM,Dieleman JP,Van Wijk MA,et al.Nonste-roidal anti-inflammatory drags and increased risk of acute urinary retention.Arch Int Med,2005,165:1547-51.
    [1] Homma Y, Kawabe K, Tsukamoto T, et al. Epidemiologic survey of lower urinary tract symptoms in Asia and Australia using the international prostate symptom score. Int J Urol, 1997,4:40-6.
    [2] Walsh P C. The role of estrogen/androgen synergism in the pathogenesis of benign prostatic hyperplasia. J Urol, 1988,139: 826.
    [3] Turin U W, Schilling B, Senge T, et al. Morphometric analysis of prostates in castrated dogs after treatment with androstanediol, estradiol, and cyproterone acetate. Invest Urol, 1981, 18: 289-92.
    [4] Deklerk D P, Coffey D S, Ewing L L, et al. Comparison of spontaneous and experimentally induced canine prostatic hyperplasia. J Clin Invest, 1979, 64: 842-9.
    [5] Wilson J D. The pathogenesis of benign prostatic hyperplasia. Am J Med, 1980, 68: 745-56.
    [6] Mcconnell J D. The pathophysiology of benign prostatic hyperplasia. J Androl, 1991,12:356-63.
    [7] Mcconnell J D. Medical management of benign prostatic hyperplasia with androgen suppression. Prostate Suppl, 1990, 3: 49-59.
    [8] Mcentee M F, Epstein J I, Syring R, et al. Characterization of prostatic basal cell hyperplasia and neoplasia in aged macaques: comparative pathology in human and nonhuman primates. Prostate, 1996,29: 51-9.
    [9] Isaacs J T, Coffey D S. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl, 1989,2: 33-50.
    [10] Bonkhoff H, Remberger K. Widespread distribution of nuclear androgen receptors in the basal cell layer of the normal and hyperplastic human prostate. Virchows Arch A Pathol Anat Histopathol, 1993,422: 35-8.
    [11] Mcconnell J. Prostatic growth: new insights into hormonal regulation. British journal of urology, 1995, 76: 5.
    [12]Landry F, Chapdelaine A, Begin L R, et al. Phosphotyrosine antibodies preferentially react with basal epithelial cells in the dog prostate. J Urol, 1996,155: 386-90.
    [13]Franks L M,Riddle P N,Carbonell a W,et al.A comparative study of the ultrastructure and lack of growth capacity of adult human prostate epithelium mechanically separated from its stroma.J Pathol,1970,100:113-9.
    [14]Cunha G R,Donjacour a A,Cooke P S,et al.The endocrinology and developmental biology of the prostate.Endocr Rev,1987,8:338-62.
    [15]杨金瑞,黄循,杨竹林.前列腺增生和前列腺癌组织细胞凋亡及Bcl-2、Bax基因表达的研究.中华泌尿外科杂志,2000,21:485-7.
    [16]Gerstenbluth R E,Seftel a D,Maclennan G T,et al.Distribution of chronic prostatitis in radical prostatectomy specimens with up-regulation of bcl-2 in areas of inflammation.J Urol,2002,167:2267-70.
    [17]Mcconnell J,Roehrborn C,Bautista O,et al.Medical Therapy of Prostatic Symptoms(MTOPS) Research Group.The long-term effect of doxazosin,finasteride,and combination therapy on the clinical progression of benign prostatic hyperplasia.N Engl J Med,2003,349:2387-98.
    [18]Kramer G,Mitteregger D,Marberger M.Is benign prostatic hyperplasia(BPH)an immune inflammatory disease? Eur Urol,2007,51:1202-16.
    [19]Kohnen P W,Drach G W.Patterns of inflammation in prostatic hyperplasia:a histologic and bacteriologic study.J Urol,1979,121:755-60.
    [20]Blumenfeld W,Tucci S,Narayan P.Incidental Lymphocytic Prostatitis:Selective Involvement with Nonmalignant Glands.The American Journal of Surgical Pathology,1992,16:975.
    [21]Nickel J C,Downey J,Young I,et al.Asymptomatic inflammation and/or infection in benign prostatic hyperplasia.BJU Int,1999,84:976-81.
    [22]Steiner G,Gessl A,Kramer G,et al.Phenotype and function of peripheral and prostatic lymphocytes in patients with benign prostatic hyperplasia.J Urol,1994,151:480-4.
    [23]Anim J T,Udo C,John B.Characterisation of inflammatory cells in benign prostatic hyperplasia.Acta Histochem,1998,100:439-49.
    [24]Roehrborn C,Kaplan S,Noble W,et al.The impact of acute or chronic inflammation in baseline biopsy on the risk of clinical progression of BPH:results from the MTOPS study.J Urol,2005,173:346.
