用户名: 密码: 验证码:
精神分裂症患者脑灰质、白质和固有网络的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:使用磁共振成像(magnetic resonance imaging,MRI)检测精神分裂症患者与健康对照在脑灰质、白质和静息状态固有网络功能连接三方面的差异,探讨疾病特异性的生物学标记,为理解疾病机理和临床诊断提供新线索和依据。
     研究方法:
     (1)将85例精神分裂症患者和85例健康对照根据诊断和性别分为四组:男性和女性患者、男性和女性对照。以基于体素的形态测量法(voxel-based morphometry,VBM)的“统一分割法”对结构MRI图像进行预处理,得到每一个体的四种图像:灰质体积和密度、白质体积和密度。采用双因素方差分析(为诊断和性别两个因素)并引入年龄和/或颅内总体积(total incranial volume,TIV)协变量,检测患者和对照的灰质和白质差异,并评估各协变量对VBM结果的影响。
     (2)对25例精神分裂症患者、25例健康同胞和25例健康对照行静息状态的功能磁共振成像(functional MRI,fMRI)。以后扣带/楔叶(PCC/PCu)和右侧前额叶背外侧(DLPFC)为种子区分别进行功能连接分析,获得各自的正相关和负相关脑区图。取与PCC/PCu显著正相关且与右侧DLPFC显著负相关的脑区构成任务负激活网络(task-negativenetwork,TNN),它在静息状态时激活最强,而在执行需要集中注意力和目标导向的任务时激活减弱。取与PCC/PCu显著负相关且与右侧DLPFC显著正相关的脑区构成任务正激活网络(task-positive network.TPN),它在执行需要集中注意力和目标导向的任务时激活最强。因此,我们构建每一组和三组共同的固有网络,包括TPN和TNN。以单因素方差分析检测共同的固有网络内两两脑区之间的功能连接强度及其在三组之间的差异,并以post hoc检验(LSD法)进行组间两两比较。
     结果:
     (1)精神分裂症患者和健康对照的脑灰质比较的双因素方差分析发现显著的诊断主效应(p<0.05,FDR校正),表现为患者的灰质体积和密度降低,位于双侧颞上回、额下回和岛叶,及左侧颞叶内侧结构(包括杏仁核、海马和海马回)。另外,患者的灰质密度降低还可见于双侧前额叶背外侧和内侧及前扣带。患者和对照白质比较的双因素方差分析发现显著的诊断主效应(p<0.001,未校正;当阈值p<0.05,FDR校正时为阴性结果),表现为患者的白质体积和密度降低,主要位于双侧额叶和颞叶,涉及左侧钩束、下纵束、视放射和弓状束等主要神经纤维束。患者和对照的灰质和白质比较均未发现显著的诊断×性别交互效应(p<0.05,FDR校正)。引入年龄和/或TIV协变量可显著提高灰质比较的双因素方差分析的F值,对白质检测的影响相对较小。
     (2)精神分裂症患者、健康同胞和健康对照共同的固有网络内两两脑区之间的功能连接比较发现三条异常功能连接(ANOVA,p<0.05):左侧DLPFC与右侧额下回(IFG)之间的功能连接(F=3.409,p=0.038),左侧颞下回(ITG)与PCC/PCu之间的功能连接(F=6.938,p=0.002),和双侧ITG之间的功能连接(F=4.016,p=0.022)。Post hoc分析(LSD法)发现,在TNN,精神分裂症患者和健康同胞均存在双侧ITG的功能连接升高,而仅精神分裂症患者存在PCC/PCu和左侧ITG的功能连接升高;在TPN,仅精神分裂症患者存在左侧DLPFC和右侧IFG的功能连接升高。未发现分属TPN和TNN的两两脑区之间的功能连接差异。
     结论:
     (1)精神分裂症患者的灰质和白质的体积和密度降低主要涉及额叶、颞叶和边缘脑区,以及与之相联系的白质神经纤维。额叶-颞叶-边缘脑区神经环路的结构异常可能是理解精神分裂症神经病理基础的关键。引入年龄和/或TIV协变量可提高VBM法对灰质异常检测的敏感性。
     (2)精神分裂症患者及其健康同胞均存在固有网络的功能连接升高。精神分裂症的病理生理基础与TNN和TPN的功能连接增强有关,而TNN的功能连接增强可能与精神分裂症的遗传易感性有关。
Objective: Using magnetic resonance imaging (MRI), we examined the volume and density difference of gray matter (GM) and white matter (WM), and functional connectivity difference of intrinsic networks between schizophrenic patients and healthy controls, to investigate the disease-specific biological makers, and to provide new clues and evidences for the understanding of the mechanism and diagnosis of schizophrenia.
     Methods:
     (1) The schizophrenic patients (n=85) and healthy controls (n=85) were assigned into four groups: male and female patients, male and female controls. The "unified segmentation" approach of voxel-based morphometry (VBM) was used to preprocess structural images, and four images represent GM volume, GM density, WM volume and WM density, were obtained for each subject. The GM/WM difference between the patients and controls was examined by two-factor analysis of variance (ANOVA), with diagnosis and sex as two factors. The age, total incrainial volume (TIV), or both of them, were introduced as covariants in the statistic models to examine their effects on VBM results.
     (2) Functional images of schizophrenic patients (n=25), their healthy siblings (n=25), and healthy controls (n=25) were acquired by using resting state functional MRI. The posterior cingulate cortex and adjacent precuneus (PCC/PCu) and right dorsolateral prefrontal cortex (DLPFC) were set as seed regions for functional connectivity analysis. The brain regions that were significantly positively correlated to PCC/PCu and significantly negatively correlated to right DLPFC constitute the TNN, which was at most activation in resting state, while deactivated by attention-demanding or goal-directed tasks in previous functional studies. The brain regions that were significantly negatively correlated to PCC/PCu and significantly positively correlated to right DLPFC constitute the TPN, which was at most activation when an individual is performing attention-demanding or goal-directed tasks. Thus, the intrinsic networks (including the TPN and TNN) were constructed for each group and the overlapped intrinsic networks were obtained. Functional connectivity difference of the overlapped intrinsic networks between the three groups was examined by ANOVA. Post hoc tests (LSD) were used to examine the difference of connectivity strength between every two groups.
     Results:
     (1) We found significant main effects of diagnosis factor in examining the GM difference between schizophrenic patients and healthy controls by two-factor ANOVA (p<0.05, FDR correction). Patients were associated with reduction of GM volume/density, which were located in the bilateral superior temporal gyri, inferior frontal gyri and insula, and the left medial temporal regions including the amygdale, hippocampus and hippocampal gyrus. Additionally, GM density reduction was found in the bilateral medial and dorsolateral prefrontal cortices, and the anterior cingulate gyrus in patients. Significant main effects of diagnosis factor was found in examining the WM difference between patients and controls by two-factor ANOVA (p<0.001, uncorrection; negative results were found when set the threthold at p<0.05, FDR correction). Patients were associated with reduced WM volume/density, which were located in the bilateral frontal and temporal white matter, and the brain's princinpal fiber tracts, such as the left uncinatus fasciculus, inferior longitudinal fasciculus and, optic radiation, and right arcuate fasciculus. No significant diagnosis X sex interaction was found in examining the group difference of GM/WM by two-factor ANOVA (p<0.05, FDR correction). The covariants, such as age, TIV, or both of them, can significantly increase the F values of two-factor ANOVA in detecting the GM changes.
     (2) Significant connectivity difference of the overlapped intrinsic networks was found between schizophrenic patients, healthy siblings and healthy controls (ANOVA, p<0.05). These were the connectivities between the left DLPFC and right inferior frontal gyrus (IFG) (F=3.409, p=0.038), the PCC/PCu and left inferior temporal gyrus (ITG) (F=6.938, p=0.002), and the left ITG and right ITG (F=4.016, p=0.022). Post hoc tests (LSD) revealed that in the TNN, patients and siblings shared higher connectivity between the bilateral ITG, while patients alone showed higher connectivity between the PCC/PCu and left ITG In the TPN, only the patients showed higher connectivity between the left DLPFC and IFG. No significant connectivity difference was found between any two regions from different networks.
