用户名: 密码: 验证码:
燃煤锅炉卫燃带耐火材料结渣机理与结渣程度的模糊评判
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国燃煤锅炉的用煤通常灰分高、热值和挥发分低。为提高煤的着火、稳燃和燃烬能力,燃煤锅炉广泛采用了卫燃带技术,但却出现了严重的结渣问题。卫燃带的结渣会改变炉内燃烧空气动力工况及炉膛出口烟温,进而改变锅内汽水换热工况。这会影响锅炉稳定运行,甚至酿成锅炉安全事故。为减轻和避免卫燃带结渣,就必须在充分研究煤灰在卫燃带耐火材料上的沉积结渣机理的基础上,对煤灰在卫燃带耐火材料上的结渣程度进行合理评判。这对于合理选用和设计锅炉卫燃带耐火材料、调整和改善煤燃烧,确保燃煤锅炉安全有效地运行具有重要的现实意义。
     本文依托国家自科基金项目——熔融煤灰在耐火材料上的沉积机理与行为[50576005],首先通过高温muffle炉中熔融煤灰对卫燃带耐火材料板上的静态侵蚀实验,从微观上分析了熔融煤灰在耐火板结渣侵蚀时的化学反应机理、渣/板成分在耐火板表面上的扩散偏析机理;其次考虑到煤粉火炬燃烧行程各处燃烧状况的影响,通过煤粉火炬中耐火板上煤灰沉积结渣的模拟实验,研究分析了不同燃烧行程处耐火板上灰渣沉积扩散机理;最后结合我国应用普遍的四角切圆燃烧锅炉的卫燃带结渣严重的现状,于石门电厂进行了历时8个月的卫燃带耐火材料煤灰结渣试验,更加系统全面地研究了煤灰在耐火材料上的结渣机理。
     侵蚀实验研究结果表明:渣/板成分的选择性扩散偏析有利于粘结界面处灰渣的成核结晶,有利于降低煤灰对耐火板的粘结作用。氧化性气氛条件下,煤灰中碱性成分在高铝质耐火板中更容易扩散侵蚀,在1350℃~1500℃的炉内温度范围内,煤灰的碱酸比由0.053增加到0.174时,煤灰对高铝质耐火材料的侵蚀速度增加了0.09μm/(℃.h)。
     煤粉火炬各处灰渣沉积扩散和微观物相转化的研究表明:碱性成分有利于氧化铝质耐火板上的灰渣成核结晶,对SiC质耐火板上的熔融灰渣的成核结晶作用不明显,但沉积效应明显。Al_2O_3对碳化硅质卫燃带上熔融煤灰冷却过程的成核结晶起到显著促进作用。
     电厂锅炉内SiC质卫燃带沉积结渣渣样的微观分析研究表明:SiC质耐火板没有明显的侵蚀层,而且沉积在其表面的灰渣主要成分为各种碱性氧化物所转化的复杂结晶物;并且渣/板粘结界面存在扩散偏析现象。这也验证了结渣机理分析的合理性。
     实验结果也表明:粘结界面处灰渣的结晶度对渣/板之间的粘结程度密切相关。渣/板粘结处渣样的结晶度越大,渣板之间的粘结程度越小。一般而言,渣板粘结处灰渣结晶度小于30%时将发生严重结渣,而当大于70%后结渣较为轻微。氧化铝质耐火材料制作的卫燃带更适合应用于燃用灰分中碱性金属氧化物含量较高煤种的锅炉,而SiC质耐火材料卫燃带则适合应用于燃煤锅炉燃烧温度较低,还原性气氛较强的初始燃烧段。
     本文最后从煤灰在耐火板上的结渣粘结机理出发,结合渣/板粘结处灰渣的结晶度指标对熔融煤灰在耐火板上的结渣程度进行模糊聚类评判,全面地反映了熔融煤灰在耐火板材料上的结渣程度,并能够对这一结渣过程给予准确的数值描述,避免了结渣程度评判的片面性。
The ash content of coal for our country coal-fired boilers commonly is high and low with heat value and volatility. In order to improve the ignition , stable combustion and burning-out ability of inferior coal, the coal-fired boiler has widely adopt fire-resistant liner, while, the slagging problem of molten coal ash on the fire-resistant liner appears, which can change the combustion aerodynamic status in the furnace and the flue gas temperature at hearth export, then change heat transfer of vapour and water of boilers. It affects stable operation of boiler, leads to the sfe accident of boiler even. Be to lighten and avoid slagging on the fire-resistant liner, it is necessary to fully study molten ash deposition and slagging mechanism with refractory material and follow to make reasonably judgment for slagging extent. There has an important practical significance to rationally choice and design refractory material of liner, adjust and improve coal combustion and ensure safely and effective operation of coal-fired boilers.
