用户名: 密码: 验证码:
等离子熔化—注射制备碳化物增强涂层组织及耐磨性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决热喷涂、堆焊、熔覆等技术制备碳化物涂层中存在的涂层脱落、碳化物分解、碳化物颗粒沉底或上浮、裂纹等问题,研制开发了等离子熔化-注射技术,实现了涂层与基体冶金结合,显著地提高了涂层与基体结合强度。有效解决了涂层中碳化物颗粒沉底或上浮,碳化物颗粒分解等问题,显著提高涂层的耐磨性能。等离子熔化—注射设备造价低廉,加工效率高,技术更容易实现工业化。
     本文采用等离子熔化-注射技术在Q235钢表面注射WC-Co、SiC颗粒制备出成形良好、无宏观缺陷的碳化物涂层。采用SEM、TEM、XRD及EDS对涂层组织结构及成分进行了分析。采用摩擦磨损实验机测量了涂层干滑动摩擦磨损性能。组织分析结果表明,熔化-注射WC-Co涂层由WC、M6C(Fe3W3C、Co3W3C)、Fe和W2C等相组成。熔化-注射20~30μmWC-Co涂层顶部由原始WC颗粒、棒状和十字花状的Fe3W3C、板条状铁基共晶组织和灰色铁基组织构成;中部棒状和十字花状组织比较粗大,灰色铁基共晶组织明显多于涂层顶部;底部棒状及十字花状组织比中部稍多,尺寸较小。熔化-注射200~300μmWC-Co涂层顶部WC基本保持原始形貌,颗粒边缘Fe3W3C形成长竿状的“触角”,远离WC的显微组织为网状碳化物和铁基相;涂层中部和底部均由网状碳化物和铁基相组成。熔化-注射200~300μmSiC涂层中形成Fe、SiC、石墨等相。在涂层表面,注入的SiC颗粒“镶嵌”在基体中,涂层内部组织由石墨、铁素体、珠光体组成。熔化-注射80~120μmSiC时,涂层中除有Fe、Fe3C外,还出现了珠光体和非平衡相。基体预热200℃制备的20~30μmWC-Co涂层,顶部组织包括鱼骨状共晶组织、灰色铁基组织及鱼骨状组织周围的黑带;中部析出比较粗大碳化物,呈白色树枝状;底部由未分解的块状WC、十字花状碳化物及鱼骨状共晶组织构成。
     熔化-注射20~30μmWC-Co、200~300μm和80~120μmSiC涂层组织分布均匀,避免了由于碳化物颗粒与基体密度差引起的颗粒沉底和上浮。采用相同工艺制备200~300μmWC-Co涂层中WC-Co分布在涂层的顶部,没有沉底。20~30μmWC颗粒注入到熔池中需要克服的临界速度为0.20m/s、实际注入速度为2.6m/s。200~300μmWC-Co颗粒所需临界速度为0.063m/s。实际注入速度为0.7m/s。基体表面预涂Ni基自熔合金后,改善WC颗粒与液态基体润湿性,200~300μmWC-Co颗粒所需临界速度转变为零,颗粒在熔池中运行初始速度为0.07m/s,200~300μmWC-Co在整个涂层中分布均匀。
     随着颗粒粒度增加,涂层中的颗粒分解程度降低,大颗粒200~300μmWC-Co和200~300μmSiC颗粒分解程度均低于小颗粒20~30μmWC-Co、80~120μmSiC。基体温度提高,由于熔池加深及凝固时间变长,涂层中WC-Co颗粒分解和下沉倾向增加。
     等离子熔化—注射碳化物涂层磨损机理主要是磨粒磨损,涂层耐磨性有明显提高。注入大颗粒的碳化物涂层中保留大量的原始碳化物,耐磨性能明显高于注入小颗粒碳化物涂层的耐磨性能。干滑动摩擦磨损条件下,等离子熔化-注射200~300μmWC-Co涂层的耐磨性大约为Q235钢的87倍;20~30μmWC-Co涂层的耐磨性为Q235钢的14倍;200~300μmSiC颗粒涂层耐磨性为Q235钢的48倍,80~120μmSiC颗粒涂层的耐磨性为Q235钢的4倍。
To overcome problems of spallation, dissolution of carbides, carbides sinking or rising, and cracking in carbide coatings produced by thermal spraying, hardfacing and cladding, plasma melt injection(PMI) is presented in this thesis. Coatings metallurgically bonded to the substrate with evenly distributed carbides can be synthesized with PMI technology, and bonding strength of the coating is improved greatly. Dissolution of carbides, carbides sinking or rising,and cracking can be minimized with PMI. The wear resistance can be improved. Equipment of PMI is cost-effective and efficient, and the technology is easy to be industrialized.
