用户名: 密码: 验证码:
天然气水合物藏降压开采流固耦合数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物能量密度大、在全球范围分布广,被公认为是21世纪最具开发前景的重要能源。从经济可行性考虑,降压法被普遍认为是天然气水合物藏大规模开采的有效方法之一。天然气水合物藏降压开采过程中,固相水合物分解会引起储层物性、力学性质、孔隙压力以及温度等一系列变化,本研究将其统称为“水合物分解效应”;同时,该过程中岩石变形与孔隙流体渗流相互作用密切,因此,充分考虑“水合物分解效应”,开展水合物藏降压开采流固耦合数值模拟研究具有重要的理论和现实意义。
     本论文针对天然气水合物藏降压开采的相关问题开展流固耦合数值模拟研究。首先,根据质量守恒和能量守恒原理,综合考虑多孔介质中水合物分解热力学和动力学、气、水两相流以及“水合物分解效应”等因素,建立了天然气水合物藏降压开采相变渗流模型;在此基础上,根据流固耦合渗流理论,建立了考虑相态变化的渗透率各向异性天然气水合物藏降压开采气、水两相非等温流固耦合数学模型。与此同时,基于前人开展的疏松砂岩应力敏感性实验,考虑了储层物性参数与应力状态之间的关系,同时兼顾“水合物分解效应”影响,建立了水合物藏储层物性参数综合动态模型。对流固耦合模型控制方程进行离散,基于FEPG有限元平台,自主开发了天然气水合物藏降压开采气、水两相非等温流固耦合数值模拟软件,引入稳定性分析模块后,进一步开发了水合物藏降压开采近井储层稳定性分析软件。
     其次,利用天然气水合物藏降压开采气、水两相非等温流固耦合数值模拟软件,对水合物藏降压开采近井储层应力状态以及物性参数的变化规律进行了研究,结果表明:“水合物分解效应”、流固耦合作用及井眼效应是影响近井储层应力状态和物性参数的三个主要因素,其作用机理不同,影响程度各异;其中流固耦合作用对分解效应引起的储层物性参数变化趋势具有明显的抑制作用,必须引起重视。
     再次,利用水合物藏降压开采近井储层稳定性分析软件,对近井弱胶结、低强度、高孔渗分解区储层的稳定性进行了研究,建立了井壁不出砂的临界生产压差分析方法,结果表明:水合物分解区是整个储层稳定性较差的区域,其中井壁上最小水平主应力方向储层稳定性最差,是整个储层出砂的优先位置。影响因素分析进一步表明:“水合物分解效应”、生产压差大小、流固耦合作用以及水平地应力非均匀程度是影响近井储层稳定性的敏感因素,开井速度的影响相对较小。
     最后,本文对天然气水合物藏降压开采产能进行了流固耦合数值模拟研究,深刻剖析了流固耦合作用对水合物藏开采动态的影响机制。研究表明:尽管流固耦合作用提高了储层弹性驱动能,但岩石孔隙收缩导致储层渗储能力降低的效应占主导地位,因此,耦合模型较非耦合模型的产量预测值偏低。影响因素分析表明:水合物藏产气速率及累计产气量等随储层绝对渗透率增加而增大、随井底压力降低而增大、随地层温度升高而增大。
By reason of extensive distributing and vast amount of quantity, natural gas hydrate is considered to be the most prospective energy in the 21st century. Considering the costs and feasibility, depressurization is the most economical and effective method for future large-scale natural gas hydrate production.During natural gas production from hydrate by depressurization, the petrophysical and mechanical parameters, the pore pressure and the temperature of hydrate reservoirs have been changing dynamically due to hydrate decomposition. These phenomena are named as gas hydrate decomposition effect in this paper. Furthermore, there is an intensive interaction between porous fluid flow and rock deformation during natural gas hydrate production. So it is of great theoretical and application importance to study on gas hydrate production with fluid-solid coupling numerical simulation.
     This paper focuses on the related problems during natural gas hydrate production by depressurization with the method of fluid-solid coupling numerical simulation.
