用户名: 密码: 验证码:
Mg-Hg-Ga阳极材料合金设计及性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁阳极材料的电化学性能和耐腐蚀性能主要取决于添加的合金元素和材料的微观组织。针对镁阳极材料普遍存在的溶解不均匀、电流效率低下等问题,选择高活性的合金元素,研究其对镁阳极材料的活化机理,绘制相关的镁合金相图,研究第二相、合金成分和显微组织演变对镁阳极材料性能的影响,对于大功率海水电池用高活性镁阳极材料的成分设计、热处理工艺制定和组织控制具有重要的理论意义和应用价值。本文通过实验测定和相图计算的方法(CALPHAD)确定Mg-Hg-Ga三元系富镁角的相平衡关系,采用显微组织观察和电化学性能检测等方法对合金元素Hg和Ga的活化机理以及第二相、合金成分和热处理工艺对镁阳极材料组织、性能的影响进行了以下研究。
     1.测定Mg-Hg-Ga三元系富镁角的相平衡关系,优化Mg-Hg-Ga三元系的热力学数据库。采用X射线衍射分析(XRD)、扫描电镜显微分析(SEM)和电子探针成分分析(EPMA)等方法,测定了Mg-Hg-Ga三元系673K和473K富镁角的相关系。利用CALPHAD方法,评估优化了Mg-Ga、Mg-Hg和Ga-Hg三个二元系中各相的热力学参数,在此基础上,根据实验测定的Mg-Hg-Ga三元系相图数据,优化计算Mg-Hg-Ga三元系,获得了一组合理自洽的热力学参数。
     2.确定Mg-Hg-Ga三元系中化合物Mg_(21)Ga_5Hg_3的晶体结构。利用X射线粉末衍射和Rietveld峰形拟合法测定和精修了化合物Mg_(21)Ga_5Hg_3的晶体结构为四方晶系,空间群为141/a(No.88),Z=4,是Ge_8Pd_(21)结构类型。其点阵常数和密度分别为α=14.5391(5)(?),c=11.5955(4)(?),D_(calc)=4.004g/cm~3。
     3.研究第二相对Mg-Hg-Ga合金性能的影响。利用673K时效处理、SEM显微组织观察和电化学性能检测等方法研究了不同种类和形貌的富镁角第二相Mg_3Hg、Mg_(21)Ga_5Hg_3和Mg_5Ga_2对Mg-Hg-Ga合金电化学性能和耐腐蚀性能的影响。结果表明:第二相Mg_3Hg使合金具有最佳电化学活性,第二相Mg_(21)Ga_5Hg_3使合金具有最佳耐腐蚀性能;Mg-Hg-Ga阳极材料的相组成选择在Mg+Mg_(21)Ga_5Hg_3相区、Mg+Mg_(21)Ga_5Hg_3+Mg_3Hg相区和Mg+Mg_(21)Ga_5Hg_3+Mg_5Ga_2相区。当3种第二相以颗粒状弥散的分布在镁基体中时,Mg-Hg-Ga合金耐腐蚀性能和电化学活性最佳;当第二相与镁基体形成共晶组织在晶界析出时,Mg-Hg-Ga合金综合性能最差。
     4.研究合金成分对Mg-Hg-Ga阳极材料性能的影响。通过SEM显微组织观察和电化学性能检测等方法研究了位于不同相区,具有不同w(Hg):w(Ga)比的Mg-Hg-Ga阳极材料的电化学性能和耐腐蚀性能,结果表明:w(Hg):w(Ga)比为0.6:1,含有第二相Mg_(21)Ga_5Hg_3和Mg_5Ga_2的Mg-4.8%Hg-8%Ga合金具有优良的电化学活性和耐腐蚀性能;w(Hg):w(Ga)比为1.1:1,含有第二相Mg_(21)Ga_5Hg_3的Mg-8.8%Hg-8%Ga合金具有最佳的电化学活性。
     5.研究热处理工艺对Mg-Hg-Ga阳极材料组织和性能的影响。通过DSC分析、TEM显微组织观察和电化学性能检测等方法研究了Mg-4.8%Hg-8%Ga合金和Mg-8.8%Hg-8%Ga合金在773 K固溶,423K、473K和523K时效时微观组织的演变规律,对不同组织的Mg-Hg-Ga阳极材料的综合性能进行了对比。结果表明:性能优良的镁阳极材料为773K固溶24h、523K时效8h的Mg-8.8%Hg-8%Ga合金,动电位极化扫描测得其腐蚀电流密度为3.52 mA/cm~2,100mA/cm~2恒电流极化时的平均电位为-1.884 V,其显微组织为镁基体和镁基体晶内弥散分布的Mg_(21)Ga_5Hg_3颗粒。本课题组用该研究成果研制的镁/氯化亚铜海水电池用Mg-Hg-Ga阳极材料,可基本取代国外进口的大功率海水电池用镁阳极材料,现已投入生产。
     6.探讨Mg-Hg-Ga阳极材料的腐蚀类型和活化机理。通过X射线物相分析、SEM显微组织观察和电化学性能检测研究了Mg-Hg-Ga阳极材料的腐蚀行为和Hg、Ga元素的活化反应特征。结果表明:Mg-Hg-Ga阳极材料的腐蚀类型为点蚀、缝隙腐蚀和全面腐蚀共同存在。Hg、Ga元素对镁阳极的活化机理为溶解-回沉积机制:溶解初期,阴极第二相化合物通过腐蚀原电池反应引发点蚀的出现,促进了Mg基体和合金元素的溶解;放电过程中,溶液中的Hg~+、Ga~(3+)被Mg还原成Hg、Ga而沉积在阳极材料表面。沉积层一方面形成镁汞齐,镁汞齐与水发生剧烈反应而继续产生Hg、Ga沉积,此循环促进活化;沉积层另一方面影响阳极表面结构,隔离腐蚀产物,破坏氧化物膜,从而使合金电位负移,点蚀更易引发和扩散,进一步起到活化作用。
The properties of electrochemical and corrosion resistance of Mg anode materials depend on the alloying elements and microstructure. Against some problems such as non-uniform dissolving and low current efficiency in Mg anode materials, it is necessary to choose proper alloying elements and study their activity mechanisms on Mg anode materials. Further studies on accurate Mg alloy phase diagrams, the influence of second phases as well as microstructure evolution on electrochemical and corrosion properties of Mg anode materials are meaningful for alloy