     WC-Co, SiC particles were injected into Q235 steel,and carbide coating with good appearance were synthesized using PMI technology. The coatings are without macro defects. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy diffraction spectrum (EDS) were used to examine the microstructure and composition of the coatings. Wear resistance of the coatings was tested using dry sliding wear tester. The results show that the microstructure consists of WC, M6C(Fe3W3C or Co3W3C), and W2C. In the upper part of the specimen injected with 20~30μm WC-Co particles, the microstructure constists of some original WC particles, white bar-shaped and cross-shaped Fe3W3C, gray ion base and black lath Fe-based eutectic structure. White bar-shapedand crossshaped carbides in the middle part of the coating are bigger, amount of the gray ion base is more than that in the upper. White bar-shaped and cross-shaped carbides in the bottom are smaller, and amount of them is more than that in the middle. In the upper part of the specimen injected with 200~300μm WC-Co paticles, WC-Co particles keep their original block shape basically. Carbides crystallize in long pole shape on the edge of WC particles. The microstructure far from WC particles consists of ion based matrix and reticulate carbides. Microstructure in the middle and the bottom consists of ion based matrix and reticulate carbides. Graphite,Fe,SiC Microstructure of the coating injected with with 200~300μm SiC particles consists of iron, SiC and graphite. The SiC particles are embedded on the top surface of the specimen, and the graphite, ferrite, and pearlite are in the coating. The microstructure of the coating injected with 80~120μm SiC particles consists of Fe and Fe3C, forming pearlite and non-equilibrium phase. In the upper part of the coating injected with 20~30μm WC-Co particles, the microstructureconstists of gray, herringbone structure and black belt around the herringbone structure, when the substrate preheated temperature 200℃. In the middle part, the carbide dendrites are larger. In the bottom part, the carbides are fewer not evenly distributed, and in block shape. Some herringbone structure appeares.
     Microstructure of the coatings injected with 20~30μm WC-Co, 200~300μm SiC, and 80~120μm SiC particles is evenly distributed, and carbides sinking or rising due to density differences between the substrate and the carbides is avoided.Large amount of unmelted carbides can be found in the top part of the coating injected with 200~300μm WC–Co particles.
     The critical velocity of the 20~30μm WC-Co particles to overcome the melt surface barrier is 0.20m/s, and the injecting velocity is 2.6m/s. The critical velocity of the 200~300μm WC-Co particles is 0.063m/s, and the injecting velocity is 0.7m/s. When the nickel-based self-fluxing alloy is coated on the substrate before injection, wetability of the liquid metal to WC-Co particles is improved. The critical velocity of the 200~300μm WC-Co particles becomes zero. The initial velocity in the molten pool increased to 0.7m/s. The WC paticles are well distributed in the coating.
     Dissolution of the carbide particles decreases with increase of the particle’s size. Dissolution of the 200~300μm WC-Co and the 200~300μm SiC is lower than that of the 20~30μm WC-Coand the 80~120μm SiC. With deepening of the molten pool and prolongation of the solidification time, the 20~30μm WC-Co particles tends to sink down, when the substrate is preheated 200℃. Abrasion is the main wearing mechanism for carbides coatings produced by PMI Wear resistance of the coatings increase greatly. Large amount of unmelted carbide particles exist in the coatings injected with large carbide particles, so their wear resistance is much higher than that of the coatings injected with fine carbide particles. Wear resistance of the coatings injected with 200~300μm WC particles, 20~30μm WC particles, 200~300μm SiC particles, and 80~120μm SiC particles are about 87, 14, 48 and 4 times higher than the reference substrate material, respectively.
