用户名: 密码: 验证码:
煤中有害元素直接液化迁移行为及其环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以山西安太堡太原组11号煤层为研究对象,系统研究了柱状剖面上煤分层中微量元素的地球化学特征和成煤环境演化历程。结合典型煤相的分析,采用直接液化模拟实验等方法,分析比较了液化产物的化学结构特征和有害微量元素分布,探讨了其地质-地球化学机理。结果表明:安太堡11号煤层高硫、高灰特性使得液化产物中微量元素富集具有出彼此“混杂”的特征;液化产物不同溶剂萃取物的产率与显微组分组、黄铁矿(尤其是隐晶质)等因素之间的相关性,揭示微量元素迁移受煤中高度凝胶化组分的控制,微量元素与不同溶剂萃取物具有不同的有机亲和性。研究发现:苯萃取物中微量元素组合含量从亲硫元素-亲铁元素-亲石元素逐渐减少,四氢呋喃可溶物中主要是亲硫、亲铁元素组合;煤中在海侵作用下形成的高有机硫、黄铁矿硫、高有机活性组分的成煤地质特征与煤直接液化总产率正相关,并决定微量元素在液化液态产物中的富集组合主要是亲硫、亲铁元素。同时,探讨分析了煤中有害微量元素和挥发性有害化合物在液化气、液产物及固态残渣的分布特征及其可能产生的环境效应。
Taking the No.11 coal seam of the upper carboniferous Taiyuan formation of Antaibao open pit mine as a case, the research of geochemical characteristics of trace elements in sub-samples on column profile and evolution of coal-forming environment has been systematic studied. With the direct coal liquefaction test on typical sub-samples of various coal facies, deleterious trace elements group compositions and chemical structure of different solvent extracts from liquefying coal have been test and analyzed, the geological-geochemical mechanism has been explored. It concluded that the characteristics of high sulfur and high ash made the enrichment of deleterious trace elements of different liquefying coal products shows“intermix”feature. The correlation between different product yields of solvent extracts from liquefying coal and micro-macerals, pyrite(specially cryptocrystalline texture) indicated the migration of trace elements is controlled by the highly gelating components elements syngenetic combined with gelation organic components in coal, and the inorganic/organic affinity of trace elements with different solvent extracts is various. In benzene-soluble organics the trace elements compatible assemblage content decrease with the sequence of chalcophile element-siderophile element-lithophile element, while in tetrahydrofuran soluble organics the trace elements compatible assemblage content is main conclude chalcophile element-siderophile elementthe, the lithophile element assemblage content is not obvious relative to tetrahydrofuran soluble as the other two element assemblages. The coal-forming geological characteristics of high pyrite, organic sulfur, active component contents is opposite relative to the direct coal liquefaction yield, which determined the chalcophile elements, siderophile elements are the accumulate assemblage in liquefaction products. The possible environment effect of deleterious trace elements and harmful Volatile components in liquefaction products(such as gas, liquid ) and solid residue has been preliminary discussed.
引文
[1]艾军.神华煤显微组分加氢液化反应动力学及其与生物质共液化的初步研究[D].硕士论文.煤炭科学研究总院.2007.
    [2]白金锋,王勇,胡浩权等.溶胀对扎赉诺尔和煤热阶级液化性能的影响[J].煤炭转化, 2000, 23(4): 50-54.
    [3]白向飞,李文华,张寿禄等.神东矿区侏罗纪2 -2 #煤煤质特征研究[J].煤炭转化, 2002, 25(3): 85-88.
    [4]常海洲,蔡雪梅,李改仙.不同还原程度煤显微组分堆垛结构表征[J].山西大学学报(自然科学版) , 2008, 31(2): 223-227.
    [5]陈冰如,杨绍晋,杨亦男,等.天津市大气颗粒中稀土元素的特征[J].环境化学, 1986, 5(3): 58-62.
    [6]陈茺.煤中非共价键行为的研究.华东理工大学[D],华东理工大学图书馆, 1997.
    [7]陈德潜,吴静淑.离子吸附型稀土矿床的成矿机制[J].中国稀土学报, 1990, 8(2): 175-179.
    [8]陈明波,王彬,赵奇,等.煤直接液化残渣焦化特性研究[J].洁净煤技术, 2005, 11(1): 29-30.
