用户名: 密码: 验证码:
铝合金点蚀过程与稀土沉积的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
点腐蚀(Pitting Corrosion)是钝化态金属表面一种常见的腐蚀形态。根据点蚀发展过程的特点,可以将点蚀分为点蚀萌生(钝化膜的溶解破裂)、亚稳态点蚀、稳态点蚀生长(或者点蚀区域金属表面再钝化)三个阶段。工程应用中,铝合金表面常发生点蚀,并可能引发其他恶性腐蚀形式。另一方面,由于稀土离子对铝合金点蚀的有效抑制以及稀土元素的环境友好特性使铝合金的稀土表面改性工艺广受关注。为理解铝合金表面点蚀发生发展过程中的重要阶段和稀土离子抑制点蚀发展机理两方面的问题,本文进行了以下两个主要方面的工作。一,点蚀过程研究:采用Ex situ TEM研究铝合金萌生点蚀的位置,并用铅笔电极(pencil electrode)模拟稳态点蚀在NaCl溶液中的生长。二,稀土沉积研究:采用Ex situ TEM研究稀土离子在铝合金表面沉积的机理,并在铈盐的乙醇溶液中对铝合金进行阴极电泳沉积稀土改性膜。
     采用Ex situ TEM研究了铝合金表面诱发局部腐蚀的金属间化合物相颗粒的晶体结构、EDS成分、以及在含氯离子溶液中的腐蚀行为三者的关系。结果表明铝合金表面的异质相颗粒(如金属间化合物相颗粒)确为局部腐蚀的诱发位置。一般而言,成分不同的异质相颗粒在溶液中电化学电位不同,因此导致其在溶液中的腐蚀行为也不相同。而Ex situ TEM观察表明成分相似的金属间化合物相颗粒也会在溶液中表现出不一致的局部腐蚀行为,进而对有此类现象的颗粒进行晶体结构分析发现两者的结构相差甚大。因此,腐蚀行为的差异可能源于成分相同但结构相异的异质相颗粒具有不同的电化学电位。
     采用直径为0.076cm的铝丝制成铅笔电极模拟铝在NaCl溶液中点蚀生长动力学。电极测试过程中点蚀电流表现出暂态和准稳态两个阶段。暂态过程电极表面的反应过程可以近似地用半无限扩散模型来解析。准稳态过程电流-时间曲线为I正比于t~(-0.5),这说明铅笔电极的点蚀生长是由某种反应产物的扩散/迁移控制。用显微镜精确聚焦技术测量点蚀坑深度校核用法拉第定律积分计算点蚀电流获得的点蚀坑深度发现金属铝丝铅笔电极点蚀生长的驱动力并非和铁基/镍基合金的生长驱动力(由蚀坑内外盐浓度梯度驱动)一样。铝稳态点蚀生长是点蚀坑内化学反应析氢形成气相在点蚀通道中的迁移速率控制。
     Ex situ TEM研究了铝合金在0.1MCe(NO_3)_3无水乙醇溶液中的行为,实验确定铝合金表面的异质相是稀土离子吸附/沉积的优先位置。在分析了铝合金表面优先吸附异质相的性质、沉积膜层的结构和成分,以及铈盐乙醇溶液的特点后,认为稀土离子乙醇溶液中铝合金表面的微原电池区域阴极反应不同于水溶液中的阴极反应。在水溶液中反应优先生成Ce_2O_3膜,而在乙醇溶液中是形成四价的氢氧化铈后脱水生成CeO_2膜。Ex situ TEM观察稀土离子沉积确定Ce离子表面沉积的影响因素有电位、pH值、和氧化剂等。
     采用阴极电泳对铝合金快速沉积稀土改性膜。实验结果表明在0.1MCe(NO_3)_3乙醇溶液中用12V电压阴极电泳60秒能获得保护性能优异的稀土改性膜。EIS测试结果表明沉积稀土膜层改性的铝合金试样在0.1MNaCl溶液中31天浸泡之后表面仍然未见明显腐蚀。电化学阻抗谱(EIS)分析表面沉积稀土试样的钝化膜电阻和表面电容在各个浸泡周期中都维持在10~(-7)ohm cm~(-2)和10~(-6)F cm~(-2)的量级。由于稀土改性处理的铝合金在溶液中阴极反应由于受稀土元素的抑制,局部腐蚀倾向显著降低。
The evolution of corrosion pits on aluminum alloy immersed in chloride solution occurs in three distinct stages: nucleation, metastable growth and stable growth. This paper describes the initiation of corrosion pits and stimulates the pitting growth on aluminum alloy immersed in chloride solution. The rate of growth of stimulated individual corrosion pits is found to be controlled by transfer rate of the dissolving hydrogen which is produced on the electrode interface.
     Because current environmental legislations moving towards total exclusion of Cr~(6-) and because of tightening regulatory pressure to reduce the hazardous waste of chromium, many attempts are being made to develop non-toxic alternative methods of corrosion protection. Another object of present research has focused on rare-earth (RE) surface modification with emphasis on elimination of hazardous chemicals used in corrosion protection of aluminum alloy.
     Ex situ TEM was used in conjunction with EDS to monitor evolution near the preselected inclusions during initial stages of localized dissolution on the AA 6061 immersed in 0.1M NaCl solution. On the alloy TEM foil, Mg_2Si phase particles were observed to preferentially dissolve after 3 minutes immersion. Nevertheless, different dissolution behaviors were observed to form in the vicinities of the different structure Fe-rich precipitates; the trenches were observed nearby the anorthic phase particle, but no obvious priority dissolution was detected in the vicinity of hexagonal phase particles. The preferential sites of alloy dissolution were found to depend on both the component and structure of the intermetallics. The shift of electrochemical potential was found to relate the dissolution of the heterogeneous phases.
     The importance of pitting corrosion was investigated under potentiostatic dissolution conditions with pencil electrodes contained in inert supports. The artificial cavities created simulated localized corrosion conditions. Current-time behavior at voltages in excess of the critical pitting potential (-300mV vs. SCE) was examined for pure aluminum specimens in concentrated chloride solutions. The effect of changing the concentration of the dissolving metal cations within the artificial cavity was studied by altering the composition of the bulk solution. Solutions of NaCl ranging from 0.01 to 4M were used. Mass transfer models were developed for the observed transient and quasi steady-state periods of dissolution.
     Ex situ TEM technique was also used to monitor deposition behavior of cerium oxide near the pre-selected inclusions on the AA 5083 immersed in 0.1 M cerous ethanol solution. On the 5083 aluminium alloy TEM foil, inclusions were observed to preferentially depositing sites after 30 minutes solution treatment. Nevertheless, different deposition rate behaviors were observed to produce in the vicinities of precipitates; and the cerium oxides were observed in open cavities area near Si-rich inclusions, but no cerium oxide was detected on the substrates of aluminum. The preferential sites of cerium oxide dipositon were found to depend on both the corrosion potential the heterogeneous phases; also on the oxidizer, and pH of the solution.