design, microstructure controlling and heat treatment technology decision of Mg anode materials with high activity in power seawater battery. In this work, the phase equilibria of the Mg-Hg-Ga ternary system were determined by experimental determination and calculation of phase diagram (CALPHAD) method. The activity mechanism of alloying elements Hg and Ga on Mg anode materials, the influences of second phases and alloy compositions and heat treatment technology on the properties of Mg anode materials were investigated by electrochemical and microstructure measurements. This work is comprised of six parts as follows.
     1. The isothermal section of Mg-Hg-Ga system in the Mg-rich region at 673 K and 473 K were determined through X-ray diffraction (XRD) and scanning electron microscope (SEM) with electron probe microscopy analysis (EPMA). By CALPHAD method, the Mg-Hg-Ga ternary system was optimized on the basis of above experimental phase data and three reassessed Mg-Ga, Mg-Hg and Ga-Hg binary systems. A set of self-consistent thermodynamic parameters formulating Gibbs energies of various phases in Mg-Hg-Ga system have been obtained.
     2. Crystal structure of a new ternary compound Mg_(21)Ga_5Hg_3 is determined by XRD and Rietveld spike fitting method. Mg_(21)Ga_5Hg_3 crystallizes in the tetragonal, space group 141/a, Ge_8Pd_(21) structure type with lattice parameters a=14.5391(5) (?), c=11.5955(4) (?), Z=4, D_(calc)=4.004g/cm~3.
     3. The influences of the second phases Mg_3Hg, Mg_(21)Ga_5Hg_3 and Mg_5Ga_2 on the electrochemical and corrosion properties of Mg-Hg-Ga alloys were studied through heat treatment, microstructure observation and electrochemical measurements. The results demonstrate that the alloy with second phase Mg_3Hg has the best electrochemical activity and the alloy with Mg_(21)Ga_5Hg_3 has the best corrosion resistance. The Mg-Hg-Ga anode materials with high activity should belong to Mg+Mg_(21)Ga_5Hg_3 field, Mg+Mg_(21)Ga_5Hg_3+Mg_3Hg field and Mg+Mg_(21)Ga_5Hg_3+Mg_5Ga_2 field. The best properties exist in the alloys with spotted dispersed second phases in the grain boundary and the worst properties exist in the alloys with eutectic structure of Mg plus second phases in the grain boundary.
     4. The electrochemical and corrosion properties of the Mg-Hg-Ga anode materials, which have different w(Hg):w(Ga) ratios and belong to different phase fields, were studied by SEM observation and electrochemical measurements. The results show that good integral properties occur in the Mg-4.8%Hg-8%Ga alloy with second phases of Mg_(21)Ga_5Hg_3 and Mg_5Ga_2, w(Hg):w(Ga) ratio of 0.6:1. Good electrochemical activity occurs in the Mg-8.8%Hg-8%Ga alloy with second phase of Mg_(21)Ga_5Hg_3 and w(Hg):w(Ga) ratio of 1.1: 1.