     This dissertation relies on the project of molten coal ash sediment mechanism and action on refractory material supported by the national natural science foundation, firstly through static erosion experiments of molten coal ash on the refractory material board in high temperature muffle analyzed the molten coal ash chemical reaction mechanism on the surface of refractory board, the diffusion and segregation mechanism of element compositions of coal ash and refractory board during eroding and slagging by microscopic methods. Secondly considering the influence of combustion status to slag during coal-pulverized torch burning, coal-pulverized torch simulation experiments in nozzles horizontal furnace were carried out, analyzed diffusion mechanism of sediment coal ash on refractory boards in different places of coal-pulverized torch. Lastly according to the serious slagging situation on fire-resistant liner in the furnace of tangential pulverized coal-fired boiler which have been widely applied in our country, the slagging test in Shimen power plant was carried out for eight months, it is more systematical and comprehensive to study the molten caol ash slagging mechanism on the refractory materials.
     The results of study about static erosion experiments indicate that selective segregation of element compositions is in favor of nucleation and crystallization for coal ash situated in the interface of coal ash and refractory board, and weakening the conglutination between coal ash and refractory board. Under oxidative atmosphere basic components of coal ash diffuses and erodes more easily in high aluminium fire-resistant board, the erosion velocity has increased by 0.09μm/(℃.h) within the temperature range of 1350℃-1500℃in the furnace with the ratio of basic components to acid components in coal ash increasing to 0.174 from 0.053.
     The results of study about ash slag sediment, components diffusion and micro-phases transformation in coal-pulverized torch show that basic components are propitious to nucleation and crystallization for alumina refractory board but SiC, and easily aggrade on the surface of SiC refractory board. Alumina in coal is propitious to nucleation and crystallization for SiC refractory material.
     The results of microcosmic analysis for sediment slag samples on the fire-resistant liner of boiler in power plant show that there is not obvious erosion to SiC refractory board and the main phases of sedimentary slag layer are all kinds of complex crystal transformed by basic components, and exists selective segregation of element compositions on the interface of ash slag and SiC refractory board. This meeting validates the rationality of the analysis about the slagging mechanism too.
     The results of experiment study show too that the conglutination extent between molten coal ash and refractory board has consanguineous relation to the crystallinity of ash slag on the interface of ash slag and refractory board. The conglutination extent will weaken if the crystallinity increases. Generally when the crystallinity is less than 30% , the serious slagging will occur, after more than 70% and slagging slightly. Alumina fire-resistant liner adapts to the boiler combusting the coal with more basic components content of it's ash, and SiC fire-resistant liner adapts to the initial burning section with low combustion temperature and strong reducing atmosphere of the coal-fired boiler.
     At last, based on the molten coal ash slagging mechanism on refractory board, combining the crystallinity of coal ash slag on the interface of ash slag and refractory board, the slagging content on the fire-resistant material can be judged by fuzzy mathematics. It can comprehensively reflect the molten coal ash slagging content on the fire-resistant, and can give an accurate mathematic describe, avoid the illegibility of judge of slagging extent.
