用户名: 密码: 验证码:
石煤型钒矿焙烧—浸出过程的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石煤提钒是石煤资源综合利用的一个重要方面,我国从60年代起开始石煤提钒的相关研究与生产,但总体来说,石煤提钒技术水平不够先进,提钒工艺存在钒总回收率低、试剂消耗大、成本高、易产生污染等问题;并且,石煤提钒理论研究较少,研究方法单一,尤其是对于焙烧过程、浸出过程的相关理论研究比较薄弱,这严重制约了提钒技术的发展。而已有的研究工作大多是针对落后的钠化焙烧体系而开展的,对氧化焙烧体系研究较少。本文在前人研究基础上,采用多种现代测试技术,结合大量理论分析和试验研究,对石煤氧化焙烧过程、焙烧渣酸浸过程中相关理论进行了细致系统的研究。主要研究内容和结果如下:
     (1)焙烧对伊利石晶体结构改变及伊利石在酸中溶解行为的影响
     研究了伊利石在不同焙烧温度下晶体结构变化规律,结果表明,伊利石在100℃左右脱除吸附水和层间水,在600℃~800℃范围内,脱除羟基,在1050℃左右时,伊利石开始发生相变,转变为莫来石。伊利石晶体结构中四面体和八面体在焙烧过程中发生调整、变形,这促使结构中Al、K以及Si所受“束缚力”减弱,溶解活性增强,在酸溶液中更易溶出。
     (2)氧化焙烧过程热力学分析及焙烧过程物理化学变化
     对石煤氧化焙烧过程进行了热力学分析,绘制了有机质、黄铁矿、钒和方解石吉布斯自由能-温度图。结果表明,有机质、黄铁矿的氧化反应在热力学上比Ⅴ(Ⅲ)氧化反应更易进行,石煤中有机质和黄铁矿的存在对钒氧化具有抑制作用。
     TG-DSC、XRD、SEM分析结果表明,石煤氧化焙烧过程中,发生有机质氧化、黄铁矿氧化、钒氧化、方解石分解等反应。焙烧温度达850℃时,伊利石晶体结构破坏,1050℃,开始有鳞石英生成。焙烧温度为750℃时,颗粒之间开始发生烧结,温度越高,烧结现象越严重;焙烧温度达一定值时,会形成低熔点物质,焙烧温度高于该物质熔点时,出现液相,形成“玻璃体”,使钒被“包裹”。
     (3)氧化焙烧过程中钒氧化规律及与钒浸出的关系
     钒价态分析及浸出试验结果表明,钒氧化过程分为三个阶段,第一阶段主要为V(Ⅲ)氧化为V(Ⅳ),第二阶段主要是V(Ⅳ)氧化为V(Ⅴ),第三阶段V(Ⅲ)和V(Ⅳ)氧化反应达到平衡;V(Ⅲ)需氧化为V(Ⅳ)或V(Ⅴ)才可能被浸出,但若钒(无论是V(Ⅲ)、V(Ⅳ)还是V(Ⅴ))在焙烧过程中被“包裹”,则难以被浸出。
     (4)氧化焙烧渣酸浸过程热力学分析
     绘制了钒-水体系电位-pH图,分析了钒在水溶液中的存在状态及溶解性能。结果表明,钒在水溶液中赋存状态复杂,在高电位、强酸性(pH<1)条件下,主要以钒氧离子(VO_2~+、VO~(2+))形式存在。
     绘制了石煤中主要矿物石英、伊利石和高岭石在水溶液中浓度对数图,计算了伊利石、高岭石和赤铁矿溶解反应在各温度下标准平衡常数,结果表明,伊利石、高岭石溶解反应可自发进行,溶解反应标准平衡常数较大,高岭石在酸中比伊利石更易溶解,赤铁矿在酸中不易溶解。
     (5)焙烧渣酸浸动力学、钒浸出机理
     提出了含钒伊利石浸出动力学模型,计算得出钒浸出反应表观活化能为99.52kJ/mol,查定了钒浸出反应控制步骤,属化学反应控制。浸出试验结果表明,钒和铝浸出行为具有良好的相关性,铝浸出,钒亦被浸出,反之亦然。钒浸出率与含钒伊利石晶体结构破坏程度相关,晶体结构破坏程度越大越有利于钒的浸出。钒浸出机理可用表面化学过渡态理论解释,H~+先吸附在伊利石表面上,然后与伊利石中V发生交换,V从伊利石中解吸后进入溶液,实现钒的浸出。
Extraction of vanadium is an important aspect of the compositive utilization of stone coal resource.From 1960s on,studies and applications about extraction of vanadium from stone coal have been carrying out in China.Generally speaking,the technical level of extraction of vanadium is out-dated,and has lots of problems,such as low recovery of vanadium,high consumption of reagents,high cost,and producing pollution.Theoretical researches of extraction of vanadium from stone coal are few,especially for the theoretical researches about roasting process and acid leaching process.The poverty of theoretical research seriously restricts the technology development of extraction of vanadium from stone coal.Besides,existing studies are mostly aimed at sodium salt roasting process,and few studies are aimed at oxidizing roasting process.Based on the research results of previous literatures, through lots of modern testing technologies and a great deal of theoretical analyses and experiments,correlative theories with oxidizing roasting of stone coal process and acid leaching of roasted stone coal process were studied detailedly in this dissertation.The main conclusions are as follows:
     1.Effect of roasting on crystal structure variation of illite and dissolution behavior of illite in acid solution
     Variation rules of crystal structure of illite under 1050℃range were studied.The results indicated that adsorbed water and interlayer water are removed under about 100℃,and hydroxylation takes place between 600~800℃,and under 1050℃,the layered structure of illite collapses and begins to transform into mullite.Roasting makes the structural of tetrahedron and octahedron deformed and adjusted,which weakening the binding force of Al、K and Si got and strengthening their dissolution abilities in acid.