引文
behavior of metallic materials caused by subsonic to hypervelocity particle impact. Wear. 2005,258 :100~106
    13 M. F. Morks, Akira Kobayashi. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings. Materials Science and Engineering. 2007, B139: 209~215
    14邹增大,王新洪,刘雪梅.WC硬质合金堆焊材料界面组织结构和力学性能.金属学报.2000,36(12):1279~1283
    15 Alexander Ryabchikov, Igor B. Stepanov. New medallion and plasma surface modification methods. Surface & Coatings Technology. 2007, 201: 8637~8640
    16 Y. F. Liu a, J. S. Mua, X.Y. Xu a, S. Z. Yang. Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process. Materials Science and Engineering .2007, A 458: 366~370
    17 S. Chatterjee, T. K. Pal. Wear behavior of hardfacing deposits on castiron. Wear. 2003, 255: 417~42
    18 K. Gurumoorthy, M. Kamaraj, K. Prasad Rao, etal. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy. Materials Science and Engineering. 2007, A 456 : 11~19
    19 H. X. Wang, Y. H. Wei, C. L. Yang. Numerical calculation of variable polarity keyhole plasma arc welding process for aluminum alloys based on finite difference method. Computational Materials Science. 2007, 40: 213~225
    20 V. Ocel?′k, D. Matthews, De Hosson. Sliding wear resistance of metal matrix composite layers prepared by high power laser. Surface & Coatings Technology. 2005, 197: 303~ 315
    21 Y. F. Liu, J. S. Mua, X. Y. Xu, S. Z. Yang. Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process. Materials Science and Engineering. 2007, A458: 366~370
    22王惜宝,王晓峰,贾凤锁.等离子弧粉末堆焊条件下粉末颗粒的热行为.焊接学报.2002,23(4):12~16
    23曾晓雁,吴新伟,陶曾毅,等.激光熔覆Ni-WC金属陶瓷层的耐磨性分析.金属学报.1997,33(8) :885~890
    24 Serdar Osman, Y lmaz. Wear behavior of gas tungsten arc deposited FeCr, FeCrC, and WC coatings on AISI 1018 steel. Surface & Coatings Technology. 2006, 201: 1568~1575
    25 S. W. Huang, M. Samandi, M. Brandt. Abrasive wear performance and microstructure of laser clad WC/Ni layers. Wear. 2004, 256: 1095~1105
    26 A. Yakovlev, P. Bertrand and I. Smurov. Wear-resistant coatings with engineered structure by laser cladding. Teratology Letters. 2004, 17(4): 705~708
    27 G.. Denhm, M. B. Amberger. Laser cladding of Co-based hardfacing on Cu substrate. Journal of materials science. 2002, 37 : 5345~5353
    28 Wu Wanglin. Microstructure of TiC dendrites reinforced titanium matrix composite layer by laser cladding. Journal of materials science lettters. 2003, 22: 1169~1171
    29花国然,黄因慧,赵剑峰,等.激光熔覆纳米Al2O3等离子喷涂陶瓷涂层.中国有色金属学报.2004,14(2):99~203
    30 Changsheng Xie, Mulin Hu, Yaming Sheng, etal. Oxidation reaction during laser cladding of SAE1045 carbon steel with SiC/Cu alloy powder. Journal of materials science 2001, 36: 1501~1505
    31 P. Wu, H. M. Du, X. L. Chen, etal. Influence of WC particle behavior on the wear resistance properties of Ni–WC composite coatings. Wear. 2004, 257: 142~147
    32张松,张春华,文効忠,等.AA6061Al合金表面Si3N4激光熔覆层的空泡腐蚀性能.中国激光.2003,30(2):185~188
    33 T. M. Yue, K. J. Huang, H. C. Man. Formation of amorphous Al2O3 phase on aluminum alloy by in-situ laser cladding. Journal of materials science. 2004, 39: 6599~6602
    34吴玉萍.等离子弧熔覆Fe基合金+TiC涂层中的陶瓷相行为与相结构.焊接学报.2001,22(6):89~91
    35 A. Frenketal. Residual Sternson. Difference Laser Cladding Materials. Surface and Coating Technology. 1991, 45: 435
    36 J. D. Ayers, Particulute. TiC2 Hardened street surface modification. ProcConf. ICALEO, 983: 25~35
    37周二华,曾晓雁,吴新伟,等.A3钢表面激光熔敷Fe2WC金属陶瓷复合层的研究.激光技术.1997,21(1):34~37
    38赵海鸥,李春华.激光熔覆工艺特性及裂纹敏感性研究.金属热处理.2001,1:18~21
    39刘富荣,高谦,高登攀,等.激光熔覆WC增强复合涂层开裂行为分析.材料工程.2003,5:37~39
    40王存山,夏元良,李刚,等.宽带激光熔覆Ni-WC梯度复合涂层组织与性能.应用激光.2001,21(3):151~154