     5. The microstructure evolutions of Mg-4.8%Hg-8%Ga alloy and Mg-8.8%Hg-8%Ga alloy during heat treatment were studied through DSC analysis and TEM observation. The electrochemical and corrosion properties of Mg-Hg-Ga anodes with different microstructures were also determined. The results demonstrate that excellent gerneral property occur in the Mg-8.8%Hg-8%Ga alloy after solid solution treatment at 773 K for 24 h and aging treatment at 523 K for 8 h, with the best microstructure of a-Mg matrix and disperse Mg_(21)Ga_5Hg_3 particles in the grain. Its corrosion current density is 3.52 mA/cm~2 in potentiodynamic polarization scanning test. In galvanostatic test with 100 mA/cm~2 current density, the mean potential of the Mg-8.8%Hg-8%Ga alloy is -1.884 V. This research achievement was used in developing Mg-Hg-Ga anode material, which can substitute foreign import magnesium anode materials using for superpower Mg/CuCl seawater battery and has been put into produced.
     6. The corrosion type of the Mg-Hg-Ga anode materials and the activity mechanism of Hg and Ga elements on the Mg-Hg-Ga anode materials were studied through electrochemical measurements, XRD and SEM analysis. The results demonstrate that pitting, slot corrosion and general corrosion co-exist in the Mg-Hg-Ga anode materials. The activity mechanism of the Mg-Hg-Ga anode materials is dissolving-precipitation of alloying elements Hg and Ga. At the early stage of dissolution, the cathode second phases initiate pitting and promote the dissolution of the a-Mg matrix and alloying elements Hg and Ga. In the process of electric discharge, Hg~+ and Ga~(3+) were reduced by Mg and precipitated in the surface of the alloy. First, this precipitation layer of alloying elements Hg and Ga can form Mg amalgam, which react with water and produce further precipitation of Hg and Ga. The circle of reaction accelerates activation. Secondly, this precipitation layer of alloying elements Hg and Ga can separate corrosion products, which expose the Mg matrix and activate the Mg-Hg-Ga anode materials.
引文
[1] 宋文顺.化学电源工艺学[M].北京:轻工业出版社,1998.9-10
    [2] 宋玉苏,王树宗.海水电池研究及应用.鱼雷技术,2004,12(2):4-8
    [3] 王树宗.鱼雷动力电池技术发展水平概述.海军工程学院学报,1994,(1):66-70
    [4] 蔡年生.国外鱼雷动力电池的发展及应用.鱼雷技术,2003,11(12):12-16
    [5] Font S, Descroix J P, Sarre G Advanced reserve batteries for torpedoes proplsion . In: Cherry H. Proceedings of the 31~(st) Power Sources Symposium. Penniton: Electrochemical Society, 1984.362-368
    [6] 彭成红,朱敏.镁电池研究进展.电池,2003,33(2):121-123
    [7] Yamamoto O, KanbaraT, Ito S. Magnesium alloy battery. US, 6265109,2001-07-24
    [8] Hiroi M. Pressure effects on the performance and the e.m.f. of the Mg-AgCl seawater battery.Journal of Applied Electrochemistry, 1980,10(2): 203-211
    [9] King J F, Unsworth W. Magnesium in Seawater Batteries. Light Metal Age, 1978, 36(7-8):22-24
    [10] 奚碚华,夏天.鱼雷动力电池研究进展.鱼雷技术,2005,13(2):7-12
    [11] 魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2004.19-20
    [12] 曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1994.25-40
    [13] 王兆文,李延祥,李庆峰,等.铝电池阳极材料的开发与应用.有色金属,2002,54(1):19-22
    [14] 林顺岩,王彬.高性能铝合金阳极材料的研究与开发.铝加工,2002,25(2):6-9
    [15] 宋曰海,郭忠诚.牺牲阳极材料研究现状.腐蚀科学与防护技术,2004,16(1):24-28
    [16] Wilhelmsen W, Arnesen T, Hasvold, et al. The electrochemical behavior of Al- In alloys in alkaline electrolytes. Electrochim Acta, 1991, 36(1): 79-85
    [17] Ei Shayeb H A, Ei Wahab F M, Ei Abedin S. Electrochemical Behaviour of Al, Al-Sn, Al-Zn,Al-Sn-Zn alloys in Chloride Solution Containing Stannousions. Corrosion Science, 2001,43(4):655-669