     Conclusion:
     (1) Schizophrenic patients involve reduction of GM/WM volume and density in the frontal and temporal lobe, limbic regions, and the connecting WM fiber tracts. Structural changes in the frontotemporal limbic circuit may be the key substrates of the neuropathology of schizophrenia. The covariants, such as the age, TIV, or both of them, can increase the sensitivity of VBM to detect the GM changes.
     (2) Schizophrenic patients and heathly siblings shared higher functional connectivity in the intrinsic networks. The pathophysiology of schizophrenia involves higher connectivity of the TPN and TNN. Higher connectivity of the TNN may be associated with the genetic liability for schizophrenia.
引文
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington DC: American Psychiatric Association. 1994.
    Andreasen NC, Nopoulos P, O'Leary DS, et al. defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry, 1999,46: 908-920.
    Andreasen NC, O'Leary DS, Cizadlo T, et aL. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Nat Acad Sci, 1996, 93(18): 9985-9990.
    Andreasen NC, O'Leary DS, Flaum M et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet, 1997, 349(9067): 1730-1734.
    Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry, 2005, 57: 1285-1292.
    Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004, 8(4): 170-177.
    Ashburner J, Friston KJ. Unified segmentation. Neuroimage, 2005, 26: 839-851.
    Ashburner J, Friston KJ. Voxel-based morphometry: the methods. Neuroimage, 2000, 11: 805-821.
    Ashburner J, Hutton C, Frackowiak R, et al. Indentifying global anatomical differences: deformation-based morphometry, Hum Brain Mapp, 1998, 6: 348-357.
    Augustine JR. Circuitry and fimctional aspects of the insular lobe in primates including Humans. Brain Res Rev, 1996, 22: 229-244.
    Barch DM, Smith E. The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biol Psychiatry, 2008, 64: 11-17.
    Bertolino A, Esposito G, Callicott JH. Specific relationship between prefrontal neuronal N-acetylaspartate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry, 2000, 157: 26-33.
    Bertolino A, Knable MB, Saunders RC, et al. The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry, 1999, 45(6): 660-667.
    Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci, 2008, 9: 182-194.
    Biswal BB, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995, 34: 537-541.
    Bleuler E. 1911-1950. Dementia praecox or the group of schizophrenia. International Universities Press, New York.
    Bluhm RL, Miller J, Lanius RA, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull, 2007, 33: 1004-1012.
    Bokde ALW, Tagamets MA, Friedman RB et al. Functional interactions of the Inferior frontal cortex during the processing of words and word-like stimuli. Neuron, 2001, 30:2609-2617.
    Boksman K, Theberge J, Williamson P, et al. A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophr Res, 2005, 75: 247-263.
    Boos HB, Aleman A, Cahn W, et al. Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry, 2007, 64(3): 297-304.
    Broyd SJ, Demanuele C, Debener S, et al. Default-mode brain dysfunction in mental disorders: A systematic review. Neurosci Biobehav Rev, 2009, 33(3): 279-96.
    Buchsbaum MS. The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr Bull, 1990,16: 379-389.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann NY Acad Sci, 2008, 1124: 1-38.
    Bullmore ET, Frangou S, Murray RM. The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr Res, 1997, 28: 143-156.
    Burgess N, Maguire EA, O'Keefe J. The human hippocampus and spatial and episodic memory. Neuron, 2002, 35: 625-641.
    Cabeza R, Nyberg L. Imaging cognition, Ⅱ: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci, 2000, 12: 1-47.
    Callicott JH, Bertolino A, Mattay VS et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex, 2000, 10(11): 1078-1092.
    Callicott JH, Egan MF, Mattay VS, et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry, 2003,160: 709-719.
    Chao LL, Haxby JV, Martin A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci, 1999, 2: 913-919.
    Chen WJ, Faraone SV. Sustained attention deficits as markers of genetic susceptibility to schizophrenia. Am J Med Genet, 2000, 97(1): 52-57.
    Collins DI, Holmes CJ, Peters TM, et al. Automatic 3D model-based neuroanatomical segmentation, Hum brain mapp 1995, 3: 190-208.
    Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol, 2000; 21: 1636-1644.
    Cordes D, Haughton VM, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. Am J Neuroradiol, 2001, 22: 1326-1333.
    Crespo-Facorro B, Kim JJ, Andreasen NC, et al. Insular cortex abnormalities in schizophrenia: a structural magnetic resonance imaging study of first-episode patients. Schizophr Res, 2000,46: 35-43.
    Crespo-Facorro B, Paradiso S, Andreasen NC, et al. Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA, 2001, 286: 427-435.
    Curtis VA, Bollmore ET, Brammer MJ, et al. Attenuated frontal activation during a verbal fluency task in patients with schizophrenia. Am J Psychiatry, 1998,155: 1056-1063.
    Davatzikos, C, Vaillant M, Resnick SM, et al. A computerized approach for morphological analysis of the corpus callosum. J Comput Assist Tomogr, 1996, 20: 88-97.
    Davis CE, Jeste DV, Eyler LT. Review of longitudinal functional neuroimaging studies of drug treatments in patients with schizophrenia. Schizophr Res, 2005; 78: 45-60.
    Dierks T, Linden DE, Jandl M, et al. Activation of Heschl's gyrus during auditory hallucinations. Neuron, 1999, 22: 615-621.
    Ebmeier KP, Lawrie SM, Blackwood DH. Hypofrontality revisited: a high resolution single photon emission computed tomography study in schizophrenia. J Neurol Neurosurg Psychiatry, 1995, 58: 452-456.
    Egan MF, Goldberg TE, Gscheidle T, et al. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol Psychiatry, 2001, 50: 98-107.
    Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci, 2007, 30: 123-52.
    Ellison-Wright I, Glahn DC, Laird AR, et al.The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry, 2008, 165:1015-1023.
    Fallon JH, Opole IO, Potkin SG. The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clin Neurosci Res, 2003, 3: 77-107.
    Farrer C, Franck N, Frith CD, et al. Neural correlates of action attribution in schizophrenia. Psychiatry Res, 2004,131: 31-44.
    Feinberg I. Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? J Psychitr Res, 1982, 17: 319-334.
    First M, Spitzer R, Gibbon M, Williams J. Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute, 1996.
    Fiset P, Paus T, Daloze T, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci, 1999,19:5506-5513.
    Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8: 700-711.
    Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA, 2005, 102: 9673-9678.
    Fransson P. Spontaneous low-frequency BOLD signal fluctuations-an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005,26:15-29.
    Freedman R. Schizophrenia. N Engl J Med, 2003, 349: 1738-1749.
    Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp, 1993b, 1: 69-80.
    Friston KJ, Frith CD, Liddle PF, et al. Functional connectivity: the principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993a, 13: 5-14.
    Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci, 1995, 3: 89-97.
    Friston KJ. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci, 2002b, 25: 221-250.
    Friston KJ. Dysfunctional connectivity in schizophrenia. World Psychiatry, 2002a, 1: 66-71.
    Friston KJ. The disconnection hypothesis. Schizophr Res, 1998, 30: 115-125.
    Garrity AG, Pearlson GD, McKieman K, et al. Aberrant "Default Mode" Functional Connectivity in Schizophrenia. Am J Psychiatry, 2007, 164: 450-457.
    Gaser C, Nenadic I, Volz HP, et al. Neuroanatomy of "hearing voices": a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cereb Cortex, 2004,14(1): 91-96.
    Gilbert SJ, Dumontheil I, Simons JS, et al. Comment on "Wandering minds: the default network and stimulus-independent thought". Science, 2007, 317: 43.
    Girgis RR, Diwadkar VA, Nutche JJ, et al. Risperidone in first-episode psychosis: a longitudinal, exploratory voxel-based morphometric study. Schizophr Res, 2006, 82(1): 89-94.
    Glahn DC, Laird AR, Ellison-Wright I, et al. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry, 2008, 64: 774-781.
    Glahn DC, Ragland JD, Abramoff A, et al. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp, 2005,25(1): 60-69.