     In the research devoted to the elimination of toxic materials in methods of surface modification for corrosion protection, deposition cerium oxide by cathode electrophoresis processes have been developed to improve the pitting resistance of aluminum alloys without the use of chromates. Impedance data collected in 0.1 M NaCl remained capacitive for 31 days, which is indicative of the lack of localized corrosion. Apparently local cathodes are eliminated during the surface RE modification process, thereby reducing the driving force for pitting.
引文
[1]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社.2004.
    [2]中铝网.2008年7月份世界原铝产量报告[EB/OL].2008[2008-12-23];http://www.al-market.com/market/2008/0821/detail-2401-37344.html.
    [3]人氏日报.铝及铝合金循坏再利用率[EB/OL].2004[2004-03-29];http://www.people.com.cn/GB/jingji/1046/2415665.html.
    [4]Liao C-M,Particle-induced pitting corrosion of aluminum alloys[D].Bethlehem:Lehigh University,1997.
    [5]Speidel M O.Stress-corrosion cracking of aluminum-alloys[J].Metallurgical Transactions,1975,A6(4):631-651.
    [6]Puiggali M,Zielinski A,Olive J Met al.Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy[J].Corrosion Science,1998,40(4-5):805-819.
    [7]Little D A,Connolly B J,Scully J Ro An electrochemical framework to explain the intergranular stress corrosion behavior in two Al-Cu-Mg-Ag alloys as a function of aging[J].Corrosion Science,2007,49(2):347-372.
    [8]Habashi M,Bonte E,Galland J et al.Quantitative measurements of the degree of exfoliation on aluminum-alloys,in International Conference to Mark the 20th Anniversary of the UMIST Corrosion-and-Protection-Centre:Advances in Corrosion and Protection.[C].Manchester,United Kingdom.1992
    [9]Emmerich R,Wolf G K,Buhl H et al.On the influence of ion-induced surface modification on localized corrosion of aluminium[J].Surface & Coatings Technology,1995,74-75(1-3):1043-1047.
    [10]Emmerich R,Wolf G K,Buhl H et al.The influence of ion-induced surface modification on stress-corrosion cracking of aluminum-alloys[J].Surface &Coatings Technology,1994,66(1-3):436-440.
    [11]Ei-Amoush A S.Investigation of corrosion behaviour of hydrogenated 7075-T6aluminum alloy[J].Journal of Alloys and Compounds,2007,443(1-2):171-177.
    [12]Cabot P L,Centellas F,Garrido J A et al.Influence of the heat-treatment in the electrochemical corrosion of al-zn-mg alloys[J].Journal of Applied Electrochemistry,1992,22(6):541-552.
    [13]Braun R.Investigation on microstructure and corrosion behaviour of 6XXX series aluminium alloys,in 10th International Conference on Aliminium Alloys(ICAA-10).[C].Vancouver,CANADA.2006
    [14]Braun R.Anion effects on the stress corrosion cracking behaviour of aluminium alloys[J].Materials and Corrosion-Werkstoffe Und Korrosion,2003,54(3):157-162.
    [15]Braun R.On The Stress-Corrosion Cracking Behavior Of Aluminum-Alloy Sheet In An Aqueous-Solution Of 3-Percent NaCl+0.3-Percent H_2O_2[J].Werkstoffe Und Korrosion-Materials and Corrosion,1994,45(5):255-263.
    [16]Braun R.Slow Strain-Rate Testing Of High-Strength Aluminum-Alloy Plate In An Aqueous-Solution Of 3-Percent NaCl Plus 0.3-Percent H_2O_2[J].Werkstoffe Und Korrosion-Materials and Corrosion,1994,45(7):369-377.
    [17]Berrada S,Ghali E.Electrochemical Aspects Of Stress-Corrosion Of The Aluminum-Alloys 2024 And 7075 In A 3-Percent Sodium-Chloride Solution [J].Canadian Metallurgical Quarterly,1994,33(4):359-368.
    [18]Bagnall C,Furtado H C,Le May I.Premature failures in pressurised equipment having metallurgical origins,in 5th International Colloquium on Ageing of Materials and Methods for the Assessment of Lifetimes of Engineering Plant (CAPE 99).[C].Cape Province,SOUTH AFRICA.1999
    [19]Sankaran K K,Perez R,Jata K V.Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6:modeling and experimental studies [J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001,297(1-2):223-229.
    [20]Pao P S,Gill S J,Feng C R.On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy[J].Scripta Materialia,2000,43(5):391-396.
    [21]Pao P S,Feng C R,Gill S J.Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050[J].Corrosion,2000,56(10):1022-1031.
    [22]Lin C K,Yang S T.Corrosion fatigue behavior of 7050 aluminum alloys in different tempers[J].Engineering Fracture Mechanics,1998,59(6):779-+.
    [23]Fonte M A,Stanzl-Tschegg S E,Holper B et al.The microstructure and environment influence on fatigue crack growth in 7049 aluminum alloy at different load ratios[J].International Journal of Fatigue,2001,23:S311-S317.
    [24]Dolley E J,Lee B,Wei R P.The effect of pitting corrosion on fatigue life [J].Fatigue & Fracture of Engineering Materials & Structures,2000,23(7):555-560.
    [25]Chubb J P,Morad T A,Hockenhull B S et al.The Effect of Exfoliation Corrosion on the Fracture and Fatigue Behavior of 7178-T6 Aluminum[J].International Journal of Fatigue,1995,17(1):49-54.
    [26]Sasaki K,Levy P W,Isaacs H S.Electrochemical noise during pitting corrosion of aluminum in chloride environments[J].Electrochemical and Solid State Letters,2002,5(8):B25-B27.
    [27]Ornek D,Jayaraman A,Wood T K et al.Pitting corrosion control using regenerative biofilms on aluminium 2024 in artificial seawater[J].Corrosion Science,2001,43(11):2121-2133.
    [28]Myung N,Chung E H,Chen L L et al.Pitting and corrosion inhibition of Al and 2024Al-T4 in halide media[J]Proceedings of the Symposium on Passivity and Its Breakdown,1998,97(26):591-601.
    [29]McCafferty E.Sequence of steps in the pitting of aluminum by chloride ions [J].Corrosion Science,2003,45(7):1421-1438.
    [30]Bohni H,Uhlig H H.Environmental Factors Affecting the Critical Pitting Potential of Aluminum[J].Journal of the Electrochemical Society,1969,116(7):906-910.
    [31]Kobayashi Y,Virtanen S,Bohni H.Microelectrochemical Studies on the Influence of Cr and Mo on Nucleation Events of Pitting Corrosion[J].Journal of the lectrochemical Society,2000,147(1):155-159.
    [32]Sharma M M,Ziemian C.Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments[J]Journal of Materials Engineering and Performance,2008,17(6):870-878.
    [33]Holliday J E,Frankenthal R P.Characterization of Passivating Films on Fe-Cr Alloys by Soft X-Ray Spectroscopy[J]Journal of the Electrochemical Society,1972,119(9):1190-1192.