    [18] Vijayamohanan K, Balasubramanian T S, Shukla A K. Rechargeable Alkaline Iron Electrode.Journal of Power Sources, 1991, 34(3): 269-285
    [19] Venkatesara R K. Performance evaluation of Mg-AgCl batteries for under water propulsion.Denfence Science Journal, 2001, 5(2): 161-170
    [20] 袁华堂,吴峰,武绪丽,等.可充镁电池的研究和发展趋势.电池,2002,32(S1):14-16
    [21] Feng Y, Wang R C,Yu K, et al. Influence of Ga and Hg on microstructrue and electrochemical corrosion behavior of Mg alloy anode materials. Transactions of Nonferrous Metals Society of China, 2007,17(6): 1363-1366
    [22] Feng Y, Wang R C, Yu K, et al. Influence of Ga content on electrochemical behavior of Mg-5at% Hg anode materials. Materials Transactions, 2008,49(5): 1077-1080
    [23] 邓姝皓,易丹青,赵丽红,等.一种新型海水电池用镁负极材料的研究.电源技术,2007,131(5):402-405
    [24] Saidman S B, Bessone J B. Cathodic Polarization Characteristics and Activation of Aluminum in Chlorid solution Containing Indium and Zinc ions. J of Applied Electrochemistry,1997, 27(6): 731-737
    [25] 黎文献.镁及镁合金.长沙:中南大学出版社,2005.512-513
    [26] 候德龙,宋月清,王译,等.高电位镁合金(Mg-Mn)阳极熔体净化技术的研究.稀有金属,2006,30(1):30-33
    [27] Jung G K, Jin H J, Se J K. Development of high-driving potential and high-efficiency Mg-based sacrificial anodes for cathodic protection. Journal of Materials Science Letters, 2000,19:477-479
    [28] Jung G K, Kim Y W. Advanced Mg-Mn-Ca sacrificial anode materials for cathodic protection.Materials and Corrosion, 2001, 52(2): 137-139
    [29] Beldjoudi T, Fiaud C, Robbiola L. Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys. Corrosion Science, 1993,49(9): 738-745
    [30] Udhayan R, Muniyandi N, Mathur B P. Studies on magnesium and its alloys in battery electrodes. British Corrosion Journal, 1992,27(1): 68-71
    [31] Eliezer D, Uzan P, Aghion E. Effect of second phases on the corrosion behavior of magnesium alloys. Materials Science Forum, 2003,419-422: 857-866
    [32] Feng Y, Wang R C, Yu K, et al. Activation of Mg-Hg anodes by Ga in NaCl solution. Journal of Alloys and compounds, 2008, available online
    [33] 马正青,黎文献,余琨,等.海水介质中高活性镁合金负极的电化学性能.材料保护,2002,35(12):16-18
    [34] 王宇轩,李林,黄锐妮,等.合金元素Ga、X对镁基负极材料电性能的影响.电源技术,2006,130(12):1003-1005
    [35] 王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展.兵器材料科学与工程,2006,29(2):73-77
    [36] 马丽杰,郭忠诚,宋曰海,等.镁合金牺牲阳极及其在防腐蚀工程中的应用.四川化工与腐蚀控制,2003,6(3):38-42
    [37] 张永君,严川伟,王福会.Mg及Mg合金表面稀土转化处理及其耐蚀性研究.腐蚀科学与防护技术,2001,13增刊:467-470
    [38] Rajan A, Naing N A, Zhou W. Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy. Corrosion Science, 2000,42(8): 1433-1455
    [39] 刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002.154-156
    [40] 肖衍,李久青.铝镁合金点蚀实验数据的统计分布.北京科技大学学报,1994,16(S1):97-102
    [41] Unigovski Y B, Gutman E M. Surface morphology of a die-cast Mg alloy. Applied Surface Science, 1999,153(1): 47-52
    [42] Warner J, Thorne N A, Nussbaum G, et al. A cross-sectional TEM study of corrosion initiation in rapidly solidified magnesium-based ribbon. Surf Interf Anal, 1992,19:386-392
    [43] 张勇,许越,周德瑞,等.稀土铈对AZ91镁合金表面腐蚀性能的影响.哈尔滨工业大学学报,2002,34(3):376-378
    [44] 余琨,稀土变形镁合金组织性能及加工工艺研究:[博士论文].长沙:中南大学,2002.167-169
    [45] Morales E D, Ghali E, Hort N, et al. Corrosion Behaviour of Magnesium Alloys with RE Additions in Sodium Chloride Solutions. Materials Science Forum, 2003, 419-422: 867-872
    [46] Hillis J E, Schook S O. New high purity Mg alloy. Automot Engineering, 1989, 97(5): 57-59
    [47] Ma C J, Zhang D, Qin J, et al. Aging behavior of Mg-Li-Al alloys. Trans Nonferrous Met Soc China, 1999,9(4): 772-777
    [48] 王成,张庆生,江峰,等.非晶合金Mg65Y10Cu25在3.5%NaCl溶液中的腐蚀行为.中国有色金属学报,2002,12(5):1016-1020