     Firstly, a new phase change porous flow model for gas hydrate production by depressurization has been developed. The model includes mass and energy conservation theory, thermodynamics and kinetic of hydrate decomposition, gas-water two-phase flow and the gas hydrate decomposition effect. Based on this new model, a nonisothermal fluid-solid coupling numerical model has been developed for permeability anisotropy hydrate reservoirs. Moreover, several comprehensive dynamic models for hydrate reservoirs physical parameters have been developed. These models consider the gas hydrate decomposition effect based on former experimental research on stress sensitivity of unconsolidated sandstone reservoirs. After the discretization of the governing equations of the fluid-solid coupling model, a gas and water two-phase nonisothermal fluid-solid coupling numerical simulation software for gas hydrate production has been developed. By introducing the stability analysis module, the paper has developed a near well formation stability analysis software for hydrate reservoirs production by depressurization.
     Secondly, the dynamic variation and influence factors for the stress state and the physical and mechanical parameters of hydrate reservoirs have been analyzed with the self-developed fluid-solid coupling simulation software. The results show the gas hydrate decomposition effect, fluid-solid coupling and borehole effect are three main factors which have different mechanisms and influence level for stress state and parameters. The fluid-solid coupling has an inhibiting effect for variation of the physical and mechanical parameters due to gas hydrate decomposition effect, and more attention should be paid to the phenomena.
     Thirdly, the stability of near well formation of hydrate reservoirs has been analyzed using the self-developed stability analysis software, and this area has the features of weak consolidation, low strength and high poroperm due to hydrate decomposition. A method for critical drawdown pressure determination has been developed. The results show that the stability of the decomposition area is relatively poor, and borehole wall in the direction of the minimum horizontal principal stress is the preferred position for sand production. The influence factors analysis reveal that the gas hydrates decomposition effect, drawdown pressure; fluid-solid coupling and the nonhomogeneity degree of the principal stress are the most sensitive factors affecting the stability of the near well formation, and the influence from the pressure release velocity is relatively small.
     Finally, a fluid-solid coupling numerical simulation on the productivity of natural gas hydrate by depressurization has been performed. The results show that the decrease of the poroperm ability due to fluid-solid coupling is the dominant factor which affects the productivity of the natural gas hydrate, and the increase of the elastic drive energy by fluid-solid coupling is relatively small, so the predictive value of the productivity from fluid-solid coupling modeling is lower than that of the non-coupling modeling. The influence factors analysis reveals that the gas production rate and the cumulative gas increase with the increase of reservoir absolute permeability, with the decrease of bottom pressure, with the increase of reservoir temperature.
引文
[1] Makogon Y.F., Holditch S.A., Makogon T.Y. Natural gas-hydrates—A potential energy source for the 21st Century [J]. Journal of Petroleum Science and Engineering, 2007, V56 (2), 14–31