    41 M. Riabkina-Fishman, E. Rabkin, P. Levin etal. Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel. Materials Science and Engineering. 2001, A302: 106~114
    42吴玉萍,林萍华,王泽华,等.多层预涂敷等离子熔覆TiC/Ni梯度涂层研究.材料热处理学报.2004,25(3):74~77
    43裴宇韬.激光熔覆TiCp/Ni合金自生梯度涂层及其自生机制.金属学报.1998,34(9):987~991
    44 Xiaolei Wu. In situ formation by laser cladding of a TiC composite coating with a gradient distribution. Surface and Coatings Technology. 1999, 115: 111~115
    45曾晓雁,陶曾毅,朱蓓蒂,等.激光制备金属陶瓷复合层技术的现状及展望.材料科学与工程.1995,13:8~15
    46吴萍,周昌炽,唐西南.激光熔覆镍基合金和Ni/WC涂层的磨损特性.金属学报.2002,12(12):1257~1260
    47 Y. T. Pei, T. C. Zuo. Microture in laser clad TiC-reinforced Ni-alloy composite coating. Materials Science and Engineering. 1998, A241: 259~263
    48 J. A. Vreeling, V. Ocelik, Y. T. Pei etal. Laser melt injection in aluminum alloys on the role of the oxide skin. Acta Materialia. 2000, 48: 4225~4233
    49 A. B. Kloosterman, B. J. Kooli, DE. Hosson. Electron Microscopy of Reaction Layers Between SiC and Ti-6Al-4V after Laser Embedding. Acta Materialia. 1998, 46(17): 6205~6217
    50 Y. T. Pei, V. Ocelik, DE. Hosson. SiCp/Ti6Al4V Functionally Graded Materials Produced by Laser Melt Injection. Acta Materialia. 2002, 50: 2035~2051
    51 J. A. Vreeling, V. Ocelik, J. T. M. De Hosson. Ti–6Al–4V strengthened by laser melt injection of WCp particles. Acta Materialia. 2002, 50: 4913~4924
    52郭面焕,段志林.熔-喷ZrO2+WC陶瓷涂层组织结构.焊接学报.2004,25(1):13~16
    53朱全力,杨建,季生福.过渡金属碳化物的研究进展.化学进展.2004,16(5):382~385
    54 E. Iglesia, F. H Ribeiro, BoudartM, etal. Catal. Today. 1992, 15: 307~337
    55 G. Wirmark, G. Dunlop. Phase Transformations in The binder Phase of Co-W-C Cemented Carbides. Science of Hard Materials. Plenum Press. 1983: 315
    56 H. E. Exner. Science of Hard Materials. Plenum Press. 1983: 239
    57 F. Giameia, S. Burma, M. Rabin. Cobalt. 1968, 40(2): 140
    58 G. Wirmark, G. L. Dunlop. Science of Hard Materials. Plenum Press, 1983: 311
    59刘寿荣.WC-Co硬质合金中的η相.硬质合金.1997,14(4):198~203
    60 CH. Allibert. Refract Met Hard Mater. 2001, 19: 53
    61 O. Lavergne, F. Robaut, F. Hodaja, C. H. Allibert. Mechanism of Solid-State Dissolution of WC in Co-based Solutions. Acta Materialia. 2002, 50: 1683~1692
    62 U. S. Patent. No. 4743515, 1988
    63孙宝琦,吴国龙,周建华.WC-Co硬质合金中的η相及其对合金性能的影响.硬质合金.1999,16(2):92~97
    64李有观.国外硬质合金技术发展的主要特点.世界有色金属.2002,10
    65 S. Ramakrishnan, Rogozinski M W. Properties of Electric Arc Plasma for Meta Cutting. Journal of Physics D. Applied Physics. 1997, 30(4): 636~644
    66郑惠锦,雷玉成.焊接参数与等离子弧相互关系的研究.江苏理工大学学报(自然科学版) .2001,22(6):42~45
    67董丽虹,徐滨士,朱胜,等.粉末等离子弧堆焊枪体的设计研究.焊接技术.2004,8:45~48
    68刘家浚.材料磨损原理及其耐磨性.清华大学出版社,1993:265
    69孙宝琦.关于WC-Co硬质合金的强度和结构问题.稀有金属与硬质合金.2004,11:32~46
    70 D. P. Mondal, S. Das, K.S. Suresh, et.al. Compressive deformation behaviorof coarse SiC particle reinforced composite: Effect of age-hardening and SiC content. Materials Science and Engineering. 2007, A 460–461: 550~560
    71 Suleiman Bolaji Hassan, Victor Sunday Aigbodion. Experimental correlation between varying silicon carbide and hardness values in heat-treated Al–Si–Fe/SiC particulate composites. Materials Science and Engineering. 2007, A 454–455: 342~348
    72 Oshua Pelleg. Reactions in the matrix and interface of the Fe–SiC metal matrix composite system. Materials Science and Engineering. 1999, A269: 225~241
    73 Yi Pan, Ming Xia Gao, Filipe J. Infiltration of SiC performs with iron silicone melts microstructures and properties. Materials and Engineering. 2003, A359: 343~349
    74 [苏]M.г.洛沙克.碳化物的强度和寿命.冶金工业出版社,1990,85
    75周香林,叶以富,于家洪,等.激光熔覆陶瓷涂层中的缺陷及防止.热加工工艺,1995,6:48~50.