    [49] Cho S S, Chun S B, Won C W, et al. Structure and properties of rapidly solidified Mg-Al alloy.Journal of Materials Science, 1999,34(8): 4311-4320
    [50] Chang C F, Das S K, Raybould D. Rapidly solidified Mg-Al-Zn-Rare earth alloys. J Mater Eng, 1987,9(2): 141-146
    [51] 顾秉林.材料计算设计.863工作报告,2000.20-25
    [52] 冯瑞,师昌绪,刘治国,等.材料科学导论[M].北京:化学工业出版社,2001.125-150
    [53] 王冲,余浩,金展鹏.相图计算在BBO晶体生长中的应用.人工晶体学报,2001,30(3):293-300
    [54] Butler C J, Mccartney D G, Small C J, et al. Solidification microstructures and calculated phase equilibria in the Ti-Al-Mn system. Acta Materialia, 1997,45(7): 2931-2947
    [55] Kattner U R, Handwerker C A. Calculation of phase equilibria in candidate solder alloys. Z Metallkd, 2001,92: 1-12
    [56] 范雄.X射线金属学[M].上海:机械工业出版社,1983.43-53
    [57] 梁敬魁.相图与相结构的测定[M].全国X射线衍射学术会议上报告,1982
    [58] 潘钦科等.金相实验室[M].北京:冶金工业出版社,1956.102-124
    [59] 韩德伟.金属学实验指导书[M].长沙:中南工业大学出版社,1990.88-93
    [60] 肖特,裴卓.金相浸蚀手册[M].北京:科学普及出版社,1982.23-31
    [61] 魏全金.金属电子显微分析[M].北京:冶金工业出版社,1990.132-153
    [62] 余焜.材料结构分析基础[M].北京:科学出版社,2000.54-61
    [63] Kubaschewski O, Alcock C B. Metallurgical Thermochemistry. In: Cox, Wyman L. 5~(th) edition.New York: Pergamon Press, 1979. 114-155
    [64] 梁敬魁.粉末衍射法测定晶体结构(上、下册)[M].北京:科学出版社,2003
    [65] 常铁军.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2000.89-93
    [66] 陆学善.相图与相变[M].北京:中国科技大学出版社,1990.124-135
    [67] 梁敬魁.相图与相结构[M].北京:科学出版社,1983.45-53
    [68] 李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.103-123
    [69] Rietveld H M. Line profiles of neutron powder-diffraction peaks for structure refinement.ActaCryst, 1967,22(1): 151-152
    [70] Rietveld H M. A profile refinement method for nuclear and magnetic structures. J Appl Cryst,1969,2(2): 65-71
    [71] Young R A, Wiles D B. The Rietveld Method in Neutron and X-ray Powder Diffraction. J Appl Cryst, 1982,15(3): 361-374
    [72] Bish D L, Howard S A. Quantitative phase analysis using the Rietveld method. J Appl Cryst,1988,21:86-91
    [73] Hill R J, Howard C J. Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveid Method. J Appl Cryst, 1987,20:467-474
    [74] Taylor J C, Zhu R. Simultaneous use of observed and calculated standard profiles in quantitative XRD analysis of minerals by the multiphase Rietveld method the determination of pseudorutile in mineral sands products. Powder Diffraction, 1992, 7:152-161
    [75] Jansen J, Peschar R, Schenk H. On the determination of accurate intensities from powder diffraction data. I. Whole-pattern fitting with a least-squares procedure. J Appl Cryst, 1992, 25:231-236
    [76] Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis [M]. London: Cambridge University Press, 1998
    [78] Gonzales-Ormeno P G, Petrilli H M, Schon C G Ab ignition calculation of he bcc Mo-Al (Molybdenum-aluminium) phase diagram: Implications for the nature of the z2-MoAl phase.Scripta Mater, 2005,53: 751-756
    [77] 乔芝郁.相图计算研究的进展.材料与冶金学报,2005,4(2):83-90
    [79] Gaal-Nagy K, Schmitt M, Pavone P, et al. Ab initio study of the high-pressure phase transition from the cubic-diamond to the b-tin structure of Si. Comput Mater Sci, 2001, 22(1):49-55
    [80] Lechermann F, Fahnle M, Sanchez J M. First-principles investigation of the Ni-Fe-Al system.Intermetallics, 2005,13(10): 1096-1109
    [81] Curtarolo S, Kolmogorov A N, Cocks F H. High-throughput ab initio analysis of the Bi-In,Bi-Mg, Bi-Sb, In-Mg, In-Sb and Mg-Sb systems. CALPHAD, 2005,29(2): 155-161
    [82] Kaufman L, Bernstain H. Computer calculation of phase diagram [M]. New York: Academic Press, 1970
    [83] Saunders N, Modwnik A P. CALPHAD-A Comprehensive Guide [M]. Lausanne Switzerland:Pergamon, 1998