     2.Thermodynamic analysis of oxidizing roasting process and physical chemistry variation in oxidizing roasting process
     Thermodynamic analysis of oxidizing roasting process was carried out,and Gibbs free energy diagrams of organic matter,pyrite, vanandium and calcium carbonate were figured.Oxidation reactions of organic matter and pyrite are easier to proceed than oxidation reaction of vanadium,thus,the presence of organic matter and pyrite in stone coal can restrain the oxidation of V(Ⅲ).
     In the oxidizing roasting process,organic matter,pyrite and vanadium(V(Ⅲ) and V(Ⅳ)) are oxidized,and calcite decomposed. When roasting temperature reaches 850℃,crystal structure of illite be destroyed,and roasting temperature reaches 1050℃,ridymite formed. Particles begins to sintering under 750℃,and with the roasting temperature increased,sintering intensified.The particular material of low melting point will form in a certain roasting temperature,and when roasting temperature is higher than the melting point,liquid phase forms, resulting in vanadium be encapsulated.
     3.Mechanism of vanadium oxidation in roasting process and the relationship between vanadium oxidation and vanadium leaching
     The process of vanadium oxidation can be divided into three stages: at the first stage,V(Ⅲ) is oxidated into V(Ⅳ);at the second stage,V(Ⅳ) is oxidated into V(Ⅴ);at the final stage,the oxidations of V(Ⅲ) and V(Ⅳ) reach a balance.V(Ⅲ) should be oxidated into V(Ⅳ) or V(Ⅴ) before it be leach out into solution,and if vanadium is encapsulated in roasting process,it is hard to be leach out.
     4.Thermodynamic analysis of the process of acid leaching of the roasted stone coal
     Potential-pH equilibrium diagram of vanadium in aqueous solution was figured,and existence state and solubility of vanadium in aqueous solution was studied.Existence state of vanadium in aqueous solution is extremely perplexing,and under the condition of high potential and low pH,vanadium exists on the form of VO~(2+) orVO_2~+ in aqueous solution.
     Concentration logarithmic diagrams of dissolution of quartz,illite and kaolinite in aqueous solution were figured,and standard reaction constants of leaching reaction of illite,kaolinite and hematite were calculated.The results indicated that leaching reaction of illite and kaolinite can proceed spontaneously,and the solubility of kaolinite in acid solution is much better than illite.Hematite is very hard to dissolve in acid solution.
     5 Acid leaching kinetics of roasted stone coal and mechanism of vanadium leaching
     A "flake"-type kinetic model for vanadium leaching reaction was proposed.The apparent activation energy of the reaction is 99.52 kJ/mol. The kinetic result shows that the reaction rate is determined by chemistry reaction.Results of leaching experiments indicated that there are good correlation between leaching behavior of Al and V.When Al is leached out,V is leached out,too;and vice versa.Leaching rate of vanadium is determined by the damage degree of illite's crystal structure, and the increase of damage degree is beneficial to vanadium leaching. Mechanism of vanadium being leached out is in accord with the transition state theory of surface chemistry.Firstly,H~+ adsorbs onto the surface of illite;secondly,H~+ exchanges with V which in crystal structure of illite;finally,V desorbs from the surface of illite,thus,V goes into the solution.That is to say,vanadium is leached out from illite.