    [9]程保洲.山西晚古生代沉积环境与聚煤规律[M].太原:山西科技出版社.1992.
    [10]程东,沈芳,柴东浩.平朔露天矿太原组11#和9#煤层的沉积环境分析[J].高校地质学报.1998, 4(4): 465-472.
    [11]崔之栋,李嘉珞.煤炭液化[M].大连理工大学出版社.1993.
    [12]代世峰,任德贻.乌达矿区显微组分有机硫的赋存分布[J].中国煤田地质, 1996, 8(4): 20-22.
    [13]代世峰.煤中伴生元素的地质地球化学习性与富集模式[D].北京:中国矿业大学(北京校区).2002.
    [14]杜铭华,李文华,徐振刚.关于中国发展煤液化技术的几点讨论[J].能源研究通讯, 2004(3): 44-53.
    [15]杜铭华,舒歌平.我国煤炭液化技术产业化前景展望[J].现代化工, 2002, 22(9): 1-5.
    [16]段旭琴,王组讷,曲剑午.神府煤惰质组与镜质组的结构性质研究[J].煤炭燃料技术, 2004, 32(2): 19-23.
    [17]冯杰,李文英,李凡,等.煤结构特征与煤反应活性关系的研究[J].煤炭转化,1996, 19(2):1-11
    [18]冯新斌,洪业汤,倪建宇.煤中潜在毒害元素分布的多元分析及其地球化学意义[J].矿物学报, 1999, 19(1): 34-40.
    [19]高晋生,陈茺,颜涌捷.煤大分子在有机溶剂中的溶解溶胀行为及其交联本性[J].华东理工大学学报.1998, 24(3): 318-323.
    [20]高晋生,吴幼青, H.H.Oelert,等,中国低阶烟煤和石油渣油混合加工研究[J].华东化工学院学报1993, 19(5): 561-567.
    [21]戈尔锡施密特V.N..地球化学[M].中译本,科学出版社, 1954.
    [22]郭瑞霞,杨建丽,刘东艳,刘振宇.热处理条件对大同煤中微量有害元素变迁规律的影响[J].化工学报.2003, 54(11): 1603-1607.
    [23]郭瑞霞,杨建丽,刘东艳等.煤热解过程中无机有害元素的变迁规律[J].环境科学, 2002, 23(5): 100-104
    [24]郭树才.煤化工工艺学[M].北京:化学工业出版社, 1992.271-272.
    [25]何宏平,郭九皋,张惠芬,王辅亚,胡澄.天然烧变高岭石中水铝英石的发现[J].矿物学报, 1995, 15( 4): 367-371
    [26]何伟钢,金奎励,郝多虎.煤中单组分湿式高压釜热模拟实验研究———以海拉尔盆地伊敏组褐煤为例[J].石油实验地质, 2004(26)1: 89-993.
    [27]黄亚继,金保升,仲兆平,等.汽煤比对煤气化过程中微量元素迁移规律的影响研究[J].锅炉技术, 2005, 36(1): 1-6.
    [28]贾明生、陈恩鉴、赵黛青,煤炭液化技术的开发现状与前景[J].中国能源, 2003, 3: 13-17.
    [29]康西栋,杨起,张瑞生,等.华北晚古生代煤中有机硫的赋存状态及其成因[J].地球科学—中国地质大学学报, 1999, 24(4): 413-417.
    [30]雷加锦,任得贻,韩德馨,等.1995.不同沉积环境成因煤显微组分的有机硫分布[J].煤田地质与勘探, 23(5): 14-18.
    [31]雷加锦,任得贻,韩德馨,等.1995.不同沉积环境成因煤显微组分的有机硫分布[J].煤田地质与勘探, 23(5): 14-18.
    [32]李克键,史士东.煤直接液化是中国能源可持续发展的一项技术途径[J].煤炭科学技术, 2001, 29(3): 1-4.
    [33]李文华.东胜-神府煤的煤质特征与转化特性(兼论中国动力煤的岩相特征)[D].煤炭科学研究总院, 2001.12
    [34]李岳,王新红.煤分子结构与模型化合物反应研究[J].煤炭技术, 2003, 22(5): 100-102
    [35]刘大锰,杨起,汤达祯.鄂尔多斯盆地煤的灰分和硫、磷、氯含量研究[J].地学前缘, 1999, 6(增刊): 53-59.