引文
[1]华东六省一市电机工程(电力)学会 编.锅炉设备及其系统[M].北京:中国电力出版社,2001,1.
    [2]Stamatelopoulds.G N.Advancement in CFB technology:A combination of excellent environmental performance and high effficiency[A].Proceedings of FBC 2005,18~(th) International Conference on FBC,May 22-29,2005,Toronto,Canada.
    [3]H.R.Rezaei,R.P.Gupta,G.W.Bryant,J.T.Hart,G.S.Li.Thermal conductivity of coal ash and slags and models used[J].Fuel,2000,79(9):1697-1710.
    [4]陈吟颖,阎维平,石惠芳.330MW燃煤机组锅炉炉膛结渣性能的研究[J].中国电机工程学报,2005,25(11):79-84.
    [5]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理和计算[M].北京:科学出版社,1994,6.
    [6]于宏,于德庆,刘永江.电站燃煤锅炉防止炉膛结渣的探讨[J].锅炉制造,2000,(2):25-27.
    [7]Jon Wells,Gerry Riley,Jim Williamson.Interactions between coal-ash and burner quads.Part 1:Characteristics of burner refractories and deposits taken from utility boilers[J].Fuel,2003,82(10):1859-1865.
    [8]Jon Wells,Gerry Riley,Jim Williamson.Interactions between coal-ash and burner quarls.Part 2:resistance of different refractory materials to slag attack in a combustion test facility[J].Fuel,2003,82:1867-1873.
    [9]陈冬林,鄢晓忠,夏候国伟,刘亮.燃煤锅炉可调卫燃带的设计与试验研究[J].中国电机工程学报,2001,21(7):25-27.
    [10]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2006,8.
    [11]蔡磊.从实践中认识神华煤灰熔融性与结渣的关系[J].煤质技术,2005,(5):57-58.
    [12]L.Zhang,L.N.Zhang,M.Y.Wang,et al.Precipitation selectivity of perovskite phase from Ti-bearingblast furnace slag under dynamic oxidation conditions[J].Journal of Non-Crystalline Solids,2007,35(3),2214-2220.
    [13]徐祖耀著.相变原理[M].北京:科学出版社,1988,7.
    [14]A Rushdi,A Sharma,R Gupta.An experimental study of the effect of coal blending on ash deposition[J].Fuel,2004,83:495-506.
    [15]马淑芬,赵宗林,白旭东.锅炉还原性气氛结渣特性试验研究[J].东北电力技术,2005,(11):7-11.
    [16]王泉海,邱建荣,李帆,等.混煤燃烧过程中矿物质的形态变化及相变[J].化工学报,2000,51(6):840-843.
    [17]T.F.Wall et al.Mineral matter in coal and thermal performance of large boilers [J].Prog.Energy combust.Sci.,2000,15(1):1-29.
    [18]Ana Zbogar,Flemming J.Frandsen,Peter Arendt Jensen,et al.Heat transfer in ash deposits:A modelling tool-box[J].Progress in Energy and Combustion Science,2005,31(2):371-421.
    [19]李彦林.煤粉锅炉结渣的研究现状及进展[J].电力安全技术,2000,2(2):8-13.
    [20]李永兴,陈春元.动力用煤结渣特性综合判别指数的研究[J].热力发电,1994,(3):36-39.
    [21]王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,20(2):32-36.
    [22]饶甦,曹欣玉,兰泽全,等.黑液水煤浆结渣特性灰色聚类分析预测及试验研究[J].电站系统工程,2004,20(2):14-16.
    [23]S Cierpisz,A Heyduk.A simulation study of coal blending control using a fuzzy logic ash monitor[J].Control Engineering PracticeControl Engineering Practice,2002,10(2):449-456.
    [24]Yongjuan Zhang,Xiong Zhang.Grey correlation analysis between strength of slag cement and particle fractions of slag powder[J].Cement & Concrete Composites,2007,29(3):498-504.