引文
[1]《有色金属提取冶金手册》编辑委员会.稀有高熔点金属(下)[M].北京:冶金工业出版社,1999.276~350
    [2]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985.45~60
    [3]The economics of vanadium[M].England:Roskill Information Services,Ltd.2007
    [4]锡淦,雷鹰,胡克俊,等.国外钒的应用概况[J].世界有色金属,2000,(2):13~21
    [5]任学佑.稀有金属钒的应用现状及市场前景[J].稀有金属,2003,27(6):809~812
    [6]任学佑.金属钒的应用现状及市场前景[J].世界有色金属,2004,(2):34~36
    [7]谭若斌.钒合金的开发应用[J].钒钛,1995,16(1):1~16
    [8]常芳,孟凡明,陆瑞生.钒电池用电解液研究现状及展望[J].电源技术,2006,30(10):860~862
    [9]Krzanowski J E.Chemical,mechanical and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide[J].Journal of American Ceramic Society,1997,80(5):1277~1280
    [10]美国USGS官方网:http://www.usgs.gov/
    [11]朱训主编.中国矿情第二卷金属矿产[M].北京:科学出版社,1999.166~172
    [12]赵红杰,任学佑.美国的钒工业[J].稀有金属,1994,18(3):220~224
    [13]孟柏庭编.轻金属文集[M].长沙:中南工业大学出版社,1995.80~83
    [14]陈云.碱性体系中铝钒钼的溶液化学性质及分离技术研究[D].长沙:中南大学,2006
    [15]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析[J].矿产综合利用,1996,(1):27~34
    [16]王铁明,王新平.承德钛资源的开发应用情况[C].见:2007年度冀、皖、川第二届钒钛技术交流会论文集.河北唐山:河北省冶金学会,2007:64~72
    [17]蔡晋强.石煤综合利用现状[J].矿产综合利用,1984,(4):19~24
    [18]刘早春,于志勇,林治穆,等.石煤的综合利用[J].化学世界,1994,(4):213~314
    [19]蔡晋强,巴陵.石煤提钒的几种新工艺[J].矿产保护与利用,1993,(5):30~33
    [20]Moskalyk R R,Alfantazi A M.Processing of vanadium:a review[J].Minerals Engineering,2003,16(9):793~805
    [21]徐全斌,刘建明.世界钒工业评述[J].冶金信息导刊.1999,(4):21~27
    [22]Vanadium:http://www.australianminesatlas.gov.au/aimr/commodity
    [23]Mitchell P S.The production and use of vanadium worldwide[C].In:The Use of Vanadium in Steel-Proceedings of the Vanitec Symposium.Guiling:Panzhihua Iron&Steel Group Co.,2000.1~6
    [24]Mohanty J K,Khaoash S,Singh S K,et al.Characterisation and utilisation of vanadium-bearing titaniferous magnetite of Boula-Nausahi igneous complex,Orissa,India[J].Scandinavian journal of metallurgy,1999,28(6):254~259
    [25]Taylor P R,Shuey S A,Vidal E E,et al.Extractive metallurgy of vanadium-containing titaniferous magnetite ores:A review[J].Minerals and Metallurgical Processing,2006,23(2):80~86
    [26]Sadykhov G B,Reznichenko V A,Karyazin I A,et al.Scientific bases of complex use of titaniferous magnetite[J].Metally,1993,1:53~56
    [27]Yun Chen,Qiming Feng,Yanhai Shao,et al.Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst[J].International Journal of Mineral Processing,2006,79(1):42~48
    [28]文喆.国内外钒资源与钒产品的市场前景分析[J].世界有色金属,2001,(11):7~8
    [29]王忠,王军.国内外五氧化二钒市场状况与分析[J].矿冶,2007,16(2):47~51
    [30]Raja B V R.Vanadium market in the world[J].Metal world,2007,3:11~12
    [31]国土资源部信息中心编著,世界矿产资源年评2004-2005[M].北京:地质出版社,2006.134~137
    [32]Miyake,Shinichi,Tokuda,Nobuyuki.Vanadium redox-flow battery for a variety of applications[C].In:Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.Vancouver BC,Canada:Institute of Electrical and Electronics Engineers,2001.450~451
    [33]Tian B,Yah C W,Wang F H.Modification and evaluation of membranes for vanadium redox battery applications[J].Journal of Applied Electrochemistry,2004,34(12):1205~1210
    [34]Smith R.Comeback in the outback-vanadium market[J].Materials World,2006,16(7):28