    [34] Heine M A,Pryor M J. Passivation of Aluminum by Chromate Solutions [J] . Journal of the Electrochemical Society, 1967, 114(10): 1001-1006.
    [35] Hebert K,Alkire R. Growth and Passivation of Aluminum Etch Tunnels [J] . Journal of the Electrochemical Society, 1988, 135(9): 2146-2157.
    [36] Fushimi K,Seo M. Susceptibility to local breakdown of passive film formed on iron[J] . Corrosion and Corrosion Protection, 2001, 2001(22): 325-332.
    [37] Bojinov M, Kinnunen P, Laitinen T et al. A view of passive films on metals as mixed-conducting oxides [J] . Corrosion and Corrosion Protection, 2001, 2001(22): 26-33.
    [38] Frankel G S, Davenport A J, Isaacs H S et al. X-Ray Absorption Study of Electrochemically Grown Oxide Films on Al-Cr Sputtered Alloys [J] . Journal of the Electrochemical Society, 1992, 139(7): 1812-1820.
    [39] Tester J W,Isaacs H S . DIFFUSIONAL EFFECTS IN SIMULATED LOCALIZED CORROSION [J] . Journal of the Electrochemical Society, 1975, 122(11): 1438-1445.
    [40] Newman R C,Isaacs H S. Diffusion-Coupled Active Dissolution in the Localized Corrosion of Stainless Steels [J] . Journal of the Electrochemical Society, 1983, 130(7): 1621-1624.
    [41] Silverman S, Cragnolino G,Macdonald D D. An Ellipsometric Investigation of Passive Films Formed on Fe-_(25)Ni-_xCr Alloys in Borate Buffer Solution [J] . Journal of the Electrochemical Society, 1982, 129(11): 2419-2424.
    [42] Sun A, Franc J,Macdonald D D. Growth and Properties of Oxide Films on Platinum [J] . Journal of the Electrochemical Society, 2006, 153(7): B260-B277.
    [43] McKubre M C H,Macdonald D D. The Dissolution and Passivation of Zinc in Concentrated Aqueous Hydroxide [J] . Journal of the Electrochemical Society, 1981, 128(3): 524-530.
    [44] Ai J, Chen Y, Urquidi-Macdonald M et al. Electrochemical Impedance Spectroscopic Study of Passive Zirconium [J] . Journal of the Electrochemical Society, 2007, 154(1): C52-C59.
    [45] Ahn S, Kwon H,Macdonald D D. Role of Chloride Ion in Passivity Breakdown on Iron and Nickel [J] . Journal of the Electrochemical Society, 2005, 152(11): B482-B490.
    [46] Lin L F, Chao C Y,Macdonald D D. A Point Defect Model for Anodic Passive Films [J] . Journal of the Electrochemical Society, 1981, 128(6): 1194-1198.
    [47] Chao C Y, Lin L F,Macdonald D D. A Point Defect Model for Anodic Passive Films [J] . Journal of the Electrochemical Society, 1982, 129(9): 1874-1879.
    [48] Chao C Y, Lin L F,Macdonald D D. A Point Defect Model for Anodic Passive Films [J] . Journal of the Electrochemical Society, 1981, 128(6): 1187-1194.
    [49] Rao V S,Kwon H S. Corrosion Studies of Fe_3Al-Fe_3AlC Intermetallics in 0.25 N H_2SO_4 using Microelectrochemical Method and SAES Analysis [J] . Journal of the Electrochemical Society, 2007, 154(5): C255-C260.
    [50] Nisancioglu K. Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron [J] . Journal of the Electrochemical Society, 1990, 137(1): 69-77.
    [51] Lacroix L, Ressier L, Blanc C et al. Statistical Study of the Corrosion Behavior of Al_2CuMg Intermetallics in AA2024-T351 by SKPFM [J] . Journal of the Electrochemical Society, 2008, 155(1): C8-C15.
    [52] Kolics A, Besing A S,Wieckowski A. Interaction of Chromate Ions with Surface Intermetallics on Aluminum Alloy 2024-T3 in NaCl Solutions[J].Journal of the Electrochemical Society,2001,148(8):B322-B331.
    [53]Jakab M A,Presuel-Moreno F,Scully J R.Effect of Molybdate,Cerium,and Cobalt Ions on the Oxygen Reduction Reaction on AA2024-T3 and Selected Intermetallics[J].Journal of the Electrochemical Society,2006,153(7):B244-B252.
    [54]Seyeux A,Maurice V,Klein L H et al.In Situ STM Study of the Effect of Chloride on Passive Film on Nickel in Alkaline Solution[J].Journal of the Electrochemical Society,2006,153(11):B453-B463.
    [55]Frankel G S.Pitting corrosion of metals-A review of the critical factors [J].Journal of the Electrochemical Society,1998,145(6):2186-2198.
    [56]Hinton B R W,Amott D R,Ryan N E.The inhibition of aluminum alloy corrosion by cerous cations[J].Materials Forum,1984,7(4):211-217.
    [57]Adler T A,Flitton M K A,Agarwala V S.Corrosion:Fundamentals,Testing,and Protection[M].ASM Handbook,ed.J Stephen D.Cramer and Bernard S.Covino.Vol.13A:ASM International,2003.
    [58]Sinyavskii V S.Pitting and Stress Corrosions of Aluminum Alloys;Correlation between Them[J].Protection of Metals,2001,37(5):469-478.
    [59]Buchler M,Schmuki P,Bohni H.A light reflectance technique for thickness measurements of passive films[J].Electrochimica Acta,1998,43(5-6):524-526.
    [60]Adzic R,Yeager E,Cahan B D.Optical and Electrochemical Studies of Underpotential Deposition of Lead on Gold Evaporated and Single-Crystal Electrodes[J].Journal of the Electrochemical Society,1974,121(4):474-484.
    [61]Chin Y-T,Cahan B D.An Ellipsometric Spectroscopic Study of the Passive Film on Iron-Potential and Chloride Ion Dependence[J].Journal of the Electrochemical Society,1992,139(9):2432-2442.
    [62]Cahan B D,Chen C-T.The Nature of the Passive Film on Iron[J].Journal of the Electrochemical Society,1982,129(5):921-925.
    [63]Sun D,Jiang Y,Tang Y et al.Pitting corrosion behavior of stainless steel in ultrasonic cell[J].Electrochimica Acta,2009,54(5):1558-1563.
    [64]Strehblow H H.Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel[J].Materials and Corrosion/Werkstoffe und Korrosion,1976,27(11):792-799.
    [65]曹楚南.腐蚀电化学原理[M].第3版ed.Vol.第三版.北京:化学工业出版社.2008.
    [66]Bardwell J A,MacDougall B,Sproule G I.Use of SIMS to Investigate the Induction Stage in the Pitting of Iron[J].Journal of the Electrochemical Society,1989,136(5):1331-1336.