    [36]刘大锰,金奎励.塔里木盆地烃源岩显微组分的元素富集规律[J].煤田地质与勘探, 1995, 23(05): 19-21.
    [37]刘大永,彭平安.煤系地层中不同类型镜质体可能的化学结构与生物母质.石油与天然气地质, 2004, 25(4): 377-384.
    [38]罗陨飞,李文华.中低变质程度煤显微组分大分子结构的XRD研究[J].煤炭学报, 2004, 29(3): 338-341.
    [39]马晓燕,赵朴,张世诚.刍议煤中低分子化合物的研究对煤加氢液化的影响[J].煤炭技术.2001, 20(11): 62-63.
    [40]马兴祥.贵州水城晚二叠世主采煤层的岩石学研究及煤相[D].北京:中国矿业大学, 1988.
    [41]煤炭科学院地质勘探分院,山西煤田地质勘探公司.中国平朔矿区含煤地层沉积环境[M].西安:陕西人民教育出版社, 1987.90-110.
    [42]孟庆函,李善祥,李保庆.低阶煤两段化学降解产物的组成性质[J].燃料化学学报.2000, 28(4): 306-309.
    [43]南京大学地质系.华南不同时代花岗岩类及其成矿关系[M].科学出版社, 1981.
    [44]倪献智,王力,陈丽慧,于洪观.年轻煤溶剂溶胀后加氢液化性能的研究[J].山东科技大学学报(自然科学版), 2003, 22(3): 97-100.
    [45]倪中海,刘毅,周长春等.煤液化基础研究进展[J].煤炭转化.2002, 25(2): 17-22.
    [46]潘随贤,程保洲等.太原西山含煤地层沉积环境[M].北京:煤炭工业出版社, 1987.
    [47]秦匡宗,郭绍辉,李术元.煤结构的新概念与煤成油机理的再认识[J].科学通报, 1998, 43(18): 1912-1918
    [48]秦勇,王文峰,李壮福,夏筱红,吴艳艳.海侵作用影响下的高分辨煤相序列及其古泥炭沼泽发育模式——以山西北部安太堡上石炭统太原组11号煤层为例[J].地质学报, 2008, 82(02): 234-246
    [49]秦勇,王文峰,宋党育,张晓东.山西平朔矿区上石炭统太原组11号煤层沉积地球化学特征及成煤微环境[J].古地理学报, 2005, 7(2): 250-261
    [50]秦勇,王文峰,宋党育.2002.太西煤中有害元素在洗选过程的迁移行为与机理[J].燃料化学学报, 30(2): 147-150.
    [51]任德贻,郭国莉,唐跃刚,等.煤的显微组分中有机硫的微区分析[J].第三届全国微束分析学术会议论文集, 1992, 239-241.
    [52]任德贻,雷加锦,唐跃刚,等.煤显微组分中有机硫的微区分析和分布特征[J].煤田地质与勘探, 1993, 21(1): 27-30.
    [53]任来义,林桂芳,谈玉明,等.从古生物和地球化学标志看东濮凹陷早第三纪的海侵事件[J].西安石油学院学报(自然科学版), 2002, 17(1): 20-24.
    [54]申峻,凌开成,邹纲明,杨村煤与石油渣油共处理高温缩聚反应特性研究[J].燃料化学学报, 1998, 26(6): 501-505
    [55]舒歌平等,煤炭液化技术[M].北京:煤炭工业出版社, 2003
    [56]宋党育,王文峰,秦勇.安太堡矿11#煤中有害元素的地球化学特征及环境效应[J].煤炭转化, 2003, 26(1): 41-44.
    [57]孙成功,李保庆.煤中有机硫形态结构和热解过程硫变迁特性的研究[J].燃料化学学报.1997, 4: 358-362
    [58]孙庆雷,李文,李东涛等.神木煤有机显微组分的结构特征与热转化性质的关系[J].燃料化学学报.2003, 31(2): 97-102
    [59]汤达祯,杨起,周春光,等.华北晚古生代成煤沼泽微环境与煤中硫的成因关系研究[J].中国科学(D辑), 2000, 30(6): 584-591.