    [35]Sakai J.High-efficiency voltage oscillation in VO_2 planer-type junctions with infinite negative differential resistance[J].Journal of Applied Physics,2008,103(10):1~6
    [36]王永钢.钒系列合金的生产[J].铁合金,2004,(3):36~38
    [37]唐诗全,张帆.攀钢加快氮化钒产业化进程[J].钢铁钒钛,2000,23(3):33
    [38]吴惠.攀钢转炉提钒工艺获突破性进展[J].钢铁,2000,35(2):50
    [39]张大德,张玉东.攀钢转炉提钒工艺的回顾与展望[J].钢铁钒钛,2001,22(1):31~33
    [40]齐小鸣.钒消费前景看好-国内外钒的资源、生产和市场预测[J].世界有色金属,2008,(5):38~41
    [41]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属,2006,22(6):17~20
    [42]方闻.HRB400级钢筋的推广和应用[J].建设科技,2003,(7):80~81
    [43]王艳萍.钒钛资源国内外供需形势及承德地区的开发利用前景分析[J].西部资源,2007,(4):11~13
    [44]洪及鄙.攀钢成为中国最大的钒钛和重要的钢铁生产基地[J].冶金管理,1999,(9):44~52
    [45]杜勇.浅析如何发展攀钢的钒产业[J].钛合金,2004,(2):42~47
    [46]杜炽.攀钢面临的钢铁形势和机遇[J].四川冶金,2004,(5):60~63
    [47]杨君.氮化钒的市场与技术现状及应用前景[J].世界有色金属,2007,(9):24~26
    [48]张爱云,伍大茂,郭丽娜,等.海相黑色页岩建造地球化学与成矿意义[M].北京:科学出版社,1987.147~153
    [49]浙江省煤炭工业局编.石煤的综合利用[M].北京:煤炭工业出版,1981.1~11
    [50]蒲心纯,周浩达,王熙林,等.中国南方寒武纪岩相古地理与成矿作用[M].北京:地质出版社,1993.127~129
    [51]浙江省煤炭工业局编.石煤的综合利用[M].杭州:浙江人民出版,1979.11~19
    [52]《煤矿环境保护》编辑委员会编.煤矿环境保护优秀论文集(一)[M].北京:煤炭工业出版,1999.178~179
    [53]钟蕴英,关梦嫔,崔开仁,等.煤化学[M].徐州:中国矿业大学出版社,1989.245~249
    [54]吕惠进.浙江西部石煤的综合利用与放射性辐射影响研究[J].煤炭加工与综合利用,2002,(1):38~40
    [55]明忠.关于石煤资源的开发和综合利用[J].煤炭企业管理,1990,(6):46~47
    [56]孙玉宝,张金水.霍邱县石煤矿床地质特征及其开发利用前景初探[J].矿产保护与利用,2007,(2):24~27
    [57]汪泽秋.湖南石煤资源的开发利用与保护[J].资源开发与保护,1992,8(1):63~64
    [58]唐根华,任文娣.石煤的综合利用[J].四川水泥,2000,(6):17~18
    [59]许国镇,夏华,戈西锷.江西畈大石煤中钒的价态初步研究[J].矿产综合利用,1983,(4):39~44
    [60]张爱云,潘治贵,翁成敏.杨家堡含钒石煤的物质成分和钒的赋存状态及配分的研究[J].地球科学,1982,(1):193~206
    [61]许国镇,司徒安力,陈农,等.湖北杨家堡石煤中钒的价态研究[J].地球化学,1984,(4):379~389
    [62]许国镇,李吉贵.浙江塘坞石煤中钒的价态研究[J].矿冶工程,1986,6(4):50~54
    [63]郑祥明,田学达,张小云,等.湿法提取石煤中的钒的新工艺研究[J].湘潭大学学报,2003,25(1):43~46
    [64]屈启龙,谢建宏,王冠甫.高碳钒矿综合回收石墨试验研究[J].矿业快报,2007,(4):35~37
    [65]蔡晋强,张顶烈,巴陵.石煤提钒现状与市场浅析[J].稀有金属与硬质合金,1990,18(3):32~39
    [66]刘世森.石煤提钒工艺评述[J].工程设计与研究,1995,(4):12~16
    [67]蔡晋强.石煤提钒在湖南的发展[J].稀有金属与硬质合金,2001,29(1):42~46
    [68]肖和.湖南推出石煤提钒新工艺[J].煤矿资源开发与利用,1992,(10):19
    [69]刘伟.石煤提钒工艺浅析[J].工程设计与研究,1993,(1):46~48
    [70]王永双,李国良.我国石煤提钒及综合利用综述[J].钒钛,1993,(3): 21~30
    [71]贺洛夫.从石煤中提取五氧化二钒[J].无机盐工业,1999,(1):64~66
    [72]姬云波,童雄,叶国华.提钒技术的研究现状和进展[J].国外金属矿选矿,2007,44(5):10~13
    [73]程亮.五氧化二钒生产工艺的进展[J].甘肃冶金,2007,29(4):52~53
    [74]李晓健.酸浸-萃取工艺在石煤提钒工业中的设计与应用[J].湖南有色金属,2000,16(3):21~23
    [75]何东升,冯其明,张国范,等.碱法从石煤中浸出钒试验研究[J].有色金属(冶炼部分),2007,(4):17~19
    [76]Dongsheng He,Qiming Feng,Guofan Zhang,et al.An environmentally-friendly technology of vanadium extraction from stone coal[J].Minerals Engineering,2007,20(2):1184~1186
    [77]蒋馥华,张萍,何其荣,等.钙化焙烧法从石煤中提取五氧化二钒[J].湖北化工,1992,9(1):20~22
    [78]陆芝华,周邦娜,余仲兴,等.石煤氧化焙烧-稀碱溶液浸出提钒工艺研究[J].稀有金属,1994,18(5):321~326
    [79]罗彩英.石煤提钒新工艺研究[J].湖南冶金,1995,(4):5~8
    [80]戴文灿,朱柒金,陈庆邦,等.石煤提钒综合利用新工艺的研究[J].有色金属(选矿部分),2000,(3):15~17
    [81]陈铁军,邱冠周,朱德庆.循环氧化法石煤提钒新工艺试验研究[J].煤炭学报,2008,33(4):454~458
    [82]许国镇.我国南方石煤中钒价态研究的概况及其意义[J].煤炭学报,2008,33(4):454~458
    [83]张晓惠.石煤氧化钠化焙烧设备评析[J].稀有金属与硬质合金,1999,27(3):53~57
    [84]邹晓勇,欧阳玉祝,章爱华,等.石煤钒矿无盐焙烧过程和设备的研究[J],无机盐工业,2000,32(1):32~34