    Glantz LA, Lewis DA. Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. Arch Gen Psychiatry, 2000, 57: 65-73.
    Gogtay N, Greenstein D, Lenane M, et al. Cortical Brain Development in Nonpsychotic Siblings of Patients With Childhood-Onset Schizophrenia Arch Gen Psychiatry, 2007, 64(7):772-780.
    Good CD, Johnsrude IS, Ashburner J, et al. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage, 2001,14: 21-36.
    Gottesman II, Hon FRC, Gould TD. The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. Am J Psychiatry, 2003, 160: 636-645.
    Green MF, Leitman DI. Social Cognition in Schizophrenia. Schizophr Bull, 2008, 34(4): 670-672.
    Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA, 2003, 100: 253-258.
    Gur RE, Nimgaonkar VL., Almasy L, et al. Neurocognitive Endophenotypes in a Multiplex Multigenerational Family Study of Schizophrenia. Am J Psychiatry, 2007, 164:813-819.
    Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci, 2001,2: 685-694.
    Hagino H, Suzuki M, Mori K, et al. Proton magnetic resonance spectroscopy of the inferior frontal gyrus and thalamus and its relationship to verbal learning task performance in patients with schizophrenia: A preliminary report. Psych Clin Neurosci, 2002, 56: 499- 507.
    Hahn B, Ross TJ, Stein EA. Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex, 2007,17: 1664-1671.
    Hampson M, Peterson BS, Skudlarski P, et al. Detection of Functional Connectivity Using Temporal Correlations in MR Images. Hum Brain Mapp, 2002,15: 247-262.
    Haznedar MM, Buchsbaum MS, Hazlett EA, et al. Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr Res, 2004, 71(2-3): 249-262.
    Haznedar MM, Buchsbaum MS, Luu C, et al. Decreased Anterior Cingulate Gyrus Metabolic Rate in Schizophrenia. Am J Psychiatry, 1997, 154: 682-684.
    Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 1998, 12(3): 426-445.
    Herath P, Kinomura S, Roland PE. Visual recognition: evidence for two distinctive mechanisms from a PET study. Hum Brain Mapp, 2001,12: 110-119.
    Hill K, Mann L, Laws KR et al. Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand, 2004,110(4): 243-256.
    Ho BC, Andreasen NC, Nopoulos P, et al. Progressive Structural Brain Abnormalities and Their Relationship to Clinical Outcome: A Longitudinal Magnetic Resonance Imaging Study Early in Schizophrenia. Arch Gen Psychiatry, 2003, 60: 585-594.
    Honea R, Crow TJ, Passingham D, et al. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry, 2005,162: 2233-2245.
    Honey GD, Pomarol-Clotet E, Corlett PR, et al. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain, 2005, 128:2597-2611.
    Hoptman MJ, Ardekani BA, Butler PD, et al. DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport, 2004; 15(16): 2467-2470.
    Hoptman MJ, Volavka J, Johnson G, et al. Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol Psychiatry, 2002, 52: 9-14.
    Hubl D, Koenig T, Strik W, et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry. 2004; 61(7): 658-68.
    Huettel SA, Song AW, McCarthy G. Functional magnetic resonance imaging. Sinauer Associates, Inc. 1st edition, 2004, 1-184.
    Hulshoff PH, Schnack HG, Mandl RC, et al. Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. Neuroimage, 2004, 21: 27-35.
    Hyde JS, Biswal BB. Functionally related correlation in the noise. In: Moonen CTW, Bandettini PA(eds) Functional MRI. Berlin: Springer. 1999,263-275.
    Hyman SE. Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci, 2007, 8: 725-732.
    Ishai A, Ungerleider LG, Martin A, et al. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci USA, 1999, 96: 9379-9384.
    Jafri MJ, Pearlson GD, Stevens M, et al. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 2008,39:1666-1681.
    Jang DP, Kim JJ, Chung TS, et al. Shape deformation of the insula in schizophrenia. Neuroimage, 2006, 32(1): 220-227.
    Jiang A, Kennedy DN, Baker JR, et al. Motion detection and correction in functional MR imaging. Hum Brain Mapp, 1995, 3: 224-235.
    Jiang TZ, He Y, Zang YF, et al. Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp, 2004,22: 63-71.
    Job DE, Whalley HC, McConnell S, et al. Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage, 2002,17: 880-889.
    Job DE, Whalley HC, McConnell S, et al. Voxel-based morphometry of grey matter densities in subjects at high risk of schizophrenia. Schizophr Res, 2003, 64: 1-13.
    Kanaan RA, Kim JS, Kaufmann WE, et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry, 2005, 58: 921-929.
    Kay S, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull, 1987,13(2): 261-276.
    Ke M, Huang X, Shen H, et al. Combined analysis of resting-state fMRI and DTI data reveals abnormal development of function-structure in early-onset schizophrenia. LNCS, 2008, 5009: 628-635.
    Kems JG, Nuechterlein KH, Braver TS. Executive functioning component mechanisms and schizophrenia. Biol Psychiatry, 2008, 64(1): 26-33.
    Keshavan MS, Stanley JA, Pettegrew JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings-part Ⅱ. Biol Psychiatry, 2000, 48(5): 369-380.
    Kircher TTJ, Liddle PF, Brammer MJ, et al. Neural correlates of formal thought disorder in schizophrenia: preliminary findings from a functional magnetic resonance imaging study. Arch Gen Psychiatry, 2001, 58:169-774.
    Kiviniemi V, Kantola JH, Jauhiainen J, et al. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 2003,19: 253-260.
    Koch MA, Norris DG, Hund-Georgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage, 2002, 16 (1): 241-250.
    Krieger S, Lis S, Cetin T, et al. Executive function and cognitive subprocesses in first-episode, drug-naive schizophrenia: an analysis of N-back performance. Am J Psychiatry, 2005, 162(6): 1206-1208.
    Kubicki M, McCarley R, Westin CF, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 2007; 41: 15-30.
    Kuperberg GR, McGuire PK, David AS. Reduced sensitivity to linguistic context in schizophrenic thought disorder: evidence from on-line monitoring for words in linguistically anomalous sentences. J Abnorm Psychol, 1998, 107: 423-434.
    Kuperberg GR, West WC, Lakshmanan BM, et al. Functional magnetic resonance imaging reveals neuroanatomical dissociations during semantic integration in schizophrenia. Biol Psychiatry, 2008,64(5): 407-418.
    Kuroki N, Shenton ME, Salisbury DF, et al. Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am J Psychiatry 2006; 163: 2103-2110.
    Kyriakopoulos M, Bargiotas T, Barker GJ, et al. Diffusion tensor imaging in schizophrenia. Eur Psychiatry, 2008; 23: 255-273.
    Lawrie SM, Buechel C, Whalley HC, et al. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry, 2002,12: 1008-1011.
    Lee J, Park S. Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol, 2005, 114(4): 599-611.
    Lee KH, Farrow TFD, Spence SA. Social cognition, brain networks and schizophrenia. Psychol Med, 2004, 34(3): 391-400.
    Lee L, Harrison LM, Mechelli A. A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage, 2003,19: 457-465.
    Lee PS, Yerys BE, Rosa AD, et al. Functional connectivity of the inferior frontal cortex changes with age in children with autism spectrum disorders: a fcMRI study of response inhibition. Cereb. Cortex. 2009 (inpress).
    Lennox BR, Park SB, Medley I, et al. The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Res, 2000,100: 13-20.
    Li Q, Clark S, Lewis DV, et al. NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J Neurosci, 2002,22(8): 3070-3080.
    Liang, M, Zhou Y, Jiang, TZ et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 2006, 17(2): 209-213.
    Liu HH, Liu ZN, Liang M, et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. NeuroReport, 2006, 17 (1): 19-22.
    Liu SK, Chiu CH, Chang CJ, et al. Deficits in sustained attention in schizophrenia and affective disorders: stable versus state-dependent markers. Am J Psychiatry, 2002, 159: 975-982.
    Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia. Brain, 2008,131(4): 945-961.
    Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001,412: 150-157.
    Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 1998, 7: 119-132.
    Lowe MJ, Phillips MD, Lurito JT, et al. Multiple sclerosis: low-frequency temporal blood oxygen leveldependent fluctuations indicate reduced functional connectivity initial results. Radiology, 2002, 224: 184-192.
    Maddock RJ. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci, 1999, 22(7): 310-316.
    Maldjian JA, Laurienti PJ, Kraft RA, et al. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 2003, 19: 1233-1239.
    Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res, 2000, 9: 207-231.
    Marwick K, Hall J. Social cognition in schizophrenia: a review of face processing. Br Med Bull, 2008, 88(1): 43-58.
    Mason MF, Norton MI, Van Horn JD, et al. Wandering minds: the default network and stimulus-independent thought. Science, 2007, 315: 393-395.
    Mathalon DH, Sullivan EV, Lim KO, et al. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry, 2001, 58: 148-157.
    McCarley RW, Wible CG., Frumin M, et al. MRI anatomy of schizophrenia. Biol Psychiatry, 1999,45: 1099-1119.
    McDonald D. A method for identifying geometrically simple surfaces from three dimensional images. PhD thesis, McGill University, Canada, 1998.
    Mechelli A, Price CJ, Friston KJ, et al. Voxel-based morphometry of the human brain: methods and applications. Current Med Imaging Rev, 2005,1(2): 105-113.
    Meda SA, Giuliani NR, Calhoun VD, et al. A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophr Res, 2008,101: 95-105.
    Meisenzahl EM, Koutsouleris N, Bottlender R, et al. Structural brain alterations at different stages of schizophrenia: A voxel-based morphometric study. Schizophr Res, 2008,104: 44-60.
    Menon V, Anagnoson RT, Glover GH, et al. Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia. Am J Psychiatry, 2001, 158: 646-649.
    Mesulam MM: From sensation to cognition. Brain, 1998,121: 1013-1052.
    Mitelman SA, Shihabuddin L, Brickman A, et al. Volume of the cingulate and outcome in schizophrenia. Schizophr Res, 2005, 72(2-3): 91-108.
    Molina V, Sanchez J, Reig S et al. N-acetyl-aspartate levels in the dorsolateral prefrontal cortex in the early years of schizophrenia are inversely related to disease duration. Schizophr Res, 2005, 73(2-3): 209-219.
    Molina V, Sanchez J, Sanz J, et al. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur Psychiatry, 2007,22(8): 505-512.
    Mukamel R, Gelbard H, Arieli A, et al. Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science, 2005, 309: 951-954.
    Murphy K, Birn RM, Handwerker DA, et al. The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? NeuroImage, 2009, 44(3): 893-905.
    Nagai M, Kishi K, Kato S. Insular cortex and neuropsychiatric disorders: a review of recent literature. Eur Psychiatry, 2007, 22: 387-394.
    Nakamura K, Kawashima R, Ito K, et al. Activation of the right inferior frontal cortex during assessment of facial emotion. J Neurophysiol, 1999, 82(3): 1610-1614.
    Nestor PG, Akdag SJ, O'Donnell BF, et al. Word recall in schizophrenia: a connectionist model. Am J Psychiatry, 1998, 155: 1685-1690.
    Newell KA, Deng C, Huang XF. Increased cannabinoid receptor density in the posterior cingulated cortex in schizophrenia. Exp Brain Res, 2006,172: 556-560.
    Newell KA, Katerina Z, Huang XF. Ionotropic glutamate receptor binding in the posterior cingulate cortex in schizophrenia patients. NeuroReport, 2005,16(12): 1363-1367.
    Northoff G, Richter A, Bermpohl F, et al. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI. Schizophr Res, 2005, 72: 235-248.
    Ogawa S, Lee TM, Ray AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci UAS, 1990, 87: 9868-9872.
    Okubo Y, Saijo T, Oda K. A review of MRI studies of progressive brain changes in schizophrenia. J Med Dent Sci, 2001,48: 61-67.
    Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry, 1995, 52(12): 998-1007.
    Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res, 1999, 33: 523-533.
    Onitsuka T, Shenton ME, Salisbury DF, et al. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry, 2004, 161: 1603-1611.
    Pantelis C, Velakoulis D, McGorry PD, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 2003; 361: 281-88.
    Paton JJ, Belova MA, Morrison SE, et al. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 2006, 439: 865-870.
    Peltier SJ, Noll DC. T* dependence of low frequency functional connectivity. NeuroImage, 2002,16: 985-992.
    Penn DL, Sanna LJ, Roberts DL. Social cognition in schizophrenia: an overview. Schizophr Bull, 2008, 34(3): 408-411.
    Perlstein WM, Dixit NK, Carter CS, et al. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry, 2003, 53(1): 25-38.
    Perry W, Heaton RK, Potterat E. Working memory in schizophrenia: transient "online" storage versus executive functioning. Schizophr Bull, 2001,27(1): 157-176.
    Potkin SG, Turner JA, Brown GG, et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull, 2009, 35(1): 19-31.
    Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci USA, 2001, 98: 676-682.
    Rusch N, Spoletini I, Wilke M, et al. Inferior frontal white matter volume and suicidality in schizophrenia. Psychiatry Res, 2008,164(3): 206-214.
    Sadock BJ, Sadock VA. Kaplan and Sadock's synopsis of psychiatry: behavioral sciences /clinical psychiatry. (10th edition). New York, Wolgters Kluwer and Lippincott Williams & Wilkins; 2007: 467-497.
    Schlosser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage, 2003,19(3):751-63.
    Schlosser R, Wagner G, Kohler S, et al. Schizophrenia as a disconnection syndrome. Studies with functional magnetic resonance imaging and structural equation modeling. Radiologe, 2005,45(2): 137-43.
    Schlosser RGM, Nenadic I, Wagner G, et al. White matter abnormalities and brain activation in schizophrenia: A combined DTI and fMRI study. Schizophr res, 2007, 89(1-3): 1-11
    Segall JM, Turner JA, van Erp TG, et al. Voxel-based Morphometric Multisite Collaborative Study on Schizophrenia. Schizophr Bull, 2009, 35: 82-95.
    Shenton ME, Dickey CC, Frumin M et al. A review of MRI findings in schizophrenia. Schizophr Res, 2001, 49: 1-52.
    Shenton ME, Kikinis R, Jolesz FA, et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med, 1992, 327(9): 604-612.
    Shergill SS, Brammer MJ, Williams SCR, et al. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry, 2000,57:1033-1038.
    Shimizu E, Hashimoto K, Ochi S, et al. Posterior cingulate gyrus metabolic changes in chronic schizophrenia with generalized cognitive deficits. J Psychiatr Res, 2007, 41(1-2): 49-56.
    Shulman GL, Fiez JA, Corbetta M, et al. Common blood flow changes across visual tasks: Ⅱ: decreases in cerebral cortex. J Cogn Neurosci, 1997, 9: 648-663.
    Sigmundsson T, Suckling J, Maier M, et al. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry, 2001,158: 234-243.
    Silbersweig DA, Stern E, Frith C, et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature, 1995,378: 176-179.
    Silver H, Feldman P, Bilker W, et al. Working Memory Deficit as a Core Neuropsychological Dysfunction in Schizophrenia. Am J Psychiatry, 2003, 160: 1809-1816.
    Sitskoorn MM, Aleman A, Ebisch SJH, et al. Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophr Res, 2004, 71: 285-295.
    Skudlarski P, Jagannathan K, Calhoun VD, et al. Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations. NeuroImage, 2008, 43: 554-561.
    Smith RC, Calderon M, Ravichandran GK, et al. Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Res, 1984,12(2): 137-147.
    Smith S, Niazy R, Beckmann C, et al. Resting state networks-neither low frequency nor anticorrelated? In: Poster presented at Human Brain Mapping Conference, June, Melbourne, Australia. 2008.
    Snitz BE, Macdonald IIIAW, Carter CS. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull, 2006, 32(1): 179-194
    Spalletta G, Tomaiuolo F, Marino V, et al. Chronic schizophrenia as a brain misconnection syndrome: a white matter voxel-based morphometry study. Schizophr Res, 2003, 64: 15-23.
    Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci, 2004, 27: 279-306.
    Steen RG, Mull C, McClure R, et al. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry. 2006.188: 510-518.
    Stein T, Moritz C, Quigley M, et al. Functional Connectivity in the Thalamus and Hippocampus Studied with Functional MR Imaging. Am J Neuroradiol, 2000, 21: 1397-1401.
    Surguladze SA, Calvert GA, Brammer MJ, et al. Audio-visual speech perception in schizophrenia: an fMRI study. Psychiatry Res Neuroimag, 2001,106: 1-14.
    Teasdale JD, Dritschel BH, Taylor MJ, et al. Stimulus-independent thought depends on central executive resources. Mem Cognit, 1995,23 (5): 551-559.
    Tek C, Gold J, Blaxton T, et al. Visual perceptual and working memory impairments in schizophrenia. Arch Gen Psychiatry, 2002, 59: 146-153.
    Tendolkar I, Weis S, Guddat O, et al. Evidence for a dysfunctional retrosplenial cortex in patients with schizophrenia: a functional magnetic resonance imaging study with a semantic-perceptual contrast. Neurosci Lett, 2004, 369 (1): 4-8
    Thompson PM, Schwartz C, Lin RT, et al. 3D statistical analysis of sulcal variability in the human brain. J Neurosci, 1996, 16: 4261-4274.
    Tian LX, Jiang TZ, Wang YF, et al. Altered resting state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett, 2006,400(1-2): 39-43.
    Trandafir A, Meary A, Schurhoff F, et al. Memory tests in first-degree adult relatives of schizophrenic patients: A meta-analysis. Schizophr Res, 2006, 81: 217-226.
    Tranel D, Damasio H, Damasio AR. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 1997,35: 1329-1339.
    Tsuang M. Schizophrenia: genes and environment. Biol Psychiatr, 2000, 47: 210-220.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage, 2002,15:273-289.
    Upadhyay J, Ducrosl M, Knaus TA. Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla. Cereb Cortex, 2007, 17(10): 2420-2432.
    van Beilen M, van Zomeren EH, van den Bosch RJ. Measuring the executive functions in schizophrenia: The voluntary allocation of effort. J Psychiatr Res, 2005, 39(6): 585-593.
    Villalobos ME, Mizuno A, Dahl BC, et al. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage, 2005, 25(3): 916-925.
    Vita A, De Peri L, Silenzi C, et al. Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res, 2006, 82(1): 75-88.
    Wang L, Zang YF, He Y, et al. Changes in hippocampal connectivity in the early stages of alzheimer's disease: evidence from resting state fMRI. Neuroimage, 2006, 31(2): 496-504.
    Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry, 1986,43(2): 114-124.
    Weinberger DR. Berman KF, Suddath R, et al. Evidence of dysfunction of a prefrontallimbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry, 1992,149: 890-897.
    Weinberger DR. From neuropathology to neurodevelopment Lancet, 1995, 346: 552-557.
    Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry, 1987,44: 660-669.
    Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA, 2009, 106(4): 1279-1284.
    Whitford TJ, Grieve SM, Farrow TF, et al. Volumetric white matter abnormalities in first-episode schizophrenia: a longitudinal, tensor-based morphometry study. Am J Psychiatry, 2007, 164: 1082-1089.
    Williams LM. Voxel-based morphometry in schizophrenia: implications for neurodevelopmental connectivity models, cognition and affect. Exp Rev Neurother, 2008, 8(7): 1049-1065.
    Williamson P. Are Anticorrelated Networks in the Brain Relevant to Schizophrenia? Schizophr Bull, 2007, 33 (4): 994-1003.
    Witthaus H, Brune M, Kaufmann C, et al. White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients. Schizophr Res, 2008,102:141-149.
    Wolf RC,Hose A,Frasch K,et al.Volumetric abnormalities associated with cognitive deficits in patients with schizophrenia.Eur Psychiatry,2008,23:541-548.
    Wolkin A,Choi SJ,Szilagyi S,et al.Inferior frontal white matter anisotropy and negative symptoms of schizophrenia:a diffusion tensor imaging study.Am J Psychiatry,2003,160(3):572-574.
    Wright IC,Ellison ZR,Sharma T,et al.Mapping of grey matter changes in schizophrenia.Schizophr Res,1999,35:1-14.
    Wright IC,Rabe-Hesketh S,Woodruff PW,et al.Meta-analysis of regional brain volumes in schizophrenia.Am J Psychiatry,2000,157(1):16-25.
    Xiong J,Parsons LM,Gao JH,et al.Interregional connectivity to primary motor cortex revealed using MRI resting state images.Hum Brain Mapp,1999,8:151-156.
    Zeki S,Shipp S.The functional logic of cortical connections.Nature,1998,335:311-317.
    Zhou Y,Liang M,Jiang TZ,et al.Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI.Neurosci Lett,2007a,417:297-302.
    Zhou Y,Liang M,Tian LX,et al.Functional disintegration in paranoid schizophrenia using resting-state fMRI.Schizophr Res,2007b,97:194-205.
    Zhou Y,Shu N,Liu Y,et al.Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia.Schizophr Res,2008,100(1-3):120-132.
    白云静,郑希耕,葛小佳,等.行为遗传学:从宏观到微观的生命研究.心理科学进展,2005,13(3):305-313.
    刘海洪,刘哲宁,郝以辉,等.精神分裂症功能磁共振成像研究近况.国际精神病学,2006,32(1):42-45.
    唐孝威.脑功能成像.合肥:中国科技大学出版社.1999,214-239.
    严卫丽,顾东风.复杂疾病关联研究的若干问题.遗传学报,2004,31(4):533-537.
    Ananth,H., Popescu,I., Critchley,H.D., Good,C.D., Frackowiak,R.S. and Dolan,R.J., 2002. Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. Am J Psychiatry. 159, 1497-1505.
    Antonova,E., Kumari,V., Morris,R., Halari,R., Anilkumar,A., Mehrotra,R. and Sharma,T., 2005. The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry. 58,457-467.
    Ashburner,J. and Friston,K., 2005. Unified segmentation. Neuroimage. 26, 839-851.
    Ashburner,J. and Friston,KJ., 2000. Voxel-based morphometry: the methods. Neuroimage. 11,805-821.
    Basser,P.J. and Pierpaoli,C., 1996. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 111, 209-219.
    Bonilha,L., Molnar,C., Horner,M.D., Anderson,B., Forster,L., George,M.S. and Nahas,Z., 2008. Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res. 101,142-151.
    Chua,S.E., Cheung,C, Cheung,V., Tsang,J.T., Chen,E.Y., Wong,J.C, Cheung,J.P., Yip,L., Tai,K.S., Suckling,J. and McAlonan,G.M., 2007. Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophr Res. 89, 12-21.
    Farrow,T.F., Whitford,T.J., Williams,L.M., Gomes,L. and Harris,A.W., 2005. Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biol Psychiatry. 58, 713-723.
    Friston,K.J., 1998. The disconnection hypothesis. Schizophr Res. 30,115-125.
    Frost,D.O., Tamminga,C.A., Medoff,D.R., Caviness,V, Innocenti,G. and Carpenter,W.T., 2004. Neuroplasticity and schizophrenia. Biol Psychiatry. 56, 540-543.
    Giuliani,N.R., Calhoun,V.D., Pearlson,G.D., Francis,A. and Buchanan,R.W., 2005. Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res. 74, 135-147.
    Glahn,D.C., Laird,A.R., Ellison-Wright,I., Thelen,S.M, Robinson,J.L., Lancaster,J.L., Bullmore,E. and Fox,P.T., 2008. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry. 64, 774-781.
    Good,CD., Johnsrude,IS. and Ashburner,J., 2001. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage. 14,21-36.