    [25]Jan W.Nowok,John P.Hurley,Steven A.Benson.The role of physical factors in mass transport during sintering of coal ashes and deposit deformation near the temperature of glass transformation[J].Fuel Processing Technology,1998,56(1):89-101.
    [26]Lawrence E,Bool Ⅲ,Thomas W Peterson,et al.Partition of iron during the combustion of pulverized coal[J].Combustion and flame,1995,100(2):262-310.
    [27]陈志国,华永明,盛昌栋.硫铁矿在炉内结渣中所起作用的数值研究[J].锅炉技术,1999,30(12):9-12.
    [28]盛昌栋,张军,徐益谦.煤中含铁矿物在煤粉燃烧过程中行为的研究进展 [J].煤炭转化,1998,21(3):14-18.
    [29]熊友辉,孙学信.灰渣沉积物强度与其高温流变特性的关系[J].华中理工大学学报,2000,28(10):102-144.
    [30]竹蕾,卢升高,何黎平.火电厂粉煤灰的矿物学、形态与物理性质[J].科技通报,2004,20(4):359-362.
    [31]Nowok,Jan W.,Hurley,et al.Local structure ofa lignitic coal ash slag and its effect on viscosity[J].Energy & Fuels,1993,7(6):1135-1140.
    [32]Malee Tangsathitkulchai,Leonard G.Austin.Studies of sintering of coal ash relevant to pulverised coal utility boilers:2.Preliminary studies of compressive strengths of fly ash sinters[J].Fuel,1985,64(1):86-92.
    [33]Wang Huafeng,West Janice,Harb John N.Microanalytical characterization of slagging deposits from a pilot-scale Wang combustor[J].Energy & Fuels,1999,13(03):570-578.
    [34]Veranth J M,Fletcher T H,Pershing,D W,et al.Measurement of soot and char in pulverized coal fly ash[J].Fuel,2000,79(8):1067-1075.
    [35]Seggiani M,Bardi A,Vitolo S.Prediction of fly-ash size distribution:a correlation between the char transition radius and coal properties[J].Fuel,2000,79(8):999-1002.
    [36]Zheng Shiqin,Liu Shuyan;Huang,Hongbin,et al.Researching the agglomeration of coal fly-ash particles using theory of fractal geometry[J].Journal of Combustion Science and Technology,1999,5(2):168-174.
    [37]Alekhnovich A N,Gladkov V E,Bogomolov V V.Slagging forecasting of the chemical composition of fly ash particle[J].Teploenergetika,1995,8(1):23-28.
    [38]J.Agnew,E.Hampartsoumian,J.M.Jones,et al.The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere[J].Fuel,2000,79(9):1515-1523.
    [39]T lind,E I Kauppinen,S Srinivasachar,et al.Submicron agglomerate particle formation on laboratory and full-scal pulverized coal combustion[J].J.Aerosol Sci.,1996,27(1):361-362.
    [40]唐建成,赵振宁.410t/h燃煤锅炉水冷壁结渣原因探讨及其解决[J].华北电力技术,2005,(1):27-30.
    [41]薛国琪.W型火焰锅炉燃烧带与结渣的关系[J].河北电力技术,2004,23(4):52-54.
    [42]刘建国.石门电厂1021T/H锅炉敷设卫燃带探析[J].电力设备,2003,4(5):43-45.
    [43]陈济榕,高峰.大型亚临界无烟煤电站锅炉的开发设计[J].热能动力工程,1999,14(6):443-446.
    [44]任国斌等.Al_2O_3-SiO_2系实用耐火材料[M].北京:冶金工业出版社,1996.
    [45]蒋明学.含Al_2O_3、CaF2炉外精炼渣对镁白云石质耐火材料的侵蚀[J].耐火材料,1992,(1):23-27.