    [2]许红,黄君权,夏斌,等.最新国际天然气水合物研究现状与资源潜力评估(上)[J].天然气工业,2005,25(5):21-25
    [3]张美.天然气水合物的研究现状和前景[J].中山大学研究生学刊(自然科学、医学版),2006,27(2):21-28
    [4]郭平,刘士鑫,杜建芬.天然气水合物[M].北京:石油工业出版社,2006:2-138
    [5] Collett T.S., Lee M.W. Reservoir Characterization of Marine and Permafrost Associated Gas Hydrate Accumulations with Downhole Well Logs [J].New York Academy of Sciences.2000, V19 (4):51-64
    [6]史斗,郑军卫.世界天然气水合物研究开发现状和前景[J].地球科学进展,1999,14(4):330-338
    [7]曾繁彩,吴琳,何拥军.国外天然气水合物调查研究综述[J].海洋地质动态,2003,19 (11):19-23
    [8]何拥军,文凤英.海洋天然气水合物的研究现状及意义[J].海洋地质动态,1998,20(1):4-7
    [9]史斗,孙成权,朱岳年.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992:1-202
    [10]赵生才.天然气水合物研究现状及我国对策[J].地球科学进展,2002,17(3):461-464
    [11] Darvish M.P. Gas production from hydrate reservoirs and its modeling [J].Journal of Petroleum Technology, 2004, V56 (6):65-71
    [12] Makogon Y.F. Hydrates of natural gas [J].Penn Well Books, 1974, V10 (3):32-36
    [13] Makogon Y.F. Hydrates of hydrocarbons [J]. Penn Well Books, 1997, V610 (52):50-62
    [14] Verigin N.N, Khabibullin IL, Khalikov GA, et al. Linear Problem of the dissociation of the Hydrates of a Gas in a Porous Medium[J].Fluid Dymamics,1980, V15 (1):174-177
    [15]Holder G.D., Angert, P.F., Godbole, S.P.Simulation of Gas Production from a Reservoir Containing Both Gas Hydrates and Free Natural Gas[A].The 1982 Annual Fall Technical Conference and Exhibition[C].New Orleans,1982:26-29
    [16] McGuire P.L. Recovery of Gas from Hydrate Deposits Using Conventional Technology [A].SPE Unconventional Gas Recovery Symposium[C].Pittsburgh, Society of Petroleum Engineers Inc, 1982:373-379
    [17] Burshears M., O'Brien T.J., Malone R.D.A Multi-Phase, Multi-Dimensional, Variable Composition Simulation of Gas Production from a Conventional Gas Reservoir in Contact with Hydrates [A].SPE Unconventional Gas Technology Symposium [C].Louisville, Society of Petroleum Engineers Inc, 1986:18-21
    [18] Selim M.S., Sloan E.D. Hydrate Dissociation in Sediment [J]. SPE Reservoir Engineering, 1990, V5 (2):245-251
    [19] Yousif M. H. Experimental and Theoretical Investigation of Methane–Gas–Hydrate Dissociation in Porous Media [J], SPE Reservoir Engineering, 1991, V6 (1):69-76
    [20] Tsypkin G.,Holder G.D., Bishnoi P.R. Mathematical Models of Gas Hydrates Dissociation in Porous Media [J].New York Academy of Sciences, 2000, V912(12):428-436
    [21] Masuda Y., Fujinaga Y., Naganawa S.,et al. Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores[A].3rd International Conference on Natural Gas Hydrates[C]. Salt Lake City, 1999:18-22
    [22] Moridis G.J.Numerical Studies of Gas Production from Methane Hydrates [A]. SPE Gas Technology Symposium [C].Calgary, Society of Petroleum Engineers Inc, 2002:359-370
    [23] Ahmadi G., Ji C., Smith D.H. A Simple Model for Natural Gas Production from Hydrate Decomposition [A].3rd International Conference on Gas Hydrate[C]. Salt Lake City, 1999:18-22
    [24] Ji C., Ahmadi G., Smith D.H. Natural gas production from hydrate decomposition by depressurization [J].Chemical Engineering Science, 2001, V56 (20):5801-5814
    [25] Ahmadi G., Ji C., Smith D.H. Numerical solution for natural gas production from methane hydrates dissociation [J].Journal of Petroleum Science Engineering 2003, V41 (4):269–285
    [26] Sawer W.K., Frantz J.H. Comparative Assessment of Natural Gas Hydrate Production Models [A]. SPE/CERI Gas Technology Symposium[C].Calgary Society of Petroleum Engineers Inc, 2000:1-9