    [85]张中豪.原生钒矿轮窑钠化焙烧生产工艺的研究[J].金属矿山,1999,(9):35~39
    [86]刘景槐,宾智勇,谭爱华.含钒高岭土空白制粒回转窑焙烧-低酸浸出提取五氧化二钒试验研究[J].湖南有色金属,2007,23(5):9~13
    [87]岑可法,骆仲泱,徐馨声,等.煤矸石、石煤循环流化床锅炉的开发[J].煤炭加工利用与综合利用,1990,(5):26~29
    [88]康齐福,施正伦.流化床燃烧技术在石煤提钒中的应用[C].见:中国颗粒学会,编.第六届全国流态化会议文集.武汉:武汉大学出版社,1993.338~340
    [89]易健民,阎建辉,高迪群,等.钒冶炼焙烧添加剂选择研究[J].稀有金属与硬质合金,1994,(1):5~9
    [90]李中军,庞锡涛,刘长让.浙川钒矿以NaCl和MnO2为添加剂的钠化焙烧过程研究[J].稀有金属,1994,18(5):328~333
    [91]李建华,张一敏,刘涛,等.石煤提钒钠化焙烧过程复合添加剂的研究[J].矿业快报,2008,(4):43~45
    [92]傅立,苏鹏.复合添加剂从石煤中提取钒的研究[J].广西民族学院学报,2006,12(2):105~107
    [93]邹晓勇,田仁国.含钒石煤复合添加剂焙烧法生产五氧化二钒工艺的研究[J].湖南冶金,2005,33(5):3~9
    [94]邹晓勇,彭清静,欧阳玉祝,等.石煤钒矿氧化焙烧过程复合添加剂的研究[J].湖南冶金,2005,33(5):3~9
    [95]张萍,蒋馥华.苛化泥为焙烧添加剂从石煤提取五氧化二钒[J].稀有金属,2000,24(2):115~118
    [96]戴文灿,孙水裕,陈庆邦.石灰在石煤钙化焙烧中固硫作用的研究[J].环境污染治理技术与设备,2002,3(9):42~45
    [97]黄克桃,王兴桐.氧化钙化焙烧法应用于从钒云母矿中提取钒的研究[J].武汉钢铁学院学报,1992,15(4):335~339
    [98]张德芳.无污染提钒工艺试验研究[J].湖南有色金属,2005,21(6):16~17
    [99]鲁兆玲.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金,2002,2l(4):175~183
    [100]漆明鉴.酸浸法从石煤中提钒的中间试验研究[J].湿法冶金,2000,19(2):7~16
    [101]常娜,顾兆林,李云.石煤提钒浸出工艺研究[J].无机盐工业,2006,38(7):57~59
    [102]梁建龙,刘惠娟,史文革,等.湿法冶金提钒浸出新工艺[J].中国矿业,2006,15(7):64~66
    [103]刘利军,李继壁,宾智勇,等.陕西某碳硅质钒矿提钒工艺研究[J].有色金属(选矿部分),2006,(3):28~30
    [104]张超达,王国生.提高石煤钒浸出率的新工艺研究[J].金属矿山,2006,(8):218~220
    [105]冯孝善,叶立扬,王献风,等.氧化硫硫杆菌或氧化铁硫杆菌溶浸含钒石煤的研究[J].浙江农业大学学报,1981,7(2):99~112
    [106]李旻廷,魏昶,樊刚,等.石煤氧压酸浸提钒探索试验研究[J].稀有金属,2007,31(专辑):28~31
    [107]石爱华,李志平,李辉,等.石煤中钒的超声浸取研究[J].无机盐工业,2007,39(8):25~57
    [108]肖新望,刘绍书,熊平.用树脂矿浆法从石煤中提取钒[J].湿法冶金,2007,26(2):84~87
    [109]Xu Guozhen,Ge Nai'e,Chen Jianping,et al.Valency study of vanadium in stone coal of southern China[J].Rare Metal,1990,9(2):110~116
    [110]Xu Guozhen,Ge Nai'e,Li Jigui.Valency study of vanadium in stone coal ash ofJiangxi province[J].Journal of China University of Geosciences,1990,(6):122~130
    [111]Guo Wei,Fan Qiming,Hu Changping.Kinetics of vanadium oxidation during bone coal roasting in air[J].Rare Metals,1995,14(4):276~281
    [112]许国镇.氯化钠在石煤提钒中的作用[J].矿冶工程,1988,8(4):44~47
    [113]周应余.石煤提取五氧化二钒的食盐配比问题[J].无机盐工业,1979,(4):40~41
    [114]许国镇,夏华,李权.湖北崇阳石煤中钒的价态分配[J].北京钢铁学院学报,1988,10(2):257~262
    [115]钱定福.湖北广石崖石煤钠化焙烧提钒相变机理的研究[J].矿产综合利 用,1982,(3):8~15
    [116]伍三民.崇阳含钒石煤的氯化钠焙烧及钒的浸出性能[J].铀矿冶,1988,7(2):23~30
    [117]李国良,童庆云,王永双.九狮坪钒钼矿的焙烧相变[J].钢铁钒钛,1993,(5):12~18
    [118]许国镇,王锐兵.八都、淅川石煤烧结、包裹与钒转化的研究[J].稀有金属,1994,18(6):422~427
    [119]许国镇,张秀荣,尹光衡.江西玉山石煤烧结包裹与钒转化的研究[J].现代地质,1993,7(1):109~117
    [120]申小清,杨林莎,许闽,等.从含钒酸浸液中回收钒的工艺研究[J].河南化工,1999,(1):16~18
    [121]杨静翎,金鑫.酸浸法提钒新工艺的研究[J].北京化工大学学报,2007,34(3):254~257
    [122]张晓萍.微细粒高岭石与伊利石疏水聚团的机理研究[D].硕士学位论文,长沙:中南大学,2007
    [123]中华人民共和国行业标准,YB/T 5328-2006.高锰酸钾氧化-硫酸亚铁铵滴定法测定五氧化二钒含量[S].北京:中国标准出版社,2006-10-11
    [124]《有色金属工业分析丛书》编辑委员会编,矿石和工业产品化学物相分析[M].北京:冶金工业出版社,1992.324~332
    [125]中华人民共和国教育标准,JY/T 015-1996.感耦等离子体原子发射光谱方法通则[S].北京:中国标准出版社,1997-01-23
    [126]Brindley G W,Lematre J.Thermal oxidation and reduction reactions of clay minerals.In:Newman A C Ded.Chemistry of Clays and Clay Minerals[C].London:Longman Scientific and Technical,1987.319~364