    [60]唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆, 2004.
    [61]唐跃刚,张会勇,彭苏萍,等.中国煤中有机硫赋存状态、地质成因的研究[J].山东科技大学学报(自然科学版), 2002, 24(4): 1-4.
    [62] Michael Cloke, J.Paul Wright.于绍芬译. Fuel.1991,69:547-550.在煤炭液化期间溶剂组成对产品产率和微量元素浓度的影响[J].煤炭转化, 1991, 2: 62-66.
    [63]王璞珺, Schneider Werner, Mattern Frank.陆相盆地中的海侵层序特征[J].矿物岩石.2002, 22(2): 47-53.
    [64]王昌贤.泼因脱华尔煤的液化性能研究[J].重庆大学学报(自然科学版), 1997, 20(3): 43-47
    [65]王村彦,黄慕杰,吴春来.煤直接液化催化剂的研究与开发动向[J].煤炭科学技术, 1998, 26(4): 24-25.
    [66]王鹏,步学朋,忻仕河,等.煤直接液化残渣热解特性研究][J].煤化工, 2005, 4(2): 20-23.
    [67]王文峰.煤中有害元素洗选迁移行为及其洁净潜势[D].徐州:中国矿业大学.2002.
    [68]王文峰.煤中有害元素溶出分配规律及其地球化学控制[D].徐州:中国矿业大学.2005.
    [69]王晓华,葛岭梅,周安宁,魏贤勇.流化床空气氧化过程中煤化学结构变化的研究[J].煤炭加工与综合利用, 2000, 1: 28-30.
    [70]王云鹤,李海滨,黄海涛,陈勇.重金属元素在煤热解过程中的分布迁移规律[J].煤炭转化.2002, 25(3): 37-42.
    [71]王志杰,张立安,李允梅,杨建丽,刘振宇.煤与渣油的相互作用对轻质产物的影响[J].煤炭转化.2002(25), 1: 57-61.
    [72]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社.1989.
    [73]魏贤勇,宗志敏,秦志宏,陈茺.煤液化化学[M].科学出版社, 2002.
    [74]吴春来.煤炭液化在中国的发展前景[J].地学前沿, 2005, 12(3): 309-313.
    [75]谢克昌.煤的结构和反应性[M].北京:科学出版社,2003.
    [76]徐会军,刘治中.煤炭直接液化技术的发展[J].煤炭加工与综合利用, 2003, 4: 36-40.
    [77]徐秀峰,张蓬洲,杨保联,等.1H-NMR对气煤吡啶抽提残煤热解加氢产物的结构分析[J].燃料化学学报, 1995, 23(2): 205-213.
    [78]徐秀峰,张蓬洲.高分辨固体-13C-NMR和XPS技术表征碳的骨架结构[J].煤炭转化, 1995, 18(4): 58-62.
    [79]徐志达,单石灵.加工含硫原油的设备腐蚀与对策[J].腐蚀科学与防护技术, 2004, 16(04): 250-252.
    [80]许红亮,刘钦甫,丁述理.煅烧温度对高岭石结构及电绝缘性能的影响[J].中国矿业大学学报, 2003, 32(03): 332-335.
    [81]阎瑞萍,王志杰,杨建丽,刘振宇.兖州煤与催化裂化油浆共处理及其重质产物组成性质的初步研究[J].燃料化学学报.2000(28), 5: 431-434.
    [82]杨华玉.煤中微量元素(汞砷氟和氯)在煤炭加工利用中的运移规律研究[D].煤炭科学总院.2001.
    [83]杨起.煤地质学进展[M].北京.科学出版社, 1987.
    [84]伊海生,彭军,夏文杰.1995.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J].沉积学报, 13(4): 131-137.
    [85]阴海静,刘亚静,高世君.煤直接液化生产的职业危害[J].职业与健康.2005(21)3: 336-337.
    [86]鹰嘴利幺等,李东译.煤加热过程中各种参数的变化及与软化熔融特性间的关系[J].煤质技术, 2000, 6(2): 40-44.
    [87]余江滨,刘渝,潘光.1991.晋东南地区臭煤层中细菌化石及病毒化石的研究[J].煤炭学报, 16(3): 52-60.
    [88]虞继舜.煤化学[M].北京:冶金工业出版社.2000.