    [84] Arroyave R, Shin D, Liu Z K. Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system. Acta Mater, 2005, 53:1809-1819
    [85] Chvatalova K, Houserova J, Sob M, et al. First-principles calculations of energetics of sigma phase formation and thermodynamic modeling in Fe-Ni-Cr system. J Alloys Comp, 2004,378(1-2): 71-74
    [86] Houserova J, Vrestal J, Sob M. Phase diagram calculations in the Co-Mo and Fe-Mo systems using first-principles results for the sigma phase. CALPHAD, 2005, 29(2): 133-139
    [87] Ghosh G, Walle V D, Olson M A. Phase stability of the Hf-Nb system: from first-principles to CALPHAD. CALPHAD, 2002,26(4): 491-511
    [88] Ohtani H, Yamano M, Hasebe M. Thermodynamic analysis of the Co-Al-C and Ni-Al-C systems by incorporating ab initio energetic calculations into the CALPHAD approach.CALPHAD, 2004, 28(2): 177-190
    [89] Kaufman L, Turchi P E A, Huang W M, Liu Z K. Thermodynamics of the Cr-Ta-W system by combining the ab initio and CALPHAD methods. CALPHAD, 2002,25(3): 419-433
    [90] Nishizawa T. The thirty-seventh Honda memorial lecture progree of CALPHAD. Mater Trans,1992,33(8): 713-722
    [91] Puschin N A, Micic O D. On the alloys of gallium with magnesium. Z Anorg Chem, 1937,234:229-232
    [92] Predel B, Stein D W. Thermodynamic Investigation of the gallium-magnesium system. J Less-Common Met, 1969,18:202-213
    [93] Stahlin W. Binary diagram of gallium-magnesium. J Less-Common Met, 1973,32: 395-397
    [94] Ellner M, Goedecke T, Duddek G, et al.Structure and constitutional studies in the gallium-rich part of the magnesium-gallium system. Z Anorg Chem, 1980,463:170-178
    [95] Moser Z, Kawecka W, Sommer F, et al. Thermodynamic functions of liquid alloys. Z Met Trans, 1982,72:71-76
    [96] Nayeb-Hashemi A A, Clark J B. The Ga-Mg (gallium-mgnesium) system. Bulletin of Alloys Phase Diagrams, 1985, 6(5): 434-439
    [97] Notin M, Belbacha E, Charles J, et al. New experimental results and improvement of the modelization of the (Ga,Mg) system. J Alloys and Comp, 1991,176: 25-38
    [98] Feschotte P. Etude stoechiometrique des composes intermediaries dans le systeme gallium-magnesium. J Less-Common Met, 1990,158: 89-97
    [99] Nayeb-Hashemi A A, Clark J B. The Hg-Mg (mercury-mgnesium) system. Bulletin of Alloys Phase Diagrams, 1987, 8(1): 65-70
    [100] Calvo F A, Hierro M P. Estudio del diagrama de fases Hg-Mg por analisis termico diferencial. Rev Metal Madrid, 1987, 23(5): 333-340
    [101] Predel B. On the phase diagrams of Ga-Bi and Ga-Hg; Comparison of coexistence curve with theory of mixing. Z Phys Chem, 1960,24: 206-216
    [102] Aleksandrov B N, Lomonos O I. On the solubility of metals in solid Hg. Zh Fiz Khim, 1971, 45: 3003-3006
    [103] Aleksandrov B N, Dukin V V. Effects of impurities on the residual electrical resistivity of In and Ga. Fiz Niz Temp, 1976, (2): 105-121
    [104] Gaune-Escard M, Bros J P. Calorimetric determination of equilibrium phase diagrams of inorganic systems. Thermochim Acta, 1979,31: 323-339
    [105] Gubbels G H M. Phsae equilibria in the Ga-Hg-In system. Z Metallkd, 1990, 81:202-208
    [106] Guminski C, Zabdyr L. The Ga-Hg (gallium-mercury) system. Journal of Phase Equilibria, 1993, 14(6): 719-725
    [107] Matkovic P, Wopersnow W, Schubert K. Kristallstruktur von Pd21Ge8. J Less-Common Met, 1977, 56:69-75
    [108] Wecherle K. Study on the Ga-Mg system: [Ph.D thesis]. German: Univer Karlsruhe, 1935
    [109] Smith G B, Johnson Q, Wood D H. Crystal Structure of Ga_5Mg_2. Acta Crystallogr, 1969, (B25): 554-557