    [127]Jos(?) Humberto de Ara(?)jo,Nagib Francisco da Silva,Wilson Acchar,et al.Thermal decomposition of illite[J].Materials Research,2004,7(2):359~361
    [128]闻辂.矿物红外光谱学[M].重庆:重庆大学出版社,1988.93~94
    [129]李光辉.铝硅矿物的热行为及铝土矿石的热化学活化脱硅[D].博士学位论文,长沙:中南大学,2002
    [130]刘文新,汤鸿霄.不同地域天然伊利石的多光谱表征与比较[J].应用基础与工程科学学报,2001,9(2~3):164~171
    [131]Farmer V C.The layer silicates.In:Farmer V C(eds).Infrared Spectra of Minerals[C].London:The Mineral society,1974.331~362
    [132]周张健,杨中漪,陈代璋.浙南渡船头伊利石矿的热膨胀性及其机理[J].矿物岩石,1996,16(3):7~12
    [133]Lausen S K,Lindgreen H,Jakobsen H J,et al.Solid-state 29Si NMR studies of illite and illitesmectite from shale[J].American Mineralogist,1999.1433~1438
    [134]胡岳华.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社,2004.34~35
    [135]He H,Guo J,Xie X,et al.A microstructural study of acid-activated montmorillonite from Choushan,China[J].Clay Minerals,2002,37(2):337
    [136]蔡元峰,薛纪元.坡缕石在HCl溶液中的溶解行为及溶解机制[J].自然科学进展,2003,13(9):933~938
    [137]王德强,王辅亚,张惠芬,等.云母类矿物的活化释钾性能[J].地球化学,1999,28(5):505~511
    [138]傅崇说主编.有色冶金原理[M].北京:冶金工业出版社,1997.33~40
    [139]Watersa K E,Rowsona N A,Greenwooda R W,et al.The effect of heat treatment on the magnetic properties of pyrite[J].Minerals Engineering,2008,21(9):679~682
    [140]Hua Guilin,Kim Dam-Johansena,Stig Wedela,et al.Decomposition and oxidation of pyrite[J].Progress in Energy and Combustion Science,2006,32(3):295~314
    [141]许国镇.石煤中还原性矿物对钒的价态影响[J].矿冶工程.1987,7(1):35~39
    [142]Groves S J,Williamson J,Sanyal A.Decomposition of pyrite during pulverized coal combustion[J].Fuel,1987,66(4):461~466
    [143]Aur(?)lie Michota,David S S,Solange Degota,et al.Thermal conductivity and specific heat of kaolinite:Evolution with thermal treatment[J].Journal of the European Ceramic Society,2008,28(4):2639~2644
    [144]Castelein O,Soulestin B,Bonnet J P,et al.The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material[J].Ceramics International,2001,27(5):517~522
    [145]Boris V L.Mechanism and kinetics of thermal decomposition of carbonates[J].Thermochimica Acta,2002,38(1):1~16
    [146]中南矿冶学院团矿教研室编.铁矿粉造块[M].北京:冶金工业出版社,1978.75~76
    [147]任允芙,风麟.酒钢含重晶石铁精矿在烧结过程中重金晶石分解机理和脱硫的研究[C].见:中国选矿科技情报钢工艺矿物网,编.第三届全国工艺矿物学学术会议论文集.北京:中国选矿科技情报网,1985.377~383
    [148]马鸿文主编.工业矿物与岩石[M].北京:地质出版社,2002.37~45
    [149]唐贤容等编著.烧结理论与工艺[M].长沙:中南工业大学出版社,1992.188~198
    [150]Rouquerol F,Rouquerol J,Sing K.Adsorption by Powders and Porous Solids,Principles Methodology and Applications[M].Academic Press,Harcourt Brace& Company,1999.205~207
    [151]Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57(4):603~619
    [152]Brunauer S.Pore Structure of Solids[J].Pure and Applied Chemistry,1976,48(4):401~405
    [153]Dubinin M M.Fundamentals of the theory of adsorption in micropores of carbon adsorbents:characteristics of their adsorption properties and microporous structures[J].Pure and Applied Chemistry,1989,61(11):1841~1843
    [154]Piotr Kowalczyk,Vladimir M.Gun'ko,Artur P.Terzyk,et al.The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers[J].Applied Surface Science,2003,26(1~4):67~77