    [89]袁新华,熊玉春,宗志敏,秦志宏,魏贤勇.分子煤化学与煤衍生物的定向转化[J].煤炭转化, 2001, 24(1): 1-4.
    [90]曾汉才,喻秋梅,陆晓华.用浮选法和固体吸附控制燃煤中重金属排放的研究[J].热力发电, 1997, 5: 25-28.
    [91]张春雷,李太任,熊琦华.煤岩结构与煤体裂隙分布特征的研究[J].煤田地质与勘探, 2000, (5): 26-30.
    [92]张代钧,鲜学福.煤的大分子结构与超细物理结构研究(ΙΙ)煤的超细物理结构[J].煤炭转化, 1992, 15(4): 30-32.
    [93]张德祥,高晋生,朱之培,年轻煤在石油渣有重油中加氢液化的研究[J].华东化工学院学报1986, 12(3): 355-362.
    [94]张军,袁建伟,徐益谦.低加热速度下显微组分的热解机理[J].燃料化学学报.1998, 26(1): 46-50.
    [95]张军,袁建伟,徐益谦.煤的显微组分在加热过程中空隙结构的变化[J].中国地质大学学报, 1998, 23(1): 79-84.
    [96]张军营.煤中潜在毒害微量元素富集规律及其污染性抑制研究[D].北京:中国矿业大学(北京校区).1999.
    [97]张丽芳,马蓉,倪中海.煤的溶胀技术研究进展[J].化学研究与应用, 2003, 97-100.
    [98]张松豹,曹月明.沉积型赤铁矿、菱铁矿和黄铁矿氧化还原电位测量及其地球化学意义[J].中国矿业大学学报, 1992, 21(02): 62-63.
    [99]张文钲.煤液化研究与开发现状[J].中国钼业, 2002, 26(3): 3-6.
    [100]张银元,赵景联.煤直接液化技术的研究与开发[J].山西煤炭, 2001, 21(2): 32-36.
    [101]张宇宏.煤中硫、氟、氯、汞、砷常压下热解迁移特征的研究[D].煤炭科学总院, 2004.
    [102]赵峰华.煤中有害微量元素分布赋存机制及燃煤产物淋滤试验研究[D].北京:中国矿业大学(北京校区), 1997.
    [103]赵其渊,等编.海洋地球化学[M].北京:地质出版社, 1989.
    [104]赵师庆.实用煤岩学[M].北京:地质出版社, 1991.
    [105]赵小燕,曹景沛,田桂芬,宗志敏,魏贤勇.微波辐射下神府煤CS2萃取物的组成结构分析[J].化工中间体, 2006, 6: 20-22.
    [106]赵振华.某些常用稀土元素地球化学参数的计算方法及其地球化学意义[J].地质地球化学.1985.(增刊): 11-14.
    [107]中国大百科全书总编辑委员会.2000.中国大百科全书(大气科学、海洋科学、水文科学卷)[M].北京:中国大百科全书出版社, 346-348.
    [108]周俊虎,方磊,程军,等.煤液化残渣与生物质混合燃烧过程中硫污染物动态排放特性研究[J].燃料化学学报, 2006, 33(5): 626-629.
    [109]朱继升, Lawrence等,两种烟煤的液化及液化油的组成特征研究[J].燃料化学学报2001, 1: 214-218.
    [110]朱兴华.褐煤直接液化工艺技术研究[J].煤矿设计, 2000, (3): 41-42.
    [111]朱之培.煤液化的主要方法和基本原理[J].煤炭化工设计,1979,(3)19-45.
    [112]庄军,等.中国平朔矿区含煤地层沉积环境[M].西安:山西人民教育出版社.1987.
    [113]邹滢,宋丽,翁惠新.辽河减压渣油中铁的赋存与分布特征[J].石油炼制与化工, 2007, 38(11): 60-64.
    [114] Aleksic, Bogdan R., Ercegovac, Marko D., Cvetkovic, Olga G. et al. Direct hydroliquefaction of a low rank soft brown coal[J]. Fuel Processing Technology. 1998, 58(1): 33-43.
    [115] Arso, Adi, Iino, Masashi. Effect of the addition of n-alkylamines on liquefaction of Banko coal[J]. Fuel Processing Technology. 2004, 85( 5): 325-335.