    Guo,Z.J., Yao,L. and Chen,K. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry. Madical Imaging 2006: Physiology, Function, and Structure from Medical Images . 2006. Manduca, Armando, amini, Amir A. Ref Type: Abstract
    Ha,T.H., Youn,T., Ha,K.S., Rho,K.S., Lee,J.M., Kim,I.Y., Kim,S.I. and Kwon,J.S., 2004. Gray matter abnormalities in paranoid schizophrenia and their clinical correlations. Psychiatry Res. 132, 251-260.
    Honea,R., Crow,T.J., Passingham,D. and Mackay,C.E., 2005. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 162,2233-2245.
    Honea,R.A., Meyer-Lindenberg,A., Hobbs,K.B., Pezawas,L., Mattay,V.S., Egan,M.F., Verchinski,B., Passingham,R.E., Weinberger,D.R. and Callicott,J.H., 2008. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol Psychiatry. 63,465-474.
    Hulshoff Pol,H.E., Schnack,H.G., Mandl,R.C., van Haren,N.E., Koning,H., Collins,D.L., Evans,A.C. and Kahn,R.S., 2001. Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry. 58,1118-1125.
    Hulshoff,P.H., Schnack,H.G, Mandl,R.C, Cahn,W., Collins,D.L., Evans,A.C. and Kahn,R.S., 2004. Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. Neuroimage. 21,27-35.
    Jayakumar,P.N., Venkatasubramanian,G, Gangadhar,B.N., Janakiramaiah,N. and Keshavan,M.S., 2005. Optimized voxel-based morphometry of gray matter volume in first-episode, antipsychotic-naive schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 29, 587-591.
    Jiang,H., van Zijl,P.C., Kim,J., Pearlson,G.D. and Mori,S., 2006. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed. 81,106-116.
    Job,D.E., Whalley,H.C., Johnstone,E.C. and Lawrie,S.M., 2005. Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage. 25, 1023-1030.
    Job,D.E., Whalley,H.C., McConnell,S., Glabus,M., Johnstone,E.C. and Lawrie,S.M., 2002. Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage. 17, 880-889.
    Kanaan,R.A., Kim,J.S., Kaufmann,W.E., Pearlson,G.D., Barker,G.J. and McGuire,P.K., 2005. Diffusion tensor imaging in schizophrenia. Biol Psychiatry. 58, 921-929.
    Kawasaki,Y., Suzuki,M., Kherif,F., Takahashi,T., Zhou,S.Y, Nakamura,K., Matsui,M., Sumiyoshi,T., Seto,H. and Kurachi,M., 2007. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage. 34,235-242.
    Kawasaki,Y., Suzuki,M., Nohara,S., Hagino,H., Takahashi,T., Matsui,M., Yamashita,I., Chitnis,X.A., McGuire,P.K., Seto,H. and Kurachi,M., 2004. Structural brain differences in patients with schizophrenia and schizotypal disorder demonstrated by voxel-based morphometry. Eur Arch Psychiatry Clin Neurosci. 254,406-414.
    Konradi,C. and Heckers,S., 2001. Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry. 50, 729-742.
    Koutsouleris,N., Gaser,C., Jager,M., Bottlender,R., Frodl,T., Holzinger,S., Schmitt,G.J., Zetzsche,T., Burgermeister,B., Scheuerecker,J., Born,C., Reiser,M., Moller,H.J. and Meisenzahl,E.M., 2008. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage. 39, 1600-1612.
    Kubicki,M., McCarley,R., Westin,C.F., Park,H.J., Maier,S., Kikinis,R., Jolesz,F.A. and Shenton,M.E., 2007. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 41, 15-30.
    Kubicki,M., Shenton,M.E., Salisbury,D.F., Hirayasu,Y., Kasai,K., Kikinis,R., Jolesz,F.A. and McCarley,R.W., 2002. Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage. 17, 1711-1719.
    Kyriakopoulos,M., Bargiotas,T., Barker,G.J. and Frangou,S., 2008. Diffusion tensor imaging in schizophrenia. Eur Psychiatry. 23, 255-273.
    Lewis,D.A. and Gonzalez-Burgos,G., 2008. Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology. 33, 141-165.
    Lui,S., Deng,W., Huang,X., Jiang,L., Ma,X., Chen,H., Zhang,T., Li,X., Li,D., Zou,L., Tang,H., Zhou,X.J., Mechelli,A., Collier,D.A., Sweeney,J.A., Li,T. and Gong,Q., 2008. Association of Cerebral Deficits With Clinical Symptoms in Antipsychotic-Naive First-Episode Schizophrenia: An Optimized Voxel-Based Morphometry and Resting State Functional Connectivity Study. Am J Psychiatry.
    Marcelis,M., Suckling,J., Woodruff,P, Hofman,R, Bullmore,E. and van,O.J., 2003. Searching for a structural endophenotype in psychosis using computational morphometry. Psychiatry Res. 122, 153-167.
    McCarley,R.W., Wible,C.G., Frumin,M., Hirayasu,Y., Levitt,J.J., Fischer,I.A. and Shenton,M.E., 1999. MRI anatomy of schizophrenia. Biol Psychiatry. 45, 1099-1119.
    Meda,S.A., Giuliani,N.R., Calhoun,V.D., Jagannathan,K., Schretlen,D.J., Pulver,A., Cascella,N., Keshavan,M., Kates,W., Buchanan,R., Sharma,T. and Pearlson,G.D., 2008. A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophr Res. 101, 95-105.
    Meisenzahl,E.M., Koutsouleris,N., Bottlender,R., Scheuerecker,J., Jager,M., Teipel,S J., Holzinger,S., Frodl,T., Preuss,U., Schmitt,G., Burgermeister,B., Reiser,M., Born,C. and Moller,H.J., 2008. Structural brain alterations at different stages of schizophrenia: A voxel-based morphometric study. Schizophr Res. 104,44-60.
    Moorhead,T.W., Job,D.E., Whalley,H.C., Sanderson,T.L., Johnstone,E.C. and Lawrie,S.M., 2004. Voxel-based morphometry of comorbid schizophrenia and learning disability: analyses in normalized and native spaces using parametric and nonparametric statistical methods. Neuroimage. 22, 188-202.
    Neckelmann,G., Specht,K., Lund,A., Ersland,L., Smievoll,A.I., Neckelmann,D. and Hugdahl,K., 2006. Mr morphometry analysis of grey matter volume reduction in schizophrenia: association with hallucinations. Int J Neurosci. 116, 9-23.
    Okubo,Y., Saijo,T. and Oda,K., 2001. A review of MRI studies of progressive brain changes in schizophrenia. J Med Dent Sci. 48, 61-67.
    Pagsberg,A.K., Baare,W.F., Raabjerg Christensen,A.M., Fagerlund,B., Hansen,M.B., Labianca,J., Krabbe,K., Aarkrog,T., Paulson,O.B. and Hemmingsen,R.R, 2007. Structural brain abnormalities in early onset first-episode psychosis. J Neural Transm. 114,489-498.
    Paillere-Martinot,M., Caclin,A., Artiges,E., Poline,J.B., Joliot,M., Mallet,L., Recasens,C, ttar-Levy,D. and Martinot,J.L., 2001. Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophr Res. 50, 19-26.
    Potvin,S., Mancini-Marie,A., Fahim,C, Mensour,B., Levesque,J., Karama,S., Beauregard,M., Rompre,P.P. and Stip,E., 2007. Increased striatal gray matter densities in patients with schizophrenia and substance use disorder: a voxel-based morphometry study. Psychiatry Res. 154,275-279.
    Salgado-Pineda,P., Baeza,L, Perez-Gomez,M., Vendrell,P., Junque,C., Bargallo,N. and Bernardo,M., 2003. Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. Neuroimage. 19,365-375.
    Salgado-Pineda,P., Junque,C., Vendrell,P., Baeza,I., Bargallo,N., Falcon,C. and Bernardo,M., 2004. Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage. 21, 840-847.
    Segall,J.M., Turner,J.A., van Erp,T.G., White,T., Bockholt,H.J., Gollub,R.L., Ho,B.C., Magnotta,V., Jung,R.E., McCarley,R.W., Schulz,S.C., Lauriello,J., Clark,V.P., Voyvodic,J.T., Diaz,M.T. and Calhoun,V.D., 2009. Voxel-based Morphometric Multisite Collaborative Study on Schizophrenia. Schizophr Bull. 35, 82-95.