    [27] Birchwood R., Noeth S., Hooyman P.Wellbore stability model for marine sediments containing gas hydrates [A].American Association of Drilling Engineers National Technical Conference and Exhibition[C]. Houston, 2005:5-7
    [28] Reem Freij-Ayoub, Chee Tan, Ben Clennell.A wellbore stability model for hydrate bearing sediments [J].Journal of Petroleum Science and Engineering, 2007, V57(2),209-220
    [29]宁伏龙.天然气水合物地层井壁稳定性研究[D].北京:中国地质大学,2005
    [30] Teizaghi K.Theoretical soil mechanics[M]. New York: Tiho Wiley, 1943
    [31] Biot M.A.General theory of three-dimensional consolidation [J]. Journal of Applied Physics, 1941, V12 (2): 155-164
    [32] Biot M.A. General solution of the equation of elasticity and consolidation for a porous material [J]. Journal of Applied Physics, 1956, V27 (3): 91-96
    [33] Biot M.A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Journal of Applied Physics, 1955, V26 (2): 182-191
    [34] Biot M.A. Theory of stress-strain relation in anisotropic viscoelasticity and relaxation phenomena [J]. Journal of Applied Physics, 1954, V25 (11): 1385-1391
    [35] Nur A, Byrlee J.D. An exact effective stress law for elastic deformation of rock with fluids[J]. Journal of Geophysical Research, 1971, V76 (26): 6414-6419
    [36] Rice J.R, Cleary M.P. Some basic stress diffusion solution for fluid-saturated elastic solid porous media with compressible constituents [J]. Review of Geophysics and Space Physics, 1976, V14 (2): 227-241
    [37] Zienkiewicz O.C, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, V8 (1): 71-96
    [38] McTigue D.F. Thermoelastic response of fluid-saturated porous rock [J]. Journal of Geophysical Research, 1986, V91 (9):9533-9542
    [39] Savage W.Z, Bradock W.A.A model for hydrostatic consolidation of Pierre shale [J]. International Journal for Rock Mechanics and Mining Sciences, 1991, V28 (5): 345-354
    [40] Van den Hoek P.J., Kooijman A.P., Bree P.D., et al. Horizontal-Wellbore Stability and Sand Production in Weakly Consolidated Sandstones[J]. Journal SPE Drilling & Completion, 2000, V15 (4): 274-283
    [41]张广清,陈勉,金衍.高压气藏地层三维出砂预测模型及方法[J].岩土工程学报,2005,27(2):198-201
    [42] Michael S. Bruno. Geomechanical and Decision Analyses for Mitigating Compaction-Related Casing Damage [J]. SPE Drilling & Completion, 2002, V17 (3): 179-188
    [43]尹中民,武强,刘建军,等.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学与工程学报,2004,23(14):2390-2395
    [44]代立强,刘宝玉,刘先贵.计算套损的弹塑性流固耦合数学模拟及算例[J].辽宁工程技术大学学报,2003,22(3):323-325
    [45] Fredrich J.T., Arguello J.G., Deitrick G.L., et al. Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge Diatomite Field [J]. SPE Reservoir Evaluation & Engineering, 2000, V3 (4): 348-359
    [46] Schutjens P.M.T.M., Hanssen T.H., Hettema M.H.H., et al. Compaction-Induced Porosity/Permeability Reduction in Sandstone Reservoirs: Data and Model for Elasticity-Dominated Deformation [J]. SPE Reservoir Evaluation & Engineering, 2004, V7 (3): 202-214
    [47] Cook C.C., Andersen M.A., Halle G., et al. An Approach to Simulating the Effects of Water-Induced Compaction in a North Sea Reservoir [J].SPE Reservoir Evaluation & Engineering, 2001, V4 (2): 121-127
    [48]同登科,杨河山,柳毓松.油气流-固耦合渗流研究进展[J].岩石力学与工程学报,2005,24(24):4594-4602
    [49] Thomas L.K., Chin L.Y., Pierson R.G. Coupled geomechanics and reservoir simulation [J]. SPE Journal, 2003, V8 (4): 350-358