    [67]Richardson J A,Wood G C.A study of the pitting corrosion of Al byscanning electron microscopy[J].Corrosion Science,1970,10(5):313-323.
    [68]Sato N.A theory for breakdown of anodic oxide films on metals [J].Electrochimica Acta,1971,16(10):1683-1692.
    [69]Galvele J R.Transport Processes and the Mechanism of Pitting of Metals [J].Journal of the Electrochemical Society,1976,123(4):464-474.
    [70]Laycock N J,Moayed M H,Newman R C.Metastable Pitting and the Critical Pitting Temperature[J].Journal of the Electrochemical Society,1998,145(8):2622-2628.
    [71]Moayed M H,Newman R C.The Relationship Between Pit Chemistry and Pit Geometry Near the Critical Pitting Temperature [J] . J. Electrochem. Soc. , 2006(153): B330-B336.
    [72] Pistorius P C,Burstein G T. Metastable Pitting Corrosion of Stainless Steel and the Transition to Stability [J] . Philosophical Transactions: Physical Sciences and Engineering, 1992, 341(1662): 531-559.
    [73] Pride S T, Scully J R,Hudson J L. Metastable Pitting of Aluminum and Criteria for the Transition to Stable Pit Growth [J] . Journal of the Electrochemical Society, 1994, 141(11): 3028-3040.
    [74] Davis B W, Moran P J,Natishan P M. Metastable pitting behavior of aluminum single crystals [J] . Corrosion Science, 2000, 42(12): 2187-2192.
    [75] Parvathavarthini N, Dayal R K, Khatak H S et al. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles [J] . Journal of Nuclear Materials, 2006, 355(1-3): 68-82.
    [76] Olsson C O A,Landolt D. Passive films on stainless steels—chemistry, structure and growth [J] . Electrochimica Acta, 2003, 48(9): 1093-1104.
    [77] Conde A, Garcia I,de Damborenea J J. Pitting corrosion of 304 stainless steel after laser surface melting in argon and nitrogen atmospheres [J] . Corrosion Science, 2001, 43(5): 817-828.
    [78] Smialowska Z S. Pitting corrosion of metals [M] : National Association of Corrosion Engineers, 1986: 431.
    [79] Szklarska-Smialowska Z,Janik-Czachor M. The analysis of electrochemical methods for the determination of characteristic potentials of pitting corrosion [J] . Corrosion Science, 1971, 11(12): 901-914.
    [80] Schmutz P,Frankel G S. Influence of Dichromate Ions on Corrosion of Pure Aluminum and AA2024-T3 in NaCl Solution Studied by AFM Scratching [J] . Journal of the Electrochemical Society, 1999, 146(12): 4461-4472.
    [81] Schmutz P,Frankel G S. Corrosion Study of AA2024-T3 by Scanning Kelvin Probe Force Microscopy and In Situ Atomic Force Microscopy Scratching [J] . Journal of the Electrochemical Society, 1998, 145(7): 2295-2306.
    [82] Bastek P D, Newman R C,Kelly R G. Measurement of Passive Film Effects on Scratched Electrode Behavior [J] . Journal of the Electrochemical Society, 1993, 140(7): 1884-1889.
    [83] Newman R C. The dissolution and passivation kinetics of stainless alloys containing molybdenum-1. Coulometric studies of Fe-Cr and Fe-Cr-Mo alloys [J] . Corrosion Science, 1985, 25(5): 331-339.
    [84] Pearson H J, Burstein G T,Newman R C. Resistance to Flow of Current to Scratched Electrodes [J] . Journal of the Electrochemical Society, 1981, 128(11): 2297-2303.
    [85] Kelly R G, Newman R C. Confirmation of the Applicability of Scratched Electrode Techniques for the Determination of Bare Surface Current Densities [J] . Journal of the Electrochemical Society, 1990, 137(1): 357-358.
    [86] Ryan M P, Williams D E, Chater R J et al. Why stainless steel corrodes [J] . Nature, 2002, 415(6873):p770-p774.
    [87] Punckt C, Bolscher M, Rotermund H H et al. Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon [J] . Science, 2004, 305(5687): 1133-1136.
    [88] Yamamoto T, Fushimi K, Seo M et al. Depassivation-repassivation behavior of type-312L stainless steel in NaCl solution investigated by the micro-indentation [J] . Corrosion Science, In Press, Corrected Proof
    [89]Virtanen S,Milosev I,Gomez-Barrena E et al.Special modes of corrosion under physiological and simulated physiological conditions[J].Acta Biomaterialia,2008,4(3):468-476.
    [90]Valor A,Caleyo F,Alfonso L et al.Stochastic modeling of pitting corrosion:A new model for initiation and growth of multiple corrosion pits[J].Corrosion Science,2007,49(2):559-579.
    [91]Tumbull A,McCartney L N,Zhou S et al,A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters,in Environment-Induced Cracking of Materials.2008,Elsevier:Amsterdam.p.19-45.
    [92]Tumbull A,Homer D A,Connolly B J.Challenges in modelling the evolution of stress corrosion cracks from pits[J].Engineering Fracture Mechanics,2009,76(5):633-640.
    [93]Trethewey K R.Some observations on the current status in the understanding of stress-corrosion cracking of stainless steels[J].Materials & Design,2008,29(2):501-507.
    [94]Scully J R,Budiansky N D,Tiwary Y et al.An alternate explanation for the abrupt current increase at the pitting potential[J].Corrosion Science,2008,50(2):316-324.
    [95]Raj B,Mudali U K.Materials development and corrosion problems in nuclear fuel reprocessingplants[J].Progress in Nuclear Energy,2006,48(4):283-313.
    [96]Pardo A,Merino M C,Coy A E et al.Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4[J].Corrosion Science,2008,50(3):780-794.
    [97]Organ L,Tiwary Y,Scully J R et al.Interactions among metastable pits on heterogeneous electrodes[J].Electrochimica Acta,2007,52(24):6784-6792.
    [98]Nazarov A,Thierry D.Application of Volta potential mapping to determine metal surface defects[J].Electrochimica Acta,2007,52(27):7689-7696.
    [99]Melchers R E.Extreme value statistics and long-term marine pitting corrosion of steel[J].Probabilistic Engineering Mechanics,2008,23(4):482-488.
    [100]Krawiec H,Vignal V,Banas J.Local electrochemical impedance measurements on inclusion-containing stainless steels using microcapillary-based techniques [J].Electrochimica Acta,,In Press,Corrected Proof.
    [101]Krawiec H,Vignal V,Akid R.Numerical modelling of the electrochemical behaviour of 316L stainless steel based upon static and dynamic experimental microcapillary-based techniques[J].Electrochimica Acta,2008,53(16):5252-5259.
    [102]Johnson L,King F.The effect of the evolution of environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay[J].Journal of Nuclear Materials,2008,379(1-3):9-15.
    [103]Cvijovic Z,Radenkovic G.Microstructure and pitting corrosion resistance of annealed duplex stainless steel[J].Corrosion Science,2006,48(12):3887-3906.