    [110] Hume-Rothery W, Raynor G V. The constitution of the magnesium-rich alloys in the systems aluminum-magnesium, gallium-magnesium,-indium-magnesium, and thallium-magnesium. J Inst Met, 1938,63:201-206
    [111] Predel B, Hulse K. Thermodynamic properties of solid magnesium-gallium alloys. J Less-Common Met, 1979,63: 159-170
    [112] Predel B. Thermodynamic investigations on the formation and decomposition of metallic glasses. Physica, 1981, (103B): 113-122
    [113] Nebel H. Thermodynamic properties of liquid magnesium-lead, magnesium-indium, and magnesium-gallium alloys. Rev Rom Chem, 1970,15:59-65
    [114] Slaby H, Terpilowski J. Thermodynamic properties of liquid magnesium-gallium solutions. Bull Acad Pol Sci, 1964,2(9): 581-585
    [115] Cambi L, Speroni G. Amalgams of magneiusm. Atti Accad Naz Lincei, 1915, 24(1): 734-738
    [116] Beck R P. The EMF properties of magnesium and thermal analysis of the Mg-Hg system. Rec Trav Chim, 1922, 41: 353-399
    [117] Daniltschenko P T. Mg-Hg phase diagram. Zh Russ Fij Khim Obsh, 1930:975-988
    [118] Brauer G, Nowotny H, Rudolph R. X-Ray analysis of magnesium amalgams. Z Metallkd, 1947,38:81-84
    [119] Busk R S. Lattice parameters of magnesium alloys. Trans Metall AIME, 1950, 188: 1460-1464
    [120] Hilpert K. Study of the vaporization of amalgams with a new knudsen cell-mass spectrometer system. Part Ⅱ: The compounds Mg_5Hg_3, Mg_2Hg, Mg_5Hg_2, and Mg_3Hg and the formation enthalpies of all compounds of the Mg-Hg system. Phys Chem, 2002,46: 37-41
    [121] Muller R, Knaus W. The Electromotive behavior of magnesium in the magnesium amalgams. ZAnorg Chem, 1923,130:173-180
    [122] Tamman V G, Ohler E. The heat of solution of metals in Hg and gold amalgam as well as the heat of mixing of amalgams. ZAnorgChem, 1924,135:118-126
    [123] Frost B R T, Maskrey J T. The measurements of vapor pressures by a modified dew-point method with particular reference to the system mercury-magnesium. Atomic Energy Res Establ, 1956,1898:1-21
    [124] Spicer W M, Bartholomay H W. The mutual solubility of Hg and Ga. J Am Chem Soc, 1951, 73: 868-869
    [125] Amarell G. On the Ga-Hg system: [Ph.D thesis]. German: Karlsruhe Techn Univer, 1958
    [126] Bros J P, Castanet R, Laffitte M, et al. Determination of enthalpy of formation of liquid alloys Ga-Hg and Ga-Bi from pure metals. J Chim Phys, 1968,65: 591-598
    [127] Marco F, Navarro J, Torra V. Aoolication of flow calorimetry to the study of alloy formation; Enthalpies of solution of In, Tl, Cd, Zn, Pb, Ga, Sn and Bi in Hg at 293.15K. J Chem Thermodyn, 1975,7:1059-1066
    [128] Predel B, Mohs R, Rothacker D. On thermodynamics of the systems Ga-Hg and Ga-Zn. J Less-Common Met, 1967,12: 483-493
    [129] Zhang Z C, Guo J K. Ecaluation of thermodynamic properties from alloy phase diagram with miscibility gap using non-random two-liquid equation. Calphad, 2002,26(3): 327-340
    [130] Yatsenko S P, Druzhinina E P, Danilin V N.Thermodynamic properties of the Ga-Hg system.Zh Prikl Khim, 1969,42: 605-609
    [131] Predel B, Rothacker D. Thermodynamical investigation of the Hg-Sn and Hg-Ga system.Acta Metall, 1969,17: 783-791
    [132] Kozin L F, Nigmetoca R S, Dergacheva M B. The system Ga-Hg. Thermodynamic of Binary Amalgam Systems, 1977: 206-209
    [133] Dinsdale A T. SGTE data for pure elements. CALPHAD, 1991,15(4): 317-425
    [134] Feng Y, Wang R C, Yu K, et al. Influence of heat treatment on electrochemical behavior of Mg anode materials. Journal of Central South University of Technology, 2007,14(2): 12-15