    76陈传忠.激光重熔对等离子喷涂WC及Al2O3层组织和耐磨性能的影响.哈尔滨工业大学博士学位论文.2001:62
    77 Dejian Liu, Liqun Li, Fuquan Li, Yanbin Chen, etal. WCp/Fe metal matrix composites produced by laser melt injection. Surface & Coatings Technology. 2008, 202: 1771~1777
    78 A. Antoni-Zdziobek, J. Y. Shen, M.Durand-Charre. About one stable and three metastable eutectic microconstituents in the Fe-W-C system. International Journal of Refractory Metals & Hard Materials. 2008, 263: 372~382
    79常国威,王建中.金属凝固过程中的晶体生长与控制.冶金工业出版社,2002:40,88
    80 RK. Viswanadham. Scienee of Hard Materials. New York. 1983: 315
    81崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社,1998:76,184
    82周振丰,张文钱.焊接冶金与金属焊接性.机械工业出版社,1992,98
    83 J H Abboud, D F West. Ceramic-metal composites produced by laser surface treatment. Materials Science and Technology. 1989, 6: 725~728
    84 G Ricciardi, M Cantello, G Molino,etal. Laser assisted formation of a wear SiC-metal composite on the surface of a structural aluminum alloy. KeyEngineering Material. 1990(46, 47): 415~424
    85 G Shafirsten, M Bamberger. Laser surface alloying of carbon steel andα-Fe with CrB2 particles. Surface and Technology. 1991, 45: 417~423
    86吴新伟,曾晓燕.镍基WC金属陶瓷激光熔覆涂层的熔化烧损规律.金属学报.1997,12:1282~1288
    87丁厚福. WC溶解对钢结硬质合金组织的影响.材料科学与工艺.1997,3:82~85
    88曲仕尧,王新洪,邹增大,刘雪梅.WC硬质合金颗粒堆焊烧损的机理.焊接学报.201,22(2):85-89
    89李荣久.陶瓷—金属复合材料.冶金工业出版社,2004:113
    90 Wang Xibao, Li Chunguo, Peng Xiaomin, etal. The powder's thermal behavior on the surface of the melting pool during PTA powder surfacing. Surface & Coatings Technology .2006, 201: 2648~2654
    91李惠琪,吴玉萍.等离子表面技术–原理与应用.泰安出版社,2000:19
    92孙玉宗,李惠琪,于洪爱,等.等离子束表面冶金过程中熔体流动对凝固组织的影响.中国表面工程.2006,19(5):22~26
    93赵玉珍.焊接熔池的流体动力学行为及凝固组织模拟.北京工业大学工学博士学位论文.2004:2 ~78
    94李力军,杨瑞林,张立坡,等.影响碳化物硬质颗粒堆焊材料耐磨性的冶金因素.碳化物.1991,8(4):45~51.
    95 T. C. Chou, A. Joshi, J. Wadsworth. Mater. Res. 1991, 4: 796~809
    96 Stefanescu D Metal. Metal. Trans. 1988, 19A: 2847
    97韩青有,J D .HUNT.凝固过程中的颗粒推斥.金属学报.1996,32(4):363~367.
    98黄诚,宋波.非均质形核润湿角数学模型研究.中国科学E辑工程科学材料科学.2004,34:737~742
    99杨胶溪.铸渗法制造碳化钨粒子增强表面复合材料的研究.山东农业大学硕士论文.1999:38
    100任文辉,林智群,彭道林.液体表面张力系数与温度和浓度的关系.湖南农业大学学报(自然科学版).2004,2:77~79
    101任丰兰,孙宁,王道明,等.测量液体表面张力系数的新方法.计量与测试技术.2005,32(12):5~6
    102 J. Hasim, L. L. Ooney, M. S. Hashmi. The wettability of SiC particles bymolten alum inium alloy. M ater. Proc.Tech. 2001, 119: 324~328
    103 I. A. Ibrah im, F. A. Mohamed, E. J. L avernia. Particlate reinforced metalmatrix composites review. M ater.Sci. 1991, 26: 1137~1156
    104 S. Ramakrishnan, Rogozinski M W. Properties of Electric Arc Plasma for Metal Cutting. Journal of Physics D. Applied Physics.1997, 30(4): 636~6441
    105刘邦武,李惠琪,张丽民.等离子束表面冶金铁基合金的设计与研究.材料与冶金学报.2005,3:241~244.