    [116] Artok, Levent, Schobert, Harold H. Reaction of carboxylic acids under coal liquefaction conditions: 1. Under nitrogen atmosphere[J]. Journal of Analytical and Applied Pyrolysis. 2000, 54(1-2): 215– 233.
    [117] Bertnmd P.. Geochemical and petrographic characterization of humic coals considered as possible oil source rocks[J].Organic Geochemistry, 1984,6:481-488
    [118] Bodman, S.D., McWhinnie, W.R., Begon, V., et al. Metal-ion pillared clays as hydrocracking catalysts (II): effect of contact time on products from coal extracts and petroleum distillation residues[J]. Fuel. 2003,82(18): 2309-2321.
    [119] Birk D., White J.C.. Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, Distribution, Mineralogy[J]. International Journal of Coal Geology, 1991, 19: 219-251.
    [120] Brannan, C.J., Curtis, C.W., Cronauer, D.C.. Interactions of Swelling Solvents and Catalyst Precursors in Coal Liquefaction Systems[J]. Fuel Proc Tech., 1997(51)63-81.
    [121] Brannan, C.J., Curtis, C.W., Cronauer, D.C.. The effect of coal beneficiation and swelling on liquefaction behavior of Black Thunder coal[J]. Fuel Processing Technology, 1995, 45 (1) : 53-67.
    [122] Brown, Robert C., Liu, Qin, Norton, Glenn. Catalytic effects observed during the co-gasification of coal and switchgrass[J]. Biomass and Bioenergy. 2000, 18(6): 499-506
    [123] Carlson G.A.. Computer simulation of the molecular structure of bituminous coal[J]. Energy &Fuels, 1992(6): 771-778
    [124] Cody G.D, Botto R.E, Sde H, Davis A, Mitchell G.. Soft X-ray microanalysis and microscopy: A unique probe of the organic chemistry of heterogeneous solids[J]. Prepr Pap Am Chem Soc Div Fuel Chem, 1995, 40 (3): 387-390.
    [125] Crelling J.C., Thomas H. The release of nitrogen and sulghur during the combustion of chars derived lithtypes and maceral contrates[J].Fuel,1993,72(3): 349-357
    [126] Cugini, A.V., Rothenberger, K.S., Krastman, D., et al. The use of coal liquefaction catalysts for coal/oil coprocessing and heavy oil upgrading[J]. Catalysis Today. 1998,43(3-4): 291-303
    [127] Dadyburjor D.B., Fout, T., Zondlo, J.W.. Ferric-sulfide-based catalysts made using reverse micelles: Effect of preparation on performance in coal liquefaction[J]. Catalysis Today. 2000, 63(1): 33-41
    [128] Danihelka, P.. Coal combustion and heavy metals pollution[J]. Fuel and Energy Abstracts. 1997,38 (6): 439.
    [129] Demirel, Belma, Givens, Edwin N.. Liquefaction of Wyodak coal with molybdenum-based catalysts from phosphomolybdic acid[J]. Fuel Processing Technology. 2000, 64(1-3): 177-187.
    [130] Diehl S.F., Goldhaber M.B., Hatch, J.R. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama[J]. International Journal of Coal Geology, 2004,59(3-4): 193-208.
    [131] Diessel C.F.K.. On the correlation between coal facies and depositional environment[J]. In: Proceedings 20th Symposium, Depositional Geology, University of Newcastle, NSW., 1986: 19-22.
    [132] Duxbury Joseph. Prediction of coal pyrolysis yields from BS volatile matter and petrographic analyses[J]. Fuel, 1997, 76(13): 1337-1343.
    [133] Elwira Zajusz-Zubek, Jan Konieczyn’ski. Dynamics of traceelements release in a coal pyrolysis process[J]. Fuel, 2003, 82:1281-1290.
    [134] Filippidis A., Georgakopoulos A., Kassoli.F.A., et al. Trace element contents in composited samples of three lignite seams from the central part of the Drama lignite deposit. Macedonia, Greece[J]. International Journal of Coal Geology, 1996, 29(4): 219-234.
    [135] Finkelman R.B, Gross P.M.K. The types of data needed for assessing the environmental and human impacts of coal[J]. International Journal of Coal Geology, 1999, 40(2-3): 91-101.