    [135] Genesca J, Herrera R, Gonzalez C, et al. Analysis of microstructure and electrochemical efficiency of chill cast Al-Zn-Mg alloys designed for cathodic protection applications. Materials Science Forum, 2003,442:17-26
    [136] Gonzalez C, Alvarez O, Genesca J, et al. Solidification of chill-cast Al-Zn-Mg alloys to be used as sacrificial anodes. Metallurgical and Materials Transactions A, 2003,34A(12): 2991-2997
    [137] Seiichi T, Takehiko M, Koichi A. Effect of Ga content on localized corrosion of Al-9 mass% Mg alloys in H_2SO_4-NaCl solution. Materials Transactions, 1998,39(3): 404-412
    [138] Beldjoudi T, Fiaud C, Robbiola L. Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys. Corrosion Science, 1993, 49(9): 738-745
    [139] 贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2003
    [140] 李诚芳.锌在KOH溶液中的析氢及其测量.电池工业,2001,6(2):56-59
    [141] Carroll W M, Breslin C B. Activation of aluminum in cloride solutions contining activatior ions. Corrosion Science, 1992, 33(7): 1161-1171
    [142] Khedr M G A, Lashien A M S. Role of metal cations in the corrosion and corrosion inhibition of aluminium in aqueous solutions. Corrosion Science, 1992, 33(1): 137
    [143] Cabot P L, Garrido G A, Perez E, et al. EIS study of heat-treated Al-Zn-Mg alloys in the passive and transpassive potential regions. Electrochim Acta, 1995,40(4): 447-454
    [144] 杨武.金属的局部腐蚀点腐蚀·缝隙腐蚀·晶间腐蚀·成分选择性腐蚀[M].北京:化工出版社,1995
    [145] 战广深,文继红.NaCl溶液中铝合金表面膜对交流阻抗研究.中国机械工程,2003,14(10):17-19
    [146] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [147] 史美伦.交流阻抗谱原理及应用[M].长沙:国防工业出版社,2001
    [148] Barbucci A, Cerisola G, Bruzzone G, et al. Activation of aluminum anodes by the presence of intermetallic compounds. Electrochimica Acta, 1997,42(15): 2369-2380
    [149] Rodrigures S, Munichandraiah N, Shukla A K. A review of state-of-charge indication of batteries by means of a.c. impedance measurements. Journal of Power Sources, 2000,87:12-20
    [150]崔晓莉,江志裕.交流阻抗谱的表示及应用.上海师范大学学报(自然科学版),2001,30(4):53-61
    [151]崔晓莉.等效电路中元件参数数值对交流阻抗谱的影响.河北师范大学学报(自然科学版),2002,26(4):376-380
    [152]张亚利,孙典亭,郭国霖,等.电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路交换规则(Ⅱ)-含有Warburg阻抗的等效电路的变换.高等学校化学学报,2000,21(7):1086-1092
    [153]宋曰海.高性能铝、锌、镁合金系列牺牲阳极材料的研究:[硕士学位论文].昆明:昆明理工大学,2003
    [154]侯军才.高电位镁阳极的制备及性能研究:[硕士学位论文].郑州:郑州大学,2006
    [155]王喜峰,齐公台,蔡启舟.混合稀土对AZ91镁合金在NaCl溶液中的腐蚀行为影响.材料开发与应用,2002,17(5):34-36
    [156]李瑛,宋光铃,林海潮.金属镁在腐蚀介质中界面结构特征与负差数效应关系.腐蚀科学与防护技术,1999,11(4):202-208
    [157] Munoz A G, Saidman S B, Bessone J B. Influence of In on the corrosion of Zn-In alloys.Corrosion Science, 2001,43(7): 1245-1265
    [158]余琨,黎文献,李松瑞.变形镁合金材料研究进展.轻合金加工技术,2001,29(7):6-10
    [159] Bessone J B. The activation of aluminium by mercury ions in non-aggrassive media.Corrosion Science, 2006,48(12): 4243-4256
    [160] Flammi D O, Saidman S B, Bessone J B. Aluminium activation produced by gallium.Corrosion Science, 2006,48(6): 1413-1425
    [161]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,1998
    [162]屈钧娥,齐公台,张磊.稀土元素和固溶处理对Al阳极电化学性能的影响.腐蚀科学与防护技术,2002,14(3):169-171
    [163] Sheng L, Xiao Y Z, Jing C, et al. Corrosion and high-temperature oxidation of AM60 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2007,17(s1A):156-160
    [164] Shi Z M, Song G L, Atrens A. The corrosion performation of anodized magnesium alloys.Corrosion Science, 2006,48(11): 3531-3546
    [165]徐祖耀.相变原理[M].北京:科学出版社,2000
    [166]周尧和,胡壮麟,介万奇.凝固技术[M].北京:机械工业出版社,1998.74-92
    [167]冯瑞.金属物理学(第二卷相变)[M].北京:科学出版社,1998
    [168]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998
    [169]唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997
    [170]魏全金.材料电子显微分析[M].北京:冶金工业,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700