    106 W. M. Tang, Z. X. Zheng, H. F. Ding, etal. A study of the solid state reaction between silicon carbide and iron. Materials Chemistry and Physics. 2002, 72: 258~264
    107沈定钊,吴春京.铸铁冶金.冶金工业出版社,1995:195
    108 O. Kubaacheweski. Iron-Binary Phase Diagrams. 1982, 136
    109 R Ruxanda, L Beltran-Sanchez. On the Eutectic Solidifacation of Spheroidal Graphite Iron. An Experimental and Mathematical Modeling Approach, AFS Trans. 2001: 1037~1048
    110郝石坚.现代铸铁学.冶金出版社.2004:110~111
    111毛为民.半固态金属成型技术.机械工业出版社.1999:56
    112 D斯科特(英).上海市机械工程学会摩擦学学组译.工业摩擦学.机械工业出版社,1982:145
    113尤显卿,任昊.颗粒增强钢基复合材料摩擦学研究进展.兵器材料科学与工程.2003,26(5):57~61
    114吴人杰.金属基复合材料的现状与展望.金属学报.1997,33(1):78~82
    115张静,潘复生,陈万志.铁基复合材料的现状与发展.材料导报.1995,1:67~71
    116张毅.钢基复合材料和表面技术的发展方向.上海钢研.2000,4:42~45
    117 O. N. Dogan, J. A. Hawk, R. D. Wilson, etal. Wear of titanium carbide reinforced metal matrix ctmaposite. Wear. 1999, 11: 725~769
    118曹阳,李国俊,陈复民.金属基复合材料的摩擦学研究进展.机械工程材料.1992,16(4):1~3
    119 [瑞典]H.Engquist.硬质合金的滑动磨损.2004,20(12):15~20
    120陈华辉.等离子喷涂WC-Co涂层的磨料磨损.金属热处理.1997,11:5~9
    121 JL巴西,PA坦瑞依.在松散硬质磨料中的WC-Co合金的磨蚀.硬质材料工具技术进展.冶金工业出版社,1982:159~169
    122 IM奥格尔维,G M佩罗特.天井钻机钻头上的硬质合金镶齿的磨耗.硬质材料工具技术进展.冶金工业出版,1982:179~191
    123曾晓雁,朱蓓蒂,陶曾毅,等.激光熔覆金属陶瓷涂层中内瓷相的分布规律研究.华中理工大学学报.1995,10:77-80
    124陶曾毅,曾晓雁,黄为.不同工艺条件下粗颗粒碳化钨金属陶瓷复合层的耐磨性研究.中国表面工程.1992,10:14~19
    125李秀兵,刘琛,高义民.WCp增强钢基表层复合材料的两体磨粒磨损性能.铸造.2006,5:482~485
    126刘家浚.材料磨损原理及其耐磨性.清华大学出版社, 1993:98,99,100,144
    127 K.H.哈比希著,严立译.材料的磨损与硬度.机械工业出版社,1987:168~169
    128李建明著.磨损金属学.冶金工业出版社,1990:117
    129 P. Samyn, P. De Baets, G Schoukens, etal. Tribological behavior of pure and graphite-filled polyimides under atmospheric conditions. Polymer engineering and science. 2003, 43 (8): 1477~1487
    130 P. Rohatagi, S. Ray, Liu Y. Tribological proproes of metal matrix graphite particle composites. Inter Mater Rev. 1992, 37(3): 129~149
    131 Y. Z. Zhan, G. Zhang. Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles. Tribol Lett. 2004,
    17(1): 91~98
    132 S. Shaji, V. Radhakrisnan. An investigation on solid lubricant moulded grinding wheels. International journal of machine tools & manufacture. 2003,
    43: 965~972
    133 M. Hatate, T. Shiota, N. Takahashi, K. Shimizu. Influences of graphite shapes on wear characteristics of austempered cast iron. Wear. 2001, 251:
    885~889

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700