    [104]Claudio R A,Burgess A,Branco C M et al.Failure analysis of scratch damaged shot peened simulated components at high temperature[J].Engineering Failure Analysis,2009,16(4):1208-1220.
    [105]Cheong W-J,Luan B L,Shoesmith D W.Protective coating on Mg AZ91D alloy-The effect of electroless nickel(EN) bath stabilizers on corrosion behaviour of Ni-P deposit[J].Corrosion Science,2007,49(4):1777-1798.
    [106] Bello J O, Wood R J K,Wharton J A. Synergistic effects of micro-abrasion-corrosion of UNS S30403, S31603 and S32760 stainless steels [J] . Wear, 2007, 263(1-6): 149-159.
    [107] Ryan M P, Laycock N J, Isaacs H S et al. Corrosion Pits in Thin Films of Stainless Steel [J] . Journal of the Electrochemical Society, 1999, 146(1): 91-97.
    [108] Suter T,Bohni H. Microelectrodes for corrosion studies in microsystems [J] . ElectrochimicaActa, 2001, 47(1-2): 191-199.
    [109] Barbosa C, Dille J, Delplancke J L et al. A microstructural study of flash welded and aged 6061 and 6013 aluminum alloys [J] . Materials Characterization, 2006, 57(3): 187-192.
    [110] Buha J, Lumley R N, Crosky A G et al. Secondary precipitation in an Al-Mg-Si-Cu alloy [J] . Acta Materialia, 2007, 55(9): 3015-3024.
    [111] Vissers R, van Huis M A, Jansen J et al. The crystal structure of the [beta]'phase in Al-Mg-Si alloys [J] . Acta Materialia, 2007, 55(11): 3815-3823.
    [112] Ferrasse S, Segal V M, Hartwig K T et al. Development of a submicrometer-grained microstructure in aluminum 6061 using equal channel angular extrusion [J] . Journal of MATERIALS RESEARCH, 1997, 12(5): 1253-1261.
    [113] Li Q, Chou K-C, Xu K-D et al. The structural and kinetic characteristics of Mg1.9Al0.1Ni alloy synthesized by mechanical alloying [J] . Intermetallics, 2006, 14(12): 1386-1390.
    [114] Lapina O B, Khabibulin D F, Shubin A A et al. Practical aspects of 51V and 93Nb solid-state NMR spectroscopy and applications to oxide materials [J] . Progress in Nuclear Magnetic Resonance Spectroscopy, 2008, 53(3): 128-191.
    [115] Krendelsberger R, Rogl P, Leithe-Jasper A et al. Refinement of the crystal structure [pi]-Al_9FeMg_3Si_5 [J] . Journal of Alloys and Compounds, 1998, 264(1-2): 236-239.
    [116] Chung C-Y, Chang Y-H, Chen G-J et al. Preparation, structure and ferroelectric properties of Ba(Fe0.5Nb0.5)O3 powders by sol-gel method [J] . Journal of Crystal Growth, 2005, 284(1-2): 100-107.
    [117] Rynders R M, Paik C-H, Ke R et al. Use of In Situ Atomic Force Microscopy to Image Corrosion at Inclusions [J] . Journal of the Electrochemical Society, 1994, 141(6): 1439-1445.
    [118] Andreatta F, Flores J R, van Westing E P M et al. AFM and SEM characterization of the microstructure of AA7075-T6 [J] . Corrosion and Corrosion Protection, 2001, 2001(22): 1009-1017.
    [119] Isaacs H S, Cho J H, Rivers M L et al. In Situ X-Ray Microprobe Study of Salt Layers during Anodic Dissolution of Stainless Steel in Chloride Solution [J] . Journal of the Electrochemical Society, 1995, 142(4): 1111-1118.
    [120] Davenport A J, Ryan M P, Simmonds M C et al. In Situ Synchrotron X-Ray Microprobe Studies of Passivation Thresholds in Fe-Cr Alloys [J] . Journal of the Electrochemical Society, 2001, 148(6): B217-B221.
    [121] Davenport A J, Isaacs H S, Frankel G S et al. In Situ X-Ray Absorption Study of Chromium Valency Changes in Passive Oxides on Sputtered AlCr Thin Films under Electrochemical Control [J] . Journal of the Electrochemical Society, 1991, 138(1): 337-338.
    [122] Suter T,Bohni H. Microelectrodes for studies of localized corrosion processes [J] . ElectrochimicaActa, 1998, 43(19-20): 2843-2849.
    [123] Suter T,Bohni H. High resolution localized corrosion studies [J] . Corrosion and Corrosion Protection, 2001, 2001(22): 164-171.
    [124] Bohni H, Suter T,Schreyer A. Micro- and nanotechniques to study localized corrosion [J] . Electrochimica Acta, 1995, 40(10): 1361-1368.
    [125] Staemmler L, Suter T,Bohni H. Nanolithography by Means of an Electrochemical Scanning Capillary Microscope [J] . Journal of the Electrochemical Society, 2004, 151(11):G734-G739.
    [126] Schmuki P, Bohni H,Bardwell J A. In Situ Characterization of Anodic Silicon Oxide Films by AC Impedance Measurements [J] . Journal of the Electrochemical Society, 1995, 142(5): 1705-1712.
    [127] Aballe A, Bethencourt M, Botana F J et al. Influence of the cathodic intermetallics distribution on the reproducibility of the electrochemical measurements on AA5083 alloy in NaCl solutions [J] . Corrosion Science, 2003, 45(1): 161-180.
    [128] Guillaumin V r,Mankowski G. Localized corrosion of 6056 T6 aluminium alloy in chloride media [J] . Corrosion Science, 2000, 42:105-125.
    [129] Guillaumin V,Mankowski G. Localized corrosion of 2024 T351 aluminium alloy in chloride media [J] . Corrosion Science, 1998, 41(3): 421-438.
    [130] Eckermann F, Suter T, Uggowitzer P J et al. Investigation of the exfoliation-like attack mechanism in relation to Al-Mg-Si alloy microstructure [J] . Corrosion Science, 2008, 50(7): 2085-2093.
    [131] Zhang W, Hurley B,Buchheit R G. Characterization of Chromate Conversion Coating Formation and Breakdown Using Electrode Arrays [J] . Journal of the Electrochemical Society, 2002, 149(8): B357-B365.
    [132] Yoon Y,Buchheit R G. Dissolution Behavior of Al_2CuMg (S Phase) in Chloride and Chromate Conversion Coating Solutions [J] . Journal of the Electrochemical Society, 2006, 153(5):B151-B155.
    [133] Ralston K D, Young T L,Buchheit R G. Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitors [J] . Journal of the Electrochemical Society, 2009, 156(4): C135-C146.
    [134] Ralston K D, Chrisanti S, Young T L et al. Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species [J] . Journal of the Electrochemical Society, 2008, 155(7): C350-C359.