    [136] Finkelman R.B. 1989. What we don't know about the occurrence and distribution of trace elements in coal[J]. The Journal of Coal Quality, 8(3-4): 63-65.
    [137] Finkelman, Robert B., Bostick, Neely H., Dulong, Frank T., et al. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado[J]. International Journal of Coal Geology, 1998, 36(3-4): 223-241.
    [138] Garcia L. F, Hampartsoumian E., Illiams W.A.. Determination Of Sulfur Release And Its Kinetics In Rapid Pyrolysis of Coal[J]. Fue, L1995,74(7):1072-1079.
    [139] Garcia. Labiano F, Hampartsoumian E, W Illiams A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal[J]. Fuel,1995,74(7):1072-1079.
    [140] Ghosh, A.K.. Spectrophotometric study of molecular complex formation of asphaltene with two isomeric chloranils[J]. Fuel, 2005, 84(2-3): 153-157.
    [141] Given P.H., Marzec A., Barton W.A., et al.. The concept of a molecular phase within the macrocoals: a debate[J]. Fuel, 1986,65(2-3): 155~163.
    [142] Hall P.J, Larsen J.W. Evidence for the formation of stable coal-N-methyl pyrrolidinone and coal-pyridine gels[J]. Energy & Fuels, 1993, 7 (1): 47.
    [143] Helble J.J, Mojtahedi W. Trace Element Partitioning During Coal Gasification[J]. Fuel, 1996, 75(8): 931-939.
    [144] Herod A.A., Lazaro M.J., Domin M., et al. Molecular mass distributions and structural characterisation of coalderived liquids[J]. Fuel, 2000, 79(4): 323-337.
    [145] Herrmann A.G. Yttrium, Lanthanides. In: Wedepohl K. H.(editor). Handbook of Geochemistry[J]. Berlin-Heidelberg: Spring-Verlag, 1970, 239 (57-71): 1-10.
    [146] Hirano K. Outline of Nedol coal liquefaction process development (Pilotplantprogram) [J]. Fuel process tech, 2000, 62(1): 109-118.
    [147] Hower J.C., Maroto Valer M.M., Taulbee, D.N., et al. Mercury capture by distinct fly ash carbon forms[J]. Energy & Fuels, 2000, (2-3): 224-226.
    [148] Hower J.C., Robl, T.L., Anderson, C., Thomas, G.A. et al. Characteristics of coal utilization by-products from Kentucky power plants, with emphasis on mercury content[J]. Fuel, 2005, 84: 224-226.
    [149] Hower J.C., Trimble, A.S., Eble, C.F., et al. Characterization of fly ash from low-sulfur and high-sulfur coal sources: partitioning of carbon and trace elements with particle size[J]. Energy Sources, 1999, 511-525.
    [150] Ikenaga, Naoki, Coal Hydroliquefaction Using Highly Dispersed Catalyst Precursors[J]. Catal.Today, 1997, 39(12): 99-109.
    [151] Jaroslav erny. Structural dependence of CH bond absorptivities and consequences for FT-i.r. analysis of coals[J]. Fuel, 1996, 75, (1): 1301-1306.
    [152] Jose V Ibarra, Edger Munoz,Rafael Moliner.FTIR study of the evolution of coal structure during the coalification process[J]. Fuel, 1996, 24(6): 725-735.
    [153] Judith Wright, Hans Schrader, William T Holser. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51, (3): 631-644
    [154] Kizilshtein, L.Y, Kholodkov, Yu.I.. Ecologically hazardous elements in coals of the Donets Basin [J]. International Journal of Coal Geology. 1999, 40(2-3): 189-197.
    [155] Marzec, Anna. maceromolecular and molecularmodel of coal structure[J]. Fuel Processing Technology, 1985, 14(4) :39-46.
    [156] McMillen, Donald F., Malhotra, Ripudaman, Chang, Sou-Jen, et al. Coupling pathways for dihydroxy aromatics during coal pyrolysis and liquefaction[J]. Fuel. 2004, 83(11-12): 1455-1467.
    [157] Murray R.W., Buchholtz T, Brink MR, et al.. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(2): 268-272.
    [158] Murray RW, Leinen M.. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochim Cosmochim Acta, 1996, 60: 3869-3878.