    [155]Barrett E P,Joyner L G,Halenda P P.The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms[J].Journal of the American Chemical,1951,73(1):373~380
    [156]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40~43
    [157]许国镇,潘茂昌,司徒安力,等.石煤中钒的氧化动力学初步研究[J].现代地质,1988,2(4):507~515
    [158]韩其勇.冶金过程动力学[M].北京:冶金工业出版社.1983.49~50
    [159]Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solution[M].London:Oxford Pergamon Press,1996.25~448
    [160]Gmelin Handbook of Inorganic and Organometallic Chemistry[M],8th edition.Vanadium System-Nr.1996.48
    [161]Kerby R C,Wilson J R.Solid-Liquid phase equilibria for the ternary system V_2O_5-Na_2O-Fe_2O_3,V_2O_5-Na_2O-Cr_2O_3 and V_2O_5-Na_2O-MgO[J].Canadian Journal of Chemistry,1973,51(7):1032~1040
    [162]Barin I,Knacke O.Thermochemical properties of inorganic substances[M].Berlin:Springer-Verlag,1973.1710~1715
    [163]Tracey Alan S,Gail Ruth Willsky,Esther Takeuehi.Vanadium:Chemistry,Biochemistry,Pharmacology and Practical Applications[M].Boca Raton:CRC Press,2007.20~27
    [164]李国良,何晋秋.钒在溶液中的状况[J].国外钒钛(第十四辑),1975.15~25
    [165]Clark R J H,Brown D.The Chemistry of Vanadium,Niobium and Tantalum[M].London:Oxford Pergamon Press,1975.261~302
    [166]Bailar J C,Emeleus H J,Emeleus H J,et al.Comprehensive Inorganic Chemistry[M].Oxford:Pergamon Press,1973.517~524
    [167]Kepert D L.The Early Transition Elements[M].London:Academic Press,1972.162~180
    [168]P(?)ter Bugly(?),Debbie C.Crans,Eszter M.Nagy,et al.Aqueous chemistry of the vanadiumⅢ(Ⅷ) and the Ⅷ-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats[J].Inorganic Chemistry,2005,44:5416~5427
    [169]Weckhuysen Bert M,Daphne E.Kelle.Chemistry,spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis[J].Catalysis Today,2003,78:25~46
    [170]Cotton F A,Wilkinson G.Advanced Inorganic Chemistry[M],6th edition.New York:Wiley-Interscience,1992.818~830
    [171]Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solution[M].London:Oxford Pergamon Press,1966.234~245
    [172]Rimstidt J D,Barnes H L.The kinetics of silica-water reactions[J].Geochimica et Cosmochimica Acta,1980,44(11):1683~1699
    [173]Loretta A.Williams,David A C.Silica diagenesis Ⅱ:General mechanisms[J].Journal of Sedimentary Research,1985,55(3):312~321
    [174]Krauskopf K B.Dissolution and precipitation of silica at low temperatures[J],Geochim Cosmochim Acta,1956,10:1~26
    [175]Vansant E F,Voort P V D,Vrancken K C.Characterization and chemical modification of the silica surface[M].Amsterdam:Elsevier,1995.16~18
    [176]Bergna H E.The Colloid Chemistry of Silica[M].Washington D C:ACS,1994.1~10
    [177]Mahendra P V.Chemical thermodynamics of silica:a critique on its geothermometer[J],Geothermics,2000,29(3):323~346
    [178]胡岳华,王毓华,王淀佐,等.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社,2004.198~201
    [179]戴安邦.硅酸聚合作用的一个理论[J].南京大学学报(化学版),1963,(1):
    [180]May H M,Helmke P A,Jackson M L.Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25℃[J].Geochimica et Cosmochimica Acta,1979,43(6):861~868.