    [46]张芸,盛开勋,陈俊宏.Al_2O_3-SiC-C砖基质组成对抗渣性影响[J].鞍山钢铁学院学报,1998,21(3):5-7.
    [47]徐明厚,袁建伟,丁士发,等.1025t/h锅炉烟温、汽温偏差的差值模拟[J].中国电机工程学报,1996,16(4):266-270.
    [48]Xu Minghou,Azevedo J L T,Carvalho M G.Modeling of a Front Wall Fired Utility Boiler for Different Operating Conditions[J].Comput Methods Appl Mech Energ,2001,190(4):3581-3590.
    [49]陈冬林.准恒温燃烧的理论与试验研究[D].武汉:华中科技大学,2003.
    [50]陈冬林.烟温、卫燃带对炉内燃烧过程影响的数值模拟研究[J].长沙理工大学学报(自然科学版),2004,1(1):65-70.
    [51]Azevedo J L T,Carvalho M G.Proceedings of the Second International Conference on CombustionTechnologies for a Clean Environment[M].Lisbon:Portugal,1993,10.
    [52]陈冬林,刘亮,郑楚光.可调卫燃带对燃煤锅炉热力特性的影响[J].华北电力大学学报,2002,29(2):54-58.
    [53]G.P.Huffman,F.E.Huggins,G.R.Dunmy.Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmo-spher[J].Fuel,1991,70(3):585-597.
    [54]钱觉时,吴传明,王智.粉煤灰的矿物组成(中)[J].粉煤灰综合利用,2001,(2):37-41.
    [55]钱觉时,吴传明,王智.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001,(4):24-28.
    [56]Huggins F E,Kosmack D A,Huffman G P·Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J].Fuel,1991,70(3):577-584.
    [57]T.F.Wall,Mineral matter in coal and thermal performance of large boilers[J].Prog.Energy combust.Sci.,2002,5(1):1-29.
    [58]李帆,邱建荣,郑瑛,等.煤燃烧过程矿物质行为研究[J].工程热物理学报,1999,20(2):258-260.
    [59]B.M.Steenari,O.Lindqvist,V.Langer.Ash sintering and deposit formation in PFBC[J].Fuel,1998,77(2):407-417.
    [60]Ch.Gon,S.HelleX.Garcia et al.Coal blend combustion:fusibility ranking from mineral matter composition[J].Fuel,2003,82:2087-2095.
    [61]姚多喜,支霞臣,郑宝山.煤中矿物质在燃烧过程中的演化特征[J].中国煤田地质,2003,15(2):10-11.
    [62]Shuntaro Koyama,Tadaoki Morimoto,Akio Ueda,et al.A microscopic study of ash deposits in a two-stage entrained-bed coal gasifier[J].Fuel,1996,75(4):459-465.
    [63]Nigel V.Russel,Fraser Wigley,Jim Williamson.The roles of lime and iron oxide on the formation of ash and deposits in PF combustion[J].Fuel,2002,81(5):673-681.
    [64]D.Manara,A.Grandjean,O.Pinet,et al.Sulfur behavior in silicate glasses and melts:Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V_2O_5 content[J].Journal of Non-Crystalline Solids,2007,353(1):12-27.
    [65]H.Liu,S.Katagiri,U.Kaneko,et al.Sulfation behavior of limestone under high CO_2 concentration in O_2/CO_2 coal combustion[J].Fuel,2000,79(08):945-953.
    [66]Vasilije Manovic,Borislav Grubor,Davor Loncarevic.Modeling of inherent SO_2 capture in coal particles duringcombustion in fluidized bed[J].Chemical Engineering Science,2006,61(9):1676-1685.
    [67]G.Skodras,S.P.Kaldis,G.P.Sakellaropoulos,et al.Simulation of a molten bath gasifier by using a CFD code[J].Fuel,2003,82(12):2033-2044.