    [159] Palmer CA, Lyons P.C.. Selected elements in major minerals from bituminous coal as determined by INAA: implications for removing environmentally sensitive elements from coal[J]. International Journal of Coal Geology, 1996, 32: 151-166.
    [160] Prinz, D., Pyckhout-Hintzen, W., Littke, R. Development of the meso- and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments[J].Fuel. 2004, 83(4-5): 547-556.
    [161] R.M.Baldwin, D.R.Kennar, O.Nguanprasert and R.L.Miller. Liquefaction Reactivity Enhancement of of Coal by Mild and Solvent Swelling Techniques[J]. Fuel.1991(70)429-433.
    [162] R.Richaud, H.Lachas,M.J.Lazaro et al et al. Trace Element in Coal Derived Liquids: Analysis by ICP-MS and M?ssbauer Spectroscopy[J]. Fuel. 2000 , (79):57.
    [163] Reask, E.. The model of occurrence and concentration of traceelements in coal. Progress of Energy[J]. Combustion Science, 1985, (11):97-118.
    [164] Redlich, Peter J., Hulston, Chris K.J., Jackson, W. Roy, et al. Hydrogenation of sub-bituminous and bituminous coals pre-treated with water-soluble nickel–molybdenum or cobalt–molybdenum catalysts[J]. Fuel. 1999, 78(1): 83-88.
    [165] Rinco Jose M and Sergio Cruz. Inflence of Preswelling on Liquefaction of Coal[J]. Fuel. 1988, (67):1162-1163.
    [166] Sakanishi, K. Carbon-supported metal sulfides catalysts for coal liquefaction and upgrading of coal liquids[J]. Fuel and Energy Abstracts. 1998, 39(1): 15.
    [167] Schobert H.H, Song C. Chemicals and materials from coal in the 21st century[J]. Fuel, 2002, 81 (1): 15-32.
    [168] Shaw D.M.. Development of the early continental crust. Part III. Depletion of incompatible elements in the mantle[J]. Precambrian Research. 1980, 10(3-4): 281-299.
    [169] Shinn, John H.. structure of coal and its liquefaction products:a reactive model[M]. Pergamon Press, 1985, 738-741.
    [170] Spackman, William. History of applied coal petrology in the United States: II. A personalized history of the origin and development of applied coal petrology at the Pennsylvania State University[J]. International Journal of Coal Geology. 2000, 42(2-3): 103-114.
    [171] Sternberg V. I, Baltisberger R J, Patel K M. The role of noncovalent bonding in coal[J]. In: Gorbaty M.Coal Science. NewYork: Academic Press, 1983, 125-132.
    [172] Sternberge H W, Raymond R. Acid-base structure of coal derived asphaltenes[J]. Science, 1975, 188: 49-50.
    [173] Sugano, Motoyukia, Tamaru, Taku, Hirano, Katsumia, Mashimo, Kiyoshia. Additive effect of tyre constituents on the hydrogenolyses of coal liquefaction residue[J]. Fuel. 2005, 84(17): 2248-2255.
    [174] Sugano, Motoyuki, Hirano, Katsumi, Mashimo, Kiyoshi. Effects of reaction conditions on the hydrogenolyses of cation exchanged coals[J]. Fuel Processing Technology. 2004, 85(8-10): 837-848.
    [175] Swaine D.J.. The organic association of elements in coals[J]. Organic Geochemistry, 1992,18, (3): 259-261.
    [176] Swaine DJ. Trace Elements in Coal[M]. London: Butterworths. 1990.
    [177] Swaine DJ.. The contents and some related aspects of trace elements in coals. In: Swaine DJ and Goodarzi F (eds), Environmental Aspects of Trace Elements in Coal[J]. Dordrecht: Kluwer Academic Publishers , 1995: 5-23.
    [178] Wertz D L, Bissell M. One-dimensional description of the average polycyclic aromaticunitin Pocahontas No. 3 coal: an X-ray scattering study[J]. Fuel, 1995, 74 (10): 1431-1435.
    [179] Yu. F. Patrakov, V.F. Kamyanov, O.N. Fedyaeva. A structural model of the organic matter of Barzas liptobiolith coal[J]. Fuel, 2005, 84: 189-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700