    [50] Zeno G., James W., Jennings Jr., et al. Modeling Coupled Fracture-Matrix Fluid Flow in Geomechanically Simulated Fracture Networks [J]. SPE Reservoir Evaluation & Engineering, 2005, V8 (4):300-309
    [51] Walters D.A., Settari A., Kry P.R. Coupled geomechanical and reservoir modeling investigating poroelastic effects of cyclic steam stimulation in the cold lake reservoir [J]. SPE Reservoir Evaluation & Engineering, 2002, V5 (6):507-516
    [52] Araque-Martinez, Larry W.L. A Simplified Approach to Geochemical Modeling and Its Effect on Mineral Precipitation [J]. SPE Journal, 2001, V6 (1):98-107
    [53] Samier P., Onaisi A., Fontaine G. Comparisons of Uncoupled and Various Coupling Techniques for Practical Field Examples [J]. SPE Journal, 2006, V11 (1):89-102
    [54] Fanchi J.R. Estimating Geomechanical Properties Using an Integrated Flow Model [J]. SPE Reservoir Evaluation & Engineering, 2003, V6 (2):108-116
    [55] Patrick M.C. Geomechanical Effects on the SAGD Process [J].SPE Reservoir Evaluation& Engineering, 2007, V10 (4):367-375
    [56] Dean R.H., Gai X., Stone C.M., et al. A Comparison of Techniques for Coupling Porous Flow and Geomechanics[J]. SPE Journal, 2006, V11 (1):132-140
    [57] Kanj M.Y., Saudi Aramco, Abousleiman Y.N. Taming Complexities of Coupled Geomechanics in Rock Testing: From Assessing Reservoir Compaction to Analyzing Stability of Expandable Sand Screens and Solid Tubulars [J]. SPE Journal, 2007, V12 (3): 293-304
    [58] Settari A., Key P.R., Yee C.T. Coupling of fluid flow and soil behavior to model injection into uncemented oil sands. Journal of Canadian Petroleum Technology, 1989, V28 (1):81-92
    [59] Settari A. Physics and Modeling of Thermal Flow and Soil Mechanics in Unconsolidated Porous Media [J]. SPE Production Engineering, 1992, V7 (1):47-55
    [60] Settari A., Mourits F.M. A Coupled Reservoir and Geomechanical Simulation System [J]. SPE Journal, 1998, V3 (3):219-226
    [61] Settari A., Dale A.W. Advances in Coupled Geomechanical and Reservoir Modeling With Applications to Reservoir Compaction [J]. SPE Journal, 2001, V6 (3):334-342
    [62] Settari A. ReservoirCompaction [J]. Journal of Petroleum Technology, 2002, V54 (8): 62-69
    [63] Fung L.S.K. A coupled geomechanical multiphase flow model for analysis of in situ recovery in cohesionless oil sands[J]. Journal of Canadian Petroleum Technology, 1992, V31 (6): 56-67
    [64] Fung L.S.K. Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs [J]. Journal of Canadian Petroleum Technology, 1994, V33 (4): 22-28
    [65] Heffer K.J., Fox R.J., McGill C.A. Novel Techniques Show Links between Reservoir Flow Directionality, Earth Stress, Fault Structure and Geomechanical Changes in Mature Waterfloods [J]. SPE Journal, 1997, V2 (2):91-98
    [66] Chin L.Y., Rajagopal Raghavan, Thomas L.K.Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability [J]. SPE Journal, 2000, V5 (1):32-45
    [67] Khan M., Teufel L.W. The Effect of Geological and Geomechanical Parameters on Reservoir Stress Path and Its Importance in Studying Permeability Anisotropy[J]. SPEReservoir Evaluation & Engineering, 2000, V3 (5): 394-400
    [68] Chin L.Y., Raghavan R., Thomas L.K. Fully Coupled Analysis of Well Responses in Stress-Sensitive Reservoirs [J]. SPE Reservoir Evaluation & Engineering, 2000, V3 (5): 435-443
    [69] Gutierrez M., Lewis R.W., Masters I. Petroleum Reservoir Simulation Coupling Fluid Flow and Geomechanics [J]. SPE Reservoir Evaluation & Engineering, 2001, V4 (3): 164-172