    Shapleske,J., Rossell,S.L., Chitnis,X.A., Suckling,J., Simmons,A., Bullmore,E.T., Woodruff,P.W. and David,A.S., 2002. A computational morphometric MRI study of schizophrenia: effects of hallucinations. Cereb Cortex. 12,1331-1341.
    Shenton,M.E., Dickey,C.C., Frumin,M. and McCarley,R.W., 2001. A review of MRI findings in schizophrenia. Schizophr Res. 49,1-52.
    Sigmundsson,T., SucklingJ., Maier,M., Williams,S., Bullmore,E., Greenwood,K., Fukuda,R., Ron,M. and Toone,B., 2001. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry. 158, 234-243.
    Smith,R.C., Calderon,M. and Ravichandran,G.K., 1984. Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Res. 12, 137-147.
    Spalletta,G., Tomaiuolo,F., Marino,V., Bonaviri,G., Trequattrini,A. and Caltagirone,C., 2003. Chronic schizophrenia as a brain misconnection syndrome: a white matter voxel-based morphometry study. Schizophr Res. 64, 15-23.
    Stejskal,E.O. and Tanner,J.E., 1965. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 42, 288-292.
    Suzuki,M., Nohara,S., Hagino,H., Kurokawa,K., Yotsutsuji,T., Kawasaki,Y., Takahashi,T., Matsui,M., Watanabe,N., Seto,H. and Kurachi,M., 2002. Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophr Res. 55,41-54.
    Whitford,T.J., Farrow,T.F., Gomes,L., Brennan,J., Harris,A.W. and Williams,L.M., 2005. Grey matter deficits and symptom profile in first episode schizophrenia. Psychiatry Res. 139,229-238.
    Whitford,T.J., Grieve,S.M., Farrow,T.F., Gomes,L., Brennan,J., Harris,A.W., Gordon,E. and Williams,L.M., 2006. Progressive grey matter atrophy over the first 2-3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. Neuroimage. 32, 511-519.
    Whitford,T.J., Grieve,S.M., Farrow,T.F., Gomes,L., Brennan,J., Harris,A.W., Gordon,E. and Williams,L.M., 2007. Volumetric white matter abnormalities in first-episode schizophrenia: a longitudinal, tensor-based morphometry study. Am J Psychiatry. 164, 1082-1089.
    Wilke,M., Kaufmann,C., Grabner,A., Putz,B., Wetter,T.C. and Auer,D.P., 2001. Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. Neuroimage. 13, 814-824.
    Witthaus,H., Brune,M., Kaufmann,C., Bohner,G., Ozgurdal,S., Gudlowski,Y., Heinz,A., Klingebiel,R. and Juckel,G., 2008. White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients. Schizophr Res. 102,141-149.
    Wolf,R.C., Hose,A., Frasch,K., Walter,H. and Vasic,N., 2008. Volumetric abnormalities associated with cognitive deficits in patients with schizophrenia. Eur Psychiatry. 23,541-548.
    Wright,I.C., Ellison,Z.R., Sharma,T., Friston,K.J., Murray,R.M. and McGuire,P.K., 1999. Mapping of grey matter changes in schizophrenia. Schizophr Res. 35,1-14.
    Yamada,M., Hirao,K., Namiki,C, Hanakawa,T., Fukuyama,H., Hayashi,T. and Murai,T., 2007. Social cognition and frontal lobe pathology in schizophrenia: a voxel-based morphometric study. Neuroimage. 35,292-298.
    Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage, 2000,11: 805-821.
    Barlett E, Mikulis DJ. Chasing "chasing the dragon" with MRI: leukoencephalopathy in drug abuse. Br J Radiol, 2005, 78(935): 997-1004.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson, 1996,111(3): 209-219
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed, 2002, 15(7-8): 435-55.
    Chen CY, Lee KW, Lee CC, et al. Heroin-induced spongiform leukoencephalopathy: value of diffusion MR imaging. J Comput Assist Tomogr, 2000, 24(5): 735-737.
    Chung A, Lyoo IK, Kim SJ, et al. Decreased frontal white-matter integrity in abstinent methamphetamine abusers. Int J Neuropsychopharmacol, 2007; 10(6): 765-75.
    Delisi LE, Bertisch HC, Szulc KU, et al. A preliminary DTI study showing no brain structural change associated with adolescent cannabis use. Harm Reduct J, 2006, 3: 17.
    Dong Q, Welsh RC, Chenevert TL, et al. Clinical applications of diffusion tensor imaging. J Magn Reson Imaging, 2004, 19(1): 6-18.
    First M, Spitzer R, Gibbon M, et al. Structured Clinical Interview for DSM-Ⅳ Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0). New York, Biometrics Research Department, New York State Psychiatric Institute. 1996.
    Giuliani NR, CalhounVD, Pearlson GD, et al. Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res ,2005, 74(2-3): 135-147.
    Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry, 2002,159: 1642-1652.
    Gruber SA, Yurgelun-Todd DA. Neuroimaging of marijuana smokers during inhibitory processing: a pilot investigation. Brain Res Cogn Brain Res, 2005, 23(1): 107-118.
    Hagel J, Andrews G, Vertinsky T, et al. "Chasing the dragon"-imaging of heroin inhalation leukoencephalopathy. Can Assoc Radiol J, 2005, 56(4): 199-203.
    Hao Y, Liu Z, Jiang T, et al. White matter integrity of the whole brain is disrupted in first-episode schizophrenia. Neuroreport, 2006,17(1): 23-26.
    Haselhorst R, Dursteler-MacFarland KM, Scheffler K, et al. Frontocortical N-acetylaspartate reduction associated with long-term i.v. heroin use. Neurology, 2002, 58(2): 305-307.
    Hill MD, Cooper PW, Perry JR. Chasing the dragon-neurological toxicity associated with inhalation of heroin vapour: case report. CMAJ, 2000,162(2): 236-238.
    Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci, 2001,2(10): 695-703.
    Jacobsen LK, Picciotto MR, Heath CJ, et al. Prenatal and Adolescent Exposure to Tobacco Smoke Modulates the Development of White Matter Microstructure. J Neurosci, 2007,27(49): 13491-13498.
    Jiang H, van Zijl PCM, Kim J, et al. DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed, 2006, 81(2): 106-116.
    Keogh CF, Andrews GT, Spacey SD, et al. Neuroimaging features of heroin inhalation toxicity: "chasing the dragon". AJR Am J Roentgenol, 2003,180(3): 847-850.
    Kriegstein AR, Shungu DC, Millar WS, et al. Leukoencephalopathy and raised brain lactate from heroin vapor inhalation ("chasing the dragon"). Neurology, 1999, 53(8): 1765-1773.
    Kubicki M, McCarley R, Westin CF, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res, 2007,41(1-2): 15-30.
    Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001,13(4): 534-546.
    Lim KO, Choi SJ, Pomara N, et al. Reduced frontal white matter integrity in cocaine dependence: a controlled diffusion tensor imaging study. Biol Psychiatry, 2002, 51(11): 890-895.
    Ma N, Li L, Shu N, et al. White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder. Am J Psychiatry, 2007, 164: 823-826.
    Moeller FG, Hasan KM, Steinberg JL, et al. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacol, 2005, 30(3): 610-617.
    Offiah C, Hall E. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy. Clin Radiol, 2008, 63(2):146-152.
    Paul RH, Grieve SM, Niaura R, et al. Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults: A diffusion tensor imaging study. Nicotine Tob Res, 2008,10(1): 137-147.
    Pezawas L, Fischer G, Podreka I, et al. Opioid addiction changes cerebral blood flow symmetry. Neuropsychobiology, 2002,45(2): 67-73.
    Pfefferbaum A, Adalsteinsson E, Sullivan EV. Dysmorphology and microstructural degradation of the corpus callosum: Interaction of age and alcoholism. Neurobiol Aging, 2006b, 27(7): 994-1009.