    [25]Banu N A,Azim F A,Kamal M,et al.Inflammation and glandular proliferation in hyperplastic prostates:association with prostate specific antigen value.Bangladesh Med Res Counc Bull,2001,27:79-83.
    [26]Yaman O, Gogus C, Tulunay O, et al. Increased prostate-specific antigen in subclinical prostatitis: The role of aggressiveness and extension of inflammation. Urologia Internationalis, 2003, 71: 160-7.
    [27] Di Silverio F, Bosnian C, Salvatori M, et al. Combination therapy with rofecoxib and finasteride in the treatment of men with lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH). Eur Urol, 2005,47: 72-8; discussion 8-9.
    [28] Vela Navarrete R, Garcia Cardoso J V, Barat A, et al. BPH and inflammation: pharmacological effects of Permixon on histological and molecular inflammatory markers. Results of a double blind pilot clinical assay. Eur Urol, 2003, 44: 549-55.
    [29]Erol H, Beder N, Caliskan T, et al. Can the effect of antibiotherapy and anti-inflammatory therapy on serum PSA levels discriminate between benign and malign prostatic pathologies? Urologia Internationalis, 2006, 76: 20-6.
    [30]Kramer G, Steiner G E, Handisurya A, et al. Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate, 2002, 52: 43-58.
    [31] Steiner G E, Newman M E, Paikl D, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate, 2003, 56: 171-82.
    [32]Penna G, Mondaini N, Amuchastegui S, et al. Seminal plasma cytokines and chemokines in prostate inflammation: interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia. Eur Urol, 2007, 51: 524-33; discussion 33.
    [33] Wang W, Bergh A, Damber J E. Chronic inflammation in benign prostate hyperplasia is associated with focal upregulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate, 2004, 61: 60-72.
    [34]Fisman E Z, Motro M, Tenenbaum A. Cardiovascular diabetology in the core of a novel interleukins classification: the bad, the good and the aloof. Cardiovasc Diabetol,2003,2:11.
    [35]Giri D, Ittmann M. Interleukin-1 alpha is a paracrine inducer of FGF7, a key epithelial growth factor in benign prostatic hyperplasia. Am J Pathol, 2000, 157: 249-55.
    [36]Royuela M, De Miguel M P, Bethencourt F R, et al. IL-2, its receptors, and bcl-2 and bax genes in normal, hyperplastic and carcinomatous human prostates: immunohistochemical comparative analysis. Growth Factors, 2000,18: 135-46.
    [37]Steiner G E, Stix U, Handisurya A, et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest, 2003, 83:1131-46.
    [38]Curfs J H, Meis J F, Hoogkamp-Korstanje J A. A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev, 1997, 10: 742-80.
    [39]Hobisch A, Rogatsch H, Hittmair A, et al. Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. Journal of Pathology, 2000,191: 239-44.
    [40]Royuela M, Ricote M, Parsons M S, et al. Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol, 2004,202:41-9.
    [41] Clarke D, Katoh O, Gibbs R V, et al. Interaction of interleukin 7 (IL-7) with glycosaminoglycans and its biological relevance. Cytokine, 1995, 7: 325-30.
    [42] Castro P, Xia C, Gomez L, et al. Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate, 2004, 60: 153-9.
    [43]Handisurya A, Steiner G E, Stix U, et al. Differential expression of interleukin-15, a pro-inflammatory cytokine and T-cell growth factor, and its receptor in human prostate. Prostate, 2001, 49: 251-62.
    [44] Sinowatz F, Schams D, Einspanier R, et al. Cellular localization of fibroblast growth factor 2 (FGF-2) in benign prostatic hyperplasia. Histol Histopathol, 2000, 15:475-81.
    [45] Walsh K, Sherwood R A, Dew T K, et al. Angiogenic peptides in prostatic disease. BJU Int, 1999, 84: 1081-3.
    [46]Ishani A, Macdonald R, Nelson D, et al. Pygeum africanum for the treatment of patients with benign prostatic hyperplasia: a systematic review and quantitative meta-analysis. Am J Med, 2000,109: 654-64.
    [47] Barnard J A, Lyons R M, Moses H L. The cell biology of transforming growth factor beta. Biochim Biophys Acta, 1990,1032: 79-87.
    [48] Huang X, Lee C. Regulation of stromal proliferation, growth arrest, differentiation and apoptosis in benign prostatic hyperplasia by TGF-beta. Front Biosci, 2003, 8: s740-9.
    [49]Hong J H, Song C, Shin Y, et al. Estrogen induction of smooth muscle differentiation of human prostatic stromal cells is mediated by transforming growth factor-beta. J Urol, 2004,171: 1965-9.
    [50]Taoka R, Tsukuda F, Ishikawa M, et al. Association of prostatic inflammation with down-regulation of macrophage inhibitory cytokine-1 gene in symptomatic benign prostatic hyperplasia. J Urol, 2004,171: 2330-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700