    [70] Raghavan R., Chin L.Y. Productivity Changes in Reservoirs With Stress-Dependent Permeability [J]. SPE Reservoir Evaluation & Engineering, 2004, V7 (4): 308-315
    [71] David tran, Settari A., Long Nghiem. New iterative coupling between a reservoir simulator and a geomechanics module[J]. SPE Journal, 2004, V9 (3): 362-369
    [72]冉启全,李士伦,杜志敏,等.流固耦合多相多组分渗流数学模型的建立[J].油气井测试,1996,5(3):14-18
    [73]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报,1998,20(2):69-73
    [74]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报,1999,16(1):24-31
    [75]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1998,19(1):64-70
    [76]董平川,徐小荷.油、水两相流固耦合渗流的数学模型[J].石油勘探与开发,1998,25(5):93-96
    [77]董平川,郎兆新,徐小荷.油井开采过程中油层变形的流固耦合分析[J].地质力学学报,2000,6(2):6-10
    [78]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究I-数学模型[J].地震地质,1999,21(3):243-252
    [79]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究II-方程解耦与有限元公式[J].地震地质,1999,21(3):253-260
    [80]李培超,孔祥言,李传亮,等.地下各种压力之间关系式的修正[J].岩石力学与工程学报,2002,21(10):1551-1553
    [81]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419-426
    [82]徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-45
    [83]刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5):779-784
    [84]刘建军,刘先贵.开发过程中三场耦合的数学模型[J].特种油气藏,2001,8(2):31-33
    [85]刘建军,杨前雄,史沛元.基坑降水过程中地下水渗流数值模拟[J].地下水,2005,27(5):342-343
    [86]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6):397-400
    [87]徐向荣,范学平.油藏多相流体渗流流-固耦合数学模拟研究[J].岩石力学与工程学报,2002,21(1):93-97
    [88]徐向荣.用流固耦合方法研究气藏物性参数动态变化[J].天然气工业,2001,21(6):67-70
    [89]王自明,杜志敏.变温条件下弹塑性油藏中多相渗流的流固耦合数学模型与数值模拟[J].石油勘探与开发,2001,28(6):68-72
    [90]周志军,刘永建,马英健,等.低渗透储层流固耦合渗流理论模型[J].大庆石油学院学报,2002,26(3):29-32
    [91]张烈辉,李允.低渗透气藏流-固耦合渗流数值模拟[J].天然气工业,2004,24(10):80-82
    [92]薛强,梁冰.摄动理论在求解流固耦合渗流问题中的应用[J].力学与实践,2003,25(3):17-20
    [93]薛强,梁冰,李宏艳.可压缩流体渗流的流固耦合问题数值模拟研究[J].地下空间,2001,21(5):386-391
    [94]孙培德,万华根.煤层气越流固-气耦合模型及可视化模拟研究[J].岩石力学与工程学报,2004,23(7):1179-1185
    [95]孔祥言,李道伦,徐献芝,等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2A):269-275
    [96]黎水泉,徐秉业.双重孔隙介质非线性流固耦合渗流[J].力学季刊,2000,21(1):96-101
    [97]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-754
    [98]吉小明,白世伟,杨春和.与应变状态相关的岩体双重孔隙介质流-固耦合的有限元计算[J].岩石力学与工程学报,2003,22(10):1636-1639
    [99]刘晓丽,梁冰,王思敬,等.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412
    [100]孔亮,王媛,夏均民.非饱和流固耦合双重孔隙介质模型控制方程[J].西安石油大学学报(自然科学版),2007,22(2):163-165
    [101]李光泉.疏松砂岩油藏流固耦合流动模拟与剩余油分布研究[D].成都:西南石油大学,2004
    [102] Kim H C, Bishnoi P R, Heidemann R A. Kinetics of Methane Hydrate Decomposition [J].Chemical Engineer Science, 1987, V42 (7):1645-1653
    [103] Fung L S K.A coupled geomechanical multiphase flow model for analysis of in-situ recovery in cohesiontess oil sands [J].JCPT,1992,V31(6):56-67
    [104]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1997:247-250
    [105]薛世峰.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油开发中的应用[D].北京:中国地震局地质研究所,2000
    [106]尹中民,武强,刘建军,等.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学与工程学报,2004,23(14):2390-2395
    [107]王勖成.有限单元法[M].北京:清华大学出版社,2003:36-54
    [108]周志军.低渗透储层流固耦合渗流理论及应用研究[D].大庆:大庆石油学院,2003
    [109]冉启全,李士伦,杜志敏.用综合数值模拟方法预测油藏开采过程中的应力分布[J].钻采工艺,1995,18(4):41-43
    [110] Masuda Y., Naganawa S., Ando S.Numerical calculation of gas production performance from reservoirs containing natural gas hydrates [J].SPE Journal, 1997, V29 (3):201-210
    [111] Kambiz.Fundaments and applications of environmental and geophysical multiphase flows [D]. Potsdam: Clarkon University, 2006