    [68]Wm.James Frederick Jr.,Alisa Lingb,Honghi N.Tran,Steven J.Lien.Mechanisms of sintering of alkali metal salt aerosol deposits in recovery boilers[J].Fuel,2004,(10):1659-1664.
    [69]Mischa Theis,Bengt-Johan Skrifvars,Maria Zevenhoven,et al.Fouling tendency of ash resulting from burning mixtures of biofuels.Part 2:Deposit chemistry[J].Fuel,2006,85(12):1992-2001.
    [70]Monica Dapiaggi,Gilberto Artioli,Carlo Righi,et al.High temperature reactions in mold flux slags:Kinetic versus composition control[J].Journal of Non-Crystalline Solids,2007,353(12):2852-2860.
    [71]钱觉时,吴传明,王智.粉煤灰的矿物组成(上)[J].粉煤灰综合利用,2001,(1):26-31.
    [72]DAI Ling-jiang,CAI Shao-hong.Princple of generalize phase transition and its critical theory[J].Journal of Guizhou University(Natural Science),1999,16(1):182-192.
    [73]A.Helalizadeh,H.M(u|¨)ller Steinhagen,M.Jamialahmadi.Mixed salt crystallisation fouling[J].Chemical Engineering and Processing,2000,39(1):29-43.
    [74]Elena Yazhenskikh,Klaus Hack,Michael Muller.Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2:Alkali oxide-alumina systems[J].Computer Coupling of Phase Diagrams and Thermochemistry,2006,30(2):397-404.
    [75]Elena Yazhenskikh,Klaus Hack,Michael Muller.Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 3 3:Silica-alumina system[J].Computer Coupling of Phase Diagrams and Thermochemistry,2007,31(3):510-520.
    [76]冯小平,何峰,李立华.CaO-Al_2O_3-SiO_2系统微晶玻璃晶化行为的研究讨[J].武汉理工大学学报,2001,23(1):22-29.
    [77]Tang Shaoqiu,Liang Zhongjun,Chen Guoron.Studies of the Crytallization of Antimony-Containing Slag Glass-Ceramic[J].J.Am.Ceram.Soc.,1992,(2):440-443.
    [78]A.Helalizadeh,H.M(u|¨)ller-Steinhagen,M.Jamialahmadi.Application of fractal theory for characterisation of crystalline deposits[J].Chemical Engineering Science,2006,61:2069-2078.
    [79]Hanifi Binici,Orhan Aksogan,Ismail H.Cagatay,et al.The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan(NP)[J].Powder Technology,2007,177(1):140-147.
    [80]蒋月美.锅炉结渣机理分析[J].锅炉制造,2001,132(6):9-11.
    [81]赵显桥.黑液水煤浆沾污结渣机理及微观物化研究[D].杭州:浙江大学,2004.
    [82]J.P.K.Seville,H.Silomon-Ptlug,P.C.Knight.Modelling of sintering in high temperature gas fluidisation[J].Powder Technology,1998,97(1):160-168.
    [83]X.H.Wang,D.Q.Zhao,L.B.He,et al.Modeling of a coal-fired slagging combustor:Development of a slag submodel[J].Combustion and Flame,2007, 149(2):249-260.
    [84]Zhanhua Ma,Felicia Iman,Pisi Lu,et al.A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application[J].Fuel Processing Technology,2007,(1):170-179.
    [85]邓元凯.切向燃烧锅炉炉内结渣过程和防治技术的试验研究[D].北京:清华大学,1992.
    [86]高志成.电站锅炉结研究与预防[D].北京:华北电力大学,2001.
    [87]Bengt.Johan Skrifvar,Rainer Backman,Mikko Hupa.Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations[J].Fuel Processing Technology,1998,56(1):55-67.
    [88]Ritva.Slagging tendency of peat ash[J].Fuel Processing Technology,1998,56(1):69-80.
    [89]J.P.Smart,et al.Flame transformations and burner slagging in a 2.5Mwfurnace firing pulverized coal[J].Fuel,1994,73(11):1712-2117.