    [181]Wasserman E,Rustad J R,Xantheas S S.Interaction potential of Al~(3+) in water from first principles calculations[J].The Journal of Chemical Physics,1997,106(23):9769~9780.
    [182]夏自发.废锂离子电池中有价金属提取研究[D].硕士学位论文,长沙:中南大学,2007.
    [183]Nordstrom D K,Ball J W.The geochemical behavior of aluminum in acidified surface waters[J],Science,1986,232(4746):54~56
    [184]杨显万,何霭平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983.
    [185]李宽良.水文地球化学热力学[M].北京:原子能出版社,1993.233~243
    [186]胡显智.高镁矿石酸浸降镁及浸出液综合利用研究[D].博士学位论文,昆明:昆明理工大学,2002
    [187]F·哈伯斯.提取冶金原理(第一卷):冶金原理[M].北京:冶金工业出版社,1978.100~102
    [188]孙召明,赵中伟.冶金化学动力学研究中应注意的几个问题[J].稀有金属与硬质合金,2001,3:27~30
    [189]刘晓文.一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究[D].博士学位论文,长沙:中南大学.2003
    [190]Hu Y,X Liu,Zhenghe Xu.Role of Crystal Structure in Flotation Separation of Diaspore from Kaolinite,Pyrophyllite and Illite[J].Minerals Engineering,2003,16(3):219~227
    [191]刘文新.不同来源天然伊利石理化性质的对比研究[D].博士学位论文,北京:中科院生态环境研究中心.1999
    [192]Giese R.F.Interlayer Bonding in Talc and Pyrophyllite[J].Clays and Clay Minerals,1975,23(2):165~166
    [193]杨武国.层状硅酸盐机械活化浸出制备多孔材料的研究[D].硕士学位论文,长沙:中南大学.2005
    [194]Xie Zhixin,John V W.Incongruent Dissolution and Surface Area of Kaolinite[J].Geochimica et Cosmochimica Act,1992,56:3357~3363
    [195]杨艳霞.纤蛇纹石酸浸及其制备氧化硅纳米线的研究[D].硕士学位论 文,长沙:中南大学.2007
    [196]Barry R B,Dirk Bosbach,Michael F,et al.In situ atomic force microscopy study of hectorite and nontronite dissolution:Implications for phyllosilicate edge surface structures and dissolution mechanisms[J].American Mineralogist,2001,86(4):411~423
    [197]赵中伟,李洪桂,刘茂盛,等.广泛粒度分布条件下冶金动力学研究新方法-表面化学反应控制[J].中南工业大学学报,1996,27(2):177~180
    [198]赵中伟,李洪桂,孙培梅,等.广泛粒度分布条件下片状矿物浸出动力学[J].矿冶工程,2002,22(2):87~89.
    [199]李洪桂.湿法冶金学[M].长沙:中南大学出版社,1998.69~122
    [200]靳元富,谭清云.益阳某地含钒石煤中钒的物相分析.见:龚美菱主编,化学物相分析研究论文集[C].西安:陕西科学技术出版社,1996.423~425
    [201]鲍超.石煤发电烟尘沸腾钠化焙烧提钒过程的分析[J].矿冶工程,1990,10(3):40~41
    [202]谭凯旋,张哲儒,王中刚.矿物溶解的表面化学动力学机理[J].矿物学报,1994,14(3):207~214
    [203]中国科学院地球化学研究所编.高等地球化学[M].北京:科学出版社,1998.148~153
    [204]蒋引珊,金为群,权新君,等.粘土矿物酸溶解反应特征[J].长春科技大学学报,1999,29(1):97~100
    [205]Lasaga A C.Chemical kinetics of water-rock interac-tion[J].Journal of Geophysical Research,1984,89:4009~4025
    [206]Russell J H,Collins D C,Rule A R.Vanadium roast-leach dissolution from western phosphate tailings[M].Washington D C:Bureau of Mines,1982.214
    [207]肖文丁.广西上林石煤的矿物学和湿法提钒研究[J].有色金属,2007,59(3):85~94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700