    [112] Van Genuchten M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Sci. Soc. Am. J, 1980, V44 (10):892-898
    [113] Parker J.C., Lenhard R.J., Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in porous media [J].Water Resour.Res, 1987, V23 (4): 614-618
    [114] Kambiz Nazridoust,Goodarz Ahmadi. Computational modeling of methane hydrate dissociation in a sandstone core [J].Chemical Engineering Science, 2007, V62 (22): 6155-6177
    [115] Hong Huifang. Modeling of gas production from hydrates in porous media [D].Calgary: University of Calgary, 2003
    [116] Anjani K. Formation and dissociation of gas hydrates in porous media [D].Calgary: University of Calgary, 2005
    [117] National Institute of Standards and Technology.NIST Chemistry Web Book [DB/OL], http://webbook.nist.gov/ chemistry/fluid.html, 2008-08-16
    [118] Masuda Y, Kurihara M, Ohuchi H.A field-scale simulation study on gas productivity of formations containing gas hydrates [A]. Proceedings of the 4th International Conference on Gas Hydrates [C].Yokohama, 2002, 19-23
    [119] Kamath V.A., Holder G.D. Dissociation Heat Transfer characteristics of Methane Hydrates [J].AICHE J., 1987, V33 (10): 347-350
    [120] Ji C., Ahmadi G., Smith D.H. Natural gas production from hydrate dissociation: An axisymmetric model [J]. Journal of Petroleum Science and Engineering, 2007, V58 (2):245-258
    [121] Ji C., Ahmadi G., Smith D.H. Constant rate natural gas production from a well in a hydrate reservoir [J] .Energy Conversion and Management, 2003, V44(15), 2403-2423
    [122] Ahmadi G., Ji C., Smith D.H. Production of Natural Gas from methane hydrate by a constant downhole pressure well[J].Energy conversion and Management,2007,V48 (7):2053-2068
    [123]赵益忠.疏松砂岩油藏脱砂压裂产能流固耦合数值模拟[D].东营:中国石油大学,2008
    [124]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].中国石油大学学报(自然科学版),2001,25(4):56-60
    [125] Tan C.P, Clennell M.B., Freij-Ayoub R.Mechanical and petrophysical characterization and wellbore stability management in gas hydrate-bearing sediments[A]. Proceedings of the 40th Symposium on Rock Mechanics: Rock Mechanics for Energy, Mineral and infrastructure Development in the Northern Regions [C]. Alaska: 2005:810-833
    [126] Freij-Ayoub R, Tan C.P, Clennell M.B, et al. A wellbore stability model for hydrate bearing sediments [J].Journal of Petroleum Science and Engineering, 2007, V57 (2), 209-220
    [127] Manoochehr Salehabadi, Jin Min,Yang Jinhai,et al .Finite Element Modelling of Casing in Gas Hydrate Bearing Sediments [A].2008 SPE Europe/EAGE Annual Conference and Exhibition [C] . Rome, Society of Petroleum Engineers, 2008:1-13
    [128]薛世峰,仝兴华,岳伯谦,等.地下流固耦合理论的研究进展及应用[J].中国石油大学学报(自然科学版),2000,24(2):109-114
    [129]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2003:119-124
    [130]张建国,雷光伦,张艳玉.油气层渗流力学[M].东营:石油大学出版社,1997:36-40
    [131]周宏波,李允,胡勇,等.油气藏模拟中零平衡失效的处理对策研究[J].西南石油学院学报,2000,22(1):27-29
    [132]周涌沂,李允,彭仕宓,等.双重介质模拟模型中的零平衡失效研究[J].石油学报,2001,22(3):71-74
    [133] Clarke M.A., Bishnoi P. R. Measuring and modeling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane[J].Journal of Chemical Engineering Science, 2001, V56(16), 4715-4724
    [134]何湘清.弱胶结砂岩油藏出啥机理研究[D].成都:西南石油大学,2002
    [135]何冠军.疏松砂岩常规稠油油藏适度出砂提高产能基础研究[D].成都:西南石油大学,2005
    [136]刘波.疏松砂岩出砂机理定量研究[D].东营:中国石油大学,2004
    [137]张建国,程远方,崔红英,等.裸眼完井出砂预测模型的建立[J].石油钻探技术,1999,27(6):3-5
    [138]李淑霞.天然气水合物开采物理模拟与实验模拟研究[D].东营:中国石油大学,2006
    [139]郝永卯.天然气水合物开采技术实验与理论研究[D].东营:中国石油大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700