    [135] McGovern W R, Schmutz P, Buchheit R G et al. Formation of Chromate Conversion Coatings on Al-Cu-Mg Intermetallic Compounds and Alloys [J] . Journal of the Electrochemical Society, 2000, 147(12): 4494-4501.
    [136] Laget V, Jeffcoate C S, Isaacs H S et al. Dehydration-Induced Loss of Corrosion Protection Properties in Chromate Conversion Coatings on Aluminum Alloy 2024- T3[J] . Journal of the Electrochemical Society, 2003, 150(9): B425-B432.
    [137] Isaacs H S, Sasaki K, Jeffcoate C S et al. Formation of Chromate Conversion Coatings on Aluminum and Its Alloys [J] . Journal of the Electrochemical Society, 2005, 152(11): B441-B447.
    [138] Di Quarto F, Santamaria M, Mallandrino N et al. Structural Analysis and Photocurrent Spectroscopy of CCCs on 99.99% Aluminum [J] . Journal of the Electrochemical Society, 2003, 150(10): B462-B472.
    [139] Buchheit R G, Zavadil K R, Scully J R et al. The Electrochemical Behavior of the Al_3Ta Intermetallic Compound and Pitting in Two-Phase Al-Ta Alloys [J] . Journal of the Electrochemical Society, 1995, 142(1): 51-58.
    [140] Buchheit R G, Montes L P, Martinez M A et al. The Electrochemical Characteristics of Bulk-Synthesized Al_2CuMg [J] . Journal of the Electrochemical Society, 1999, 146(12): 4424-4428.
    [141] Buchheit R G, Martinez M A,Montes L P. Evidence for Cu Ion Formation by Dissolution and Dealloying the Al_2CuMg Intermetallic Compound in Rotating Ring-Disk Collection Experiments [J] . Journal of the Electrochemical Society, 2000, 147(1): 119-124.
    [142] Buchheit R G, Grant R P, Hlava P F et al. Local Dissolution Phenomena Associated with S Phase (Al_2CuMg) Particles in Aluminum Alloy 2024-T3 [J] . Journal of the Electrochemical Society, 1997, 144(8): 2621-2628.
    [143] Birbilis N,Buchheit R G. Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys [J] . Journal of the Electrochemical Society, 2005, 152(4): B140-B151.
    [144] Eckermann F, Suter T, Uggowitzer P J et al. In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography [J] . Corrosion Science, 2008, 50(12): 3455-3466.
    [145] Ben-Hamu G, Eliezer D,Shin K S. The role of Mg_2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy [J] . Intermetallics, 2008, 16(7): 860-867.
    [146] Buchheit R G. A Compilation of Corrosion Potentials Reported for Intermetallic Phases in Aluminum Alloys [J] . Journal of the Electrochemical Society, 1995, 142(11): 3994-3996.
    [147] Sasaki K,Isaacs H S. Origins of electrochemical noise during pitting corrosion of aluminum [J] . Journal of the Electrochemical Society, 2004, 151(3): B124-B133.
    [148] Sehgal A, Lu D,Frankel G S. Pitting in aluminum thin films - Supersaturation and effects of dichromate ions [J] . Journal of the Electrochemical Society, 1998, 145(8): 2834-2840.
    [149] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J] . Corrosion Science, 1999, 41(9): 1743-1767.
    [150] Moayed M H,Newman R C. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature [J] . Corrosion Science, 2006, 48(4): 1004-1018.
    [151] Laycock N J,Newman R C. Localised dissolution kinetics, salt films and pitting potentials [J] . Corrosion Science, 1997, 39(10-11): 1771-1790.
    [152] Newman R C. The dissolution and passivation kinetics of stainless alloys containing molybdenum-Ⅱ. Dissolution kinetics in artificial pits [J] . Corrosion Science, 1985, 25(5): 341-350.
    [153] Ernst P,Newman R C. Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics [J] . Corrosion Science, 2002, 44(5): 927-941.
    [154] Ernst P,Newman R C. Pit growth studies in stainless steel foils. Ⅱ. Effect of temperature, chloride concentration and sulphate addition [J] . Corrosion Science, 2002, 44(5): 943-954.
    [155] Arnott D R, Ryan N E, Hinton BRWet al. Auger And Xps Studies Of Cerium Corrosion Inhibition On 7075-Aluminium Alloy [J] . Applied Surface Science, 1985, 22-3(MAY):236-251.
    [156] Botana Pedemonte F J, Bethencourt Nunez M, Marcos Barcena M et al. Procedure for obtaining free conversion layers of chromates on aluminum alloys employs inocuous salts of cerium.ES2211348-Al; WO2004059035-A1; AU2003294994-A1; ES2211348-B1[P], 2002-12-27
    [157] Colvin W H,White M P. Basic aluminium salt|by reaction of aluminium chloride and sulphate in aq. medium, thenbasing to form a polymer.EP546095-A; WO9204278-A; US5124139-A; AU9186451-A; EP546095-A1; BR9106798-A; JP6500987-W;EP546095-A4[P],1990-08-31
    [158]Hanlon T R,Jaworowski M R,Kryzman M A et al.Coated aluminium(alloy)extrusions prodn.EP1396555-A;US6582530-B1;EP1396555-A1;JP2004100044-A;JP3853770-B2[P],2002-09-05
    [159]Henderson M J,Hinton B R W,Wilson L et al.Cleaning metal surfaces for painting etc.|comprises using an alkaline soln.to remove grease etc.and then an acid solution,containing,cerium ions to remove smut caused by the alkaline soln.WO9508008-A;EP719350-A;WO9508008-A1;AU9476882-A;NO9601014-A;EP719350-A1;EP719350-A4;CZ9600749-A3;JP9504337-W;NZ273541-A;AU687882-B;EP719350-B1;DE69429627-E;ES2171170-T3;US6503565-B1;JP3396482-B2;NO321718-B1;CA2171606-C[P],1993-09-13
    [160]Mayer B,Kuhm P,Geke J et al.Passivating-rinsing process for phosphate layers|uses ruthenium ion-containing aqueous rinsing solution.DE 19723350-A1[P],1998-12-10
    [161]Rodellas Sola F,Conde Morales L.Protection of zinc and galvanised surfaces|comprises copolymer in aq.soln.with monomeric gps.forming cpds.of metallic cations,complex cation or anion,strong oxidiser and acids,for high anticorrosion value.EP694593-A;EP694593-A1;ES2102313-A1;ES2102313-B1;EP694593-B1;DE69430743-E[P],2002-7-11
    [162]Aldykewicz J A J,Isaacs H S,Davenport A J.The Investigation of Cerium as a Cathodic Inhibitor for Aluminum-Copper Alloys[J].Journal of the Electrochemical Society,1995,142(10):3342-3350.
    [163]Bethencourt M,Botana F J,Cano M Jet alo High protective,environmental friendly and short-time developed conversion coatings for aluminium alloys [J].Applied Surface Science,2002,189(1-2):162-173.