    [90]H B Vuthaluru.Ash formation and deposition from a Victorian brown coal-modeling and prevention[J].Fuel Processing Technology,1998,56(2):215-233.
    [91]Alex,et al.Predicting coal ash slag flow characteristics[J].Fuel,2000,80(12):1989-2000.
    [92]F C C Lee.Modelling ash deposition in pulverized coal-fired applications [J].Progress in Energy and Combustion Science,1999,25(1):117-132.
    [93]Karin.Iron-sulfide crystals in probe deposits[J].Fuel Processing Technology,1998,58(1):45-59.
    [94]邓德贵.电站燃煤锅炉防止炉膛结渣的探讨[J].四川电力技术,1996,(5):1-5.
    [95]杨卫娟.电站锅炉变负荷引起的水冷壁渣层热应力和吹灰在线模糊优化运行的基础理论研究[D].杭州:浙江大学,2003.
    [96]盛开勋等.K_2O和TiO_2杂质对Al_2O_3-SiC-C砖抗渣性的影响[J].鞍山钢铁学院学报,1999,22(1):21-23.
    [97]J.Liu,M.Guo,P.T.Jones.In situ observation of the direct and indirect dissolution of MgO particles in CaO-Al_2O_3-SiO_2-based slags[J].Journal of the European Ceramic Society,2007,27:1961-1972.
    [98]杨自春,程春生,张周明.船用锅炉衬用铝硅质耐火纤维的失效机理分析 [J].耐火材料,2005,39(6):463-464,468.
    [99]薛向欣,胡晓军,段培宁.高铝莫来石砖在CaO-MgO-Al_2O_3-SiO_2渣中的侵蚀[J].耐火材料,1998,32(1):137-146.
    [100]黄军同,赵凯,杨景周,等.高铝粉煤灰加入量对Al_2O_3-SiC-C浇注料抗高炉渣性能的影响[J].耐火材料,2006,40(1):47-49.
    [101]L.A.Diaz,R.Torrecillas,A.H.de Azab,et al.Effect of spinel content on slag attack resistance of high alumina refractory castables[J].Fuel,2007,86(5):1022-1430.
    [102]国外耐火材料编辑部.工业窑炉用耐火材料[M].北京:冶金工业出版社,1997.
    [103]M.Tossavainen,F.Engstrom,Q.Yang,et al.Characteristics of steel slag under different cooling conditions[J].Waste Management,2007,27(2):1335-1344.
    [104]林仕伟,司文捷,彭志坚,等.硅基陶瓷材料高温氧化理论的回顾[J].材料科学与工程,2002,20(2):268-272.
    [105]Elizabeth Opila.Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbid Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbid[J].J.AM.Ceram.Soc,1995,78(4):1107-1110.
    [106]秦风久等.高炉用SiC砖显微结构及其抗侵蚀特征[J].东北大学学报,1995,15(5):457-461.
    [107]杨金良.石门电厂2×300MW机组锅炉运行情况分析[J].湖南电力,1999,19(3):14-17.
    [108]陈吟颖,石惠芳,阎维平.330MW燃煤机组燃烧内蒙西部煤结渣性能的分析研究[J].能源研究与利用,2002,(4):9-10.
    [109]李文艳.电站锅炉煤粉燃烧过程及结渣的数值模拟[D].北京:华北电力大学,2002.
    [110]孙亦碌,张时力,楚仲妍.煤灰结渣特性综合判别模型工程应用的研究[J].电力技术,1986,(6):1-12.
    [111]邱建荣,马毓义.用灰色聚类方法评价煤的结渣性能[J].华中理工大学学报,1994,22(1):52-55.
    [112]邱建荣,马毓义.混煤的结渣特性及煤质结渣程度评判[J].热能动力工程,1994,9(1):3-8.