    Pfefferbaum A, Adalsteinsson E, Sullivan EV. Supratentorial profile of white matter microstructural integrity in recovering alcoholic men and women. Biol Psychiatry, 2006a, 59(4): 364-372.
    Pfefferbaum A, Sullivan EV, Hedehus M, et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med, 2000,44(2): 259-268.
    Pfefferbaum A, Sullivan EV, Hedehus M, et al. In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcohol Clin Exp Res, 2000,24(8): 1214-1221.
    Pfefferbaum A, Sullivan EV. Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magn Reson Med, 2003, 49(5): 953-961.
    Pfefferbaum A, Sullivan EV. Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage, 2002,15(3): 708-718.
    Salat DH, Tuch DS, Greve DN, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging, 2005, 26(8): 1215-1227.
    Schulte T, Sullivan EV, Muller-Oehring EM, et al. Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cereb Cortex, 2005,15(9): 1384-1392.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys, 1965,42(1): 288-292.
    Talor WD, Hsu E, Krishnan KR, et al. Diffusion tensor imaging: background, potential, and utility in psychiatric research. Biol Psychiatry, 2004, 55(3): 201-207.
    Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest, 2003,111(10): 1444-1451.
    Wolters EC, van Wijngaarden GK, Stam FC, et al. Leucoencephalopathy after inhaling "heroin" pyrolysate. Lancet, 1982,2(8310): 1233-1237.
    Barlett E, Mikulis DJ. Chasing "chasing the dragon" with MRI: leukoencephalopathy in drug abuse. Br J Radiol, 2005, 78(935): 997-1004.
    Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci, 2005, 8: 1458-1463.
    Brody AL, Mandelkern MA, Jarvik ME, et al. Differences between Smokers and Nonsmokers in Regional Gray Matter Volumes and Densities. Biol Psychiatry, 2004, 55: 77-84.
    Chanraud S, Martelli C, Delain F, et al. Brain Morphometry and Cognitive Performance in Detoxified Alcohol-Dependents with Preserved Psychosocial Functioning. Neuropsychopharmacology, 2007, 32: 429-438
    Danos P, Roos DV, Kasper S, et al. Enlarged Cerebrospinal Fluid Spaces in Opiate-Dependent Male Patients: A Stereological CT Study. Neuropsychobiology, 1998,38:80-83.
    Fein G, Di Sclafani V, Cardenas VA, et al. Cortical gray matter loss in treatment-naive alcohol dependent individuals. Alcohol Clin Exp Res, 2002b, 26: 558-564.
    Fein G, Landman B, Tran H, et al. Brain atrophy in long-term abstinent alcoholics who demonstrate impairment on a simulated gambling task. Neurolmage, 2006, 32(3): 1465-1471.
    Fein G, Sclafanivd, Meyerhoff DJ. Prefrontal cortical volume reduction associated with frontal cortex function deficit in 6-week abstinent crack-cocaine dependent men. Drug Alcohol Depend, 2002a, 68: 87-93.
    First M, Spitzer R, Gibbon M, et al. Structured Clinical Interview for DSM-Ⅳ Axis I Disorders-Patient Edition (SCID-I/P, Version 2.0). New York, Biometrics Research Department, New York State Psychiatric Institute. 1996.
    Giuliani NR, Calhoun VD, Pearlson GD, et al. Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res, 2005, 74(2-3): 135-147.
    Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry, 2002, 159: 1642-1652.
    Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neurolmage, 2001, 14: 21-36.
    Hagel J, Andrews G, Vertinsky T, et al. "Chasing the dragon"-imaging of heroin inhalation leukoencephalopathy. Can Assoc Radiol J, 2005, 56(4): 199-203.
    Hill MD, Cooper PW, Perry JR. Chasing the dragon-neurological toxicity associated with inhalation of heroin vapour: case report. CMAJ, 2000,162(2): 236-238.
    Hyman SE. Addiction: A Disease of Learning and Memory. Am J Psychiatry, 2005, 162: 1414-1422.
    Jernigan TL, Butters N, DiTraglia G, et al. Reduced cerebral grey matter observed in alcoholics using magnetic resonance imaging. Alcohol Clin Exp Res, 1991,15: 418-427.
    Keogh CF, Andrews GT, Spacey SD, et al. Neuroimaging features of heroin inhalation toxicity: "chasing the dragon". Am J Roentgenol, 2003, 180(3): 847-850.
    Koechlin E, Ody C, Kouneiher F. The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science, 2003, 302(5648): 1181-1185.
    Liu HH, Li L, Hao YH, et al. Disrupted white matter integrity in heroin dependence: A controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse, 2008, 34(5): 562-575.
    Liu X, Matochik JA, Cadet JL, et al. Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacology, 1998,18: 243-252.
    Lyoo IK, Pollack MH, Silveri MM, et al. Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology, 2006,184: 139-144.
    Lyoo IK, Streeter CC, Ahn KH, et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res, 2004,131:135-145.
    MacDonald AW, Cohen JD, Stenger VA, et al. Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 2000, 288 (5472): 1835-1838.
    Martin M, Hurley RA, Taber KH. Is Opiate Addiction Associated With Longstanding Neurobiological Changes. J Neuropsychiatry Clin Neurosci, 2007,19(3): 242-248.
    Matsumoto K, Suzuki W, Tanaka K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 2003, 301: 229-232
    Miller EK, Cohen JD: An integrative theory of prefrontal cortex function. Annu Rev Neurosci, 2001,24:167-202.
    Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci, 2008, 9(11): 856-869.
    Nestler EJ. Under Siege: The Brain on Opiates. Neuron, 1996,16: 897-900.
    Offiah C, Hall E. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy. Clin Radiol, 2008, 63(2): 146-152.
    Pezawas LM, Fischer G, Diamant K, et al. Cerebral CT findings in male opioid-dependent patients: stereological, planimetric and linear measurements. Psychiatry Res, 1998, 83:,139-147.
    Pfefferbaum A, Sullivan EV, Mathalon DH, et al. Frontal Lobe Volume Loss Observed with Magnetic Resonance Imaging in Older Chronic Alcoholics. Alcohol Clin Exp Res, 1997,521-529.
    Quik M. Smoking, nicotine and Parkinson's disease. Trends Neurosci, 2004, 27: 561-568.42.
    Reid AG, Daglish MRC, Kempton MJ, et al. Reduced thalamic grey matter volume in opioid dependence is influenced by degree of alcohol use: a voxel-based morphometry study. J Psychopharmacol, 2008, 22 (1): 7-10.
    Ridderinkhof KR, van den Wildenberg WPM, Segalowitz SJ, et al. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn, 2004, 56(2): 129-140.
    Sim ME, Lyoo IK, Streeter CC, et al. Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology, 2007, 32: 2229-2237.
    Tanabe J, Tregellas JR, Dalwani M, et al. Medial Orbitofrontal Cortex Gray Matter Is Reduced in Abstinent Substance-Dependent Individuals. Biol Psychiatry, 2009, 65(2): 160-164.
    Thompson PM, Hayashi KM, Simon SL, et al. Structural Abnormalities in the Brains of Human Subjects Who Use Methamphetamine. J Neurosci, 2004,24(26): 6028-6036.
    Tregellas JR, Shatti S, Tanabe JL, et al. Gray matter volume differences and the effects of smoking on gray matter in schizophrenia. Schizophr Res, 2007, 97: 242-249.
    Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest, 2003,111(10): 1444-1451.
    Williams J, Christie MJ, Manzoni O. Cellular and Synaptic Adaptations Mediating Opioid Dependence. Physiological Reviews, 2001, 81(1): 299-343.
    Wolf SL, Mikhael MA. Computerized transaxial tomographic and neuropsychol evaluations in chronic alcoholics and heroin abusers. Am J Psychiatry, 1979, 136(4B): 598-602.
    Wolters EC, van Wijngaarden GK, Stam FC, et al. Leucoencephalopathy after inhaling "heroin" pyrolysate. Lancet, 1982, 2(8310):1233-1237.
    Yeh PH, Gazdzinski S, Durazzo TC, et al. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety. Drug Alcohol Depend, 2007, 91: 195-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700