    [164]Mansfeld F.Corrosion protection of aluminium alloys and mild steel provided by rare earth metal salt(REMS) solutions[J].Passivity and Localized Corrosion,1999,99(27):259-268.
    [165]Mansfeld F,Chen C,Breslin C B et al.Sealing of anodized aluminum alloys with rare earth metal salt solutions[J].Proceedings of the Symposium on Passivity and Its Breakdown,1998,97(26):602-620.
    [166]Mansfeld F,Fernandes J C So Impedance spectra for aluminum 7075 during the early stages of immersion in sodium chloride[J].Corrosion Science,1993,34(12):2105-2108.
    [167]Mansfeld F,Han L T,Lee C C et al.Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis [J].Electrochimica Acta,1998,43(19-20):2933-2945.
    [168]Mansfeld F,P(?)rez F J.Surface modification of aluminum alloys in molten salts containing CeC13[J].Thin Solid Films,1995,270(1-2):417-421.
    [169]Mansfeld F,Wang Y.Development of "stainless" aluminum alloys by surface modification[J].Materials Science and Engineering A,1995,198(1-2):51-61.
    [170]Mansfeld F,Wang Y,Shih Ho The Ce—Mo process for the development of a stainless aluminum[J].Electrochimica Acta,1992,37(12):2277-2282.
    [171]于兴文,曹楚南,林海潮.Ly12铝合金表面稀土转化膜腐蚀行为的研究[J].中国稀土学报.2000.18(03):243-248.
    [172]Kindler A.Chromium-free method and composition to protect aluminum.United States:1993-06-21
    [173]Bethencourt M,Botana F J,Cano M J et al.Using EIS to analyse samples of Al-Mg alloy AA5083 treated by thermal activation in cerium salt baths [J].Corrosion Science,2008,50(5):1376-1384.
    [174]Poulain V,Petitjean J P.Cerium pretreatments to prevent filiform corrosion of painted aluminium alloys[J].Aluminium Alloys:Their Physical and Mechanical Properties,Pts 1-3,1996,217:1641-1647.
    [175]Markley T A,Forsyth M,Hughes A E.Corrosion protection of AA2024-T3 using rare earth diphenyl phosphates[J].Electrochimica Acta,2007,52(12):4024-4031.
    [176]Forsyth M,Markley T,Ho D et al.Inhibition of corrosion on AA2024-T3 by new environmentally friendly rare earth organophosphate compounds [J].Corrosion,2008,64(3):191-197.
    [177]Hughes A E,Taylor R J,Hinton B R W et al.XPS and SEM Characterization Of Hydrated Cerium Oxide Conversion Coatings[J].Surface and Interface Analysis,1995,23(7-8):540-550.
    [178]Lin S,Shih H,Mansfeld F.Corrosion protection of aluminum alloys and metal matrix composites by polymer coatings[J].Corrosion Science,1992,33(9):1331-1349.
    [179]Chen C,Mansfeld F.Corrosion protection of an Al 6092/SiCP metal matrix composite[J].Corrosion Science,1997,39(6):1075-1082.
    [180]Treacy G M,Wilcox G D,Richardson M O W.Monitoring the corrosion behaviour of chromate-passivated aluminium alloy 2014 A-T6 by electrochemical impedance spectroscopy during salt fog exposure[J].Surface & Coatings Technology,1999,114(2-3):260-268.
    [181]Lorenz W J,Mansfeld F.Determination Of Corrosion Rates By Electrochemical Dc And Ac Methods[J].Corrosion Science,1981,21(9-10):647-672.
    [182]Mansfeld F,Kendig M W,Tsai S.Evaluation Of Corrosion Behavior Of Coated Metals With Ac Impedance Measurements[J].Corrosion,1982,38(9):478-485.
    [183]Kendig M,Mansfeld F,Tsai S.Determination Of The Long-Term Corrosion Behavior Of Coated Steel With Ac Impedance Measurements[J].Corrosion Science,1983,23(4):317-329.
    [184]Mansfeld F.Use Of Electrochemical Impedance Spectroscopy For The Study Of Corrosion Protection By Polymer-Coatings[J].Journal of Applied Electrochemistry,1995,25(3):187-202.
    [185]曹楚南,林海潮,杜天保.溶液电阻对稳态极化曲线测量的影响及一种消除此影响的数据处理方法[J].腐蚀科学与防护技术.1995.7(4):279-284.
    [186]国家标准局,不锈钢点蚀电位测量方法[G],GB/T 17899-1999.1999,中国标准出版社:北京.p.716-719.
    [187]ASTM Standard A G46-94,Standard Guide for Examination and Evaluation of Pitting Corrosion,ASTM International.2005,West Conshohocken:PA.
    [188]Blanc C,Lavelle B,Mankowski G.The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy [J].Corrosion Science,1997,39(3):495-510.
    [189]Ben-Hamu G,Eliezer D,Shin K S.The role of Si and Ca on new wrought Mg-Zn-Mn based alloy[J].Materials Science and Engineering:A,2007,447(1-2):35-43.
    [190]Revie R W.UHLIG'S CORROSION HANDBOOK.2nd ed.Pennington,New Jersey:JOHN WILEY & SONS,INC,2000.
    [191]Alodan M A,Smyrl W H.Detection of Localized Corrosion of Aluminum Alloys Using Fluorescence Microscopy[J].Journal of the Electrochemical Society, 1998,145(5):1571-1577.
    [192]Manne S,Hansma P K.Atomic-resolution electrochemistry with the atomic force microscope:Copper deposition on gold.(Cover story)[J].Science,1991,251(4990):183.
    [193]Frankenthal R P,Pickering H W.On the Mechanism of Localized Corrosion of Iron and Stainless Steel[J].Journal of the Electrochemical Society,1972,119(10):1304-1310.
    [194]Scully J R,Frankenthal R P,Hanson K J et al.Localized Corrosion Of Sputtered Aluminum And Al-0.5-Percent Cu Alloy Thin-Films In Aqueous Hf Solution.1.Corrosion Phenomena[J].Journal of the Electrochemical Society,1990,137(5):1365-1373.
    [195]Sehgal A,Frankel G S,Zoofan B et al.Pit Growth Study in Al Alloys by the Foil Penetration Technique[J].Journal of the Electrochemical Society,2000,147(1):140-148.
    [196]Sehgal A,Lu D,Frankel G S.Pitting in Aluminum Thin Films[J].Journal of the Electrochemical Society.1998.145(8):2834-2840.
    [197]吴民达.机械工程材料测试手册,腐蚀与摩擦学卷[M].沈阳:辽宁科学技术出版社,2002.
    [198]Frankel G S.Pitting Corrosion of Metals[J].Journal of the Electrochemical Society,1998,145(6):2186-2198.
    [199]Gaudet G T,Mo W T,Hatton T A et al.Mass-Transfer And Electrochemical Kinetic Interactions In Localized Pitting Corrosion[J].Aiche Journal,1986,32(6):949-958.