    [113]冯宝安,撒应禄.电站锅炉用煤常规结渣指标的模糊综合评判[J].锅炉技术,1996,(5):13-16.
    [114]冯宝安.多种模糊综合评判模型在燃煤结渣特性判别上的应用[J].锅炉技术,1997,(3):21-25.
    [115]刘柏谦.元宝山褐煤燃烧特性的模糊分析[J].东北电力学院学报,1998,18(2):80-85.
    [116]曹欣玉,兰泽全,黄镇宇,等.辽河油田水煤浆锅炉结渣倾向性模糊综合评判[J].热力发电,2003,(2):31-35.
    [117]饶甦,曹欣玉,兰泽全,等.黑液水煤浆结渣特性灰色聚类分析预测及试验研究[J].电站系统丁程,2004,20(2):14-16.
    [118]Nigel V Russell,Fraser Wigley,Jim Williamson.The roles of lime and iron oxide on the formation of ash and deposits in PF combustion[J].Fuel,2002,81:673-681.
    [119]S Cierpisz,A Heyduk.A simulation study of coal blending control using a fuzzy logic ash monitor[J].Control Engineering Practice,2002,10(2):449-456.
    [120]杨圣春.基于模糊理论预测电站锅炉燃煤结渣特性的研究[J].上海电力学院学报,2002,18(3):47-52.
    [121]许志华.对煤灰结渣倾向模糊判别法和灰色聚类法中某些缺欠的补正[J].甘肃电力技术,1999,(3):57-60.
    [122]Markus F(o|¨)rster,Matthias Bohnet.Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling[J].Int.J.Therm.Sci.,1999,38(4):944-954.
    [123]戴达煌,周克崧,袁镇海,等著.现代材料表面技术科学[M].北京:冶金工业出版社,2004,1.
    [124]David J,Bayless.Effects of surface voids on burning rate measurements of pulverized coal at diffusion limited conditions[J].Combustion and Flame,1997,108(1):187-198.
    [125]冯小平,何峰,李立华.CaO-Al_2O_3-SiO_2系统微晶玻璃晶化行为的研究[J].武汉理工大学学报,2001,23(1):22-25.
    [126]贾明生,张乾熙.影响煤灰熔融性温度的控制因素[J].煤化工,2007,(3):1-5.
    [127]G.P.Huffman.Behavior of Basic Elements During Coal Combustion [J].Prog Energy Combust Sci,1990,16:243-251.
    [128]杨建国,邓芙蓉,赵虹,等.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报,2006,26(17):122-126.
    [129]马北越,于景坤,谭诚.碳热还原锆英石合成ZrO_2-SiC复合材料耐火材料[J].2007,41(4):252-254.
    [130]魏存弟,马鸿文,杨殿范,等.煅烧煤系高岭石的相转变[J].硅酸盐学报,2005,33(1):77-81.
    [131]桂明玺.碳化硅耐火材料的特点和用途[J].国外耐火材料,1999,24(8):42-47.
    [132]刘景林,李连洲.提高耐火材料内存寿命的物理化学方法[J].国外耐火材料,2005,30(3):1-5.
    [133]张丽鹏,吴永霞.SiC质耐火材料的氧化机理[J].现代技术陶瓷次,2002,(3):24-27,30.
    [134]刘勇,陈晓银.氧化铝热稳定的研究进展[J].化学通报,2001,64(2):65-70.
    [135]Wernr Vogel.Phase separation in glass[J]J.Non-Cryst.Solids,1977,25(1):170-214.
    [136]郑兆勃.非晶态的形成[J].金属学报,1979,15(1):155-166.
    [137]邢德山,阎维平,李钧.煤种变化对四角切圆燃烧煤粉锅炉燃烧的影响[J].电力学报,2006,21(2):166-148,171.
    [138]柳成亮.电站四角切圆燃烧无烟煤锅炉燃烧器改造研究与应用[J].电力学报,2006,21(4):504-507,512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700