    [200]Kaneko M,Isaacs H S.In situ measurement of dissolved ion concentration inside an artificial crevice by X-ray fluorescence micro-probe technique[J].Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2002,88(4):210-213.
    [201]Elsawy A R,Soda H,McLean A.Corrosion resistance of reactive element aluminide diffusion coatings on a nickel-based superalloy and an austenitic stainless steel[J].Steel Research International,2007,78(1):58-62.
    [202]Isaacs H S.The Behavior of Resistive Layers in the Localized Corrosion of Stainless Steel[J].Journal of the Electrochemical Society,1973,120(11):1456-1462.
    [203]Pickering H W,Frankenthal R P.On the Mechanism of Localized Corrosion of Iron and Stainless Steel[J].Journal of the Electrochemical Society,1972,119(10):1297-1304.
    [204]Frankel G S,Russak M A,Jahnes C V et al.Pitting of Sputtered Aluminum Alloy Thin Films[J].Journal of the Electrochemical Society,1989,136(4):1243-1244.
    [205]Ernst P,Newman R C.Explanation of the effect of high chloride concentration on the critical pitting temperature of stainless steel[J].Corrosion Science,2007,49(9):3705-3715.
    [206]Laycock N J,White S P,Noh J S et al.Perforated Covers for Propagating Pits [J].Journal of the Electrochemical Society,1998,145(4):1101-1108.
    [207]Linke W F,Seidell A.Solubilities,inorganic and metal organic compounds;a compilation of solubility data from the periodical literature[M].Princeton,N.J.:Van Nostrand,1958.
    [208]Natishan P M,McCafferty E,O'Grady W E,Application of Surface Analysis Methods to Environmental Materials D A baer,Editor.1991,Electrochemical Society p.421.
    [209]Parks G A.The Isoelectric Points of Solid Oxides,Solid Hydroxides,and Aqueous Hydroxo Comolex Systems[J].Chemical Reviews,1965,65(2):177-198.
    [210]程文,周孝德,郭瑾珑 等.水中气泡上升速度的实验研究[J].西安理工大学学报.2000(01):57-60.
    [211]郭荣良,郭清南,祝世兴.流体力学及应用[M].北京:机械工业出版社.1996.
    [212]王云创.气体粘滞系数的测定[J].物理与工程.2003.13(02):37-40.
    [213]向阳,向丹,羊裔常 等.致密砂岩气藏水驱动态采收率及水膜厚度研究[J].成都理工学院学报.1999.26(04):389-391.
    [214]夏国栋,刘亮,马重芳.垂直上升弹状流中Taylor气泡上升流速的研究[J].北京工业大学学报.2000(04):58-62.
    [215]Ho D,Brack N,Scully J et al.Cerium dibutylphosphate as a corrosion inhibitor for AA2024-T3 aluminum alloys[J].Journal of the Electrochemical Society,2006,153(9):B392-B401.
    [216]Aldykiewicz J A J,Davenport A J,Isaacs H S.Studies of the Formation of Cerium-Rich Protective Films Using X-Ray Absorption Near-Edge Spectroscopy and Rotating Disk Electrode Methods[J].Journal of the Electrochemical Society,1996,143(1):147-154.
    [217]Aramaki K.A self-healing protective film prepared on zinc by treatment in a Ce(NO_3)_3 solution and modification with Ce(NO_3)_3[J].Corrosion Science,2005,47(5):1285-1298.
    [218]Pardo A,Merino M C,Arrabal R et al.Ce conversion and electrolysis surface treatments applied to A3xx.x alloys and A3xx.x/SiCp composites[J].Applied Surface Science,2007,253(6):3334-3344.
    [219]Kolics A,Besing A S,Baradlai P et al.Cerium Deposition on Aluminum Alloy 2024-T3 in Acidic NaCl Solutions[J].Journal of the Electrochemical Society,2003,150(11):B512-B516.
    [220]Dabal M,Armelao L,Buchberger A et al.Cerium-based conversion layers on aluminum alloys[J].Applied Surface Science,2001,172(3-4):312-322.
    [221]王成,江峰,林海潮 等.LY12Al合金铈转化膜的研究[J].腐蚀科学与防护技术.2001.13(02):74-76.
    [222]王成,江峰,林海潮.Ly12铝合金钼酸盐转化膜研究[J].稀有金属材料与工程.2003.32(02):130-133.
    [223]王成,江峰,林海潮.Ly12铝合金三价铈盐溶液中成膜工艺[J].中国有色金属学报.2001.11(S2):181-185.
    [224]顾宝珊,刘建华,纪晓春.铈盐对铝合金的缓蚀机理研究[J].中国腐蚀与防护学报,2006.26(01):53-58.
    [225]Aballe A,Bethencourt M,Botana F J et al.CeCl_3 and LaCl_3 binary solutions as environment-friendly corrosion inhibitors of AA5083 Al-Mg alloy in NaCl solutions[J].Journal of Alloys and Compounds,2001,323:855-858.
    [226]Stoyanova E.Contemporary aspects in the surface treatment of aluminium [J].Bulgarian Chemical Communications,2008.40(2):85-103.
    [227]许越,陈湘,吕祖舜 等.金属表面稀土转化膜的研究进展[J].稀土,2002.23(03):58-62.
    [228]陈溯,陈晓帆,刘传烨 等.铝合金表面稀土转化膜工艺研究[J].材料保护.2003,36(08):33-36.
    [229]Campestrini P,Terryn H,Hovestad A et al.Formation of a cerium-based conversion coating on AA2024:relationship with the microstructure[J].Surface & Coatings Technology,2004,176(3):365-381.
    [230]吕雪飞,李淑英.稀土对金属表面钝化作用研究进展[J].电镀与涂饰.2006.25(10):46-49.
    [231]Conde A,Arenas M A,de Frutos A et al.Effective Corrosion Protection Of 8090Alloy By Cerium Conversion Coatings[J].Electrochimica Acta,2008,53(26):7760-7768.
    [232]Kamaraj K,Sathiyanarayanan S,Venkatachari G.Electropolymerised Polyaniline Films On AA 7075 Alloy and Its Corrosion Protection Performance[J].Progress in Organic Coatings,2009,64(1):67-73.
    [233]Hsu C S,Mansfeld F.Concerning the Conversion of the Constant Phase Element Parameter Yo into a Capacitance[J].Corrosion,2001,57:747-748.
    [234]Yu X W,Cao C N.Mixed rare earth metal conversion coatings on 2024 alloy and Al6061/SiC_p metal matrix composites[J].Transactions of Nonferrous Metals Society of China,2000,10(05):580-584.
    [235]张星辰,周清泽,钮蒸 等.乙醇溶液电解反应[J].河北科技大学学报,1999.20(1):1-5.
    [236]Rodgers B.Capacitance Value from CPE:A Calculator[EB/OL].2009[2009-04-04];http://www.consultrsr.com/resources/eis/cpecalc2.htm.
    [237]Dabala M,Ramous E,Magrini Mo Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy[J].Materials and Corrosion,2004,55(5):381-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700