用户名: 密码: 验证码:
MACA体系中处理低品位氧化锌矿制取电锌的理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国现有储量巨大的高碱性脉石型低品位氧化锌矿,用传统的炼锌方法无法处理。本文开拓新的途径,采用MACA法即在Me-NH_4Cl-NH_3-H_2O体系中处理这种氧化锌矿制取电锌。论文系统深入地研究了MACA法处理高碱性脉石型氧化锌矿的理论和工艺,得出了一些有意义的结果。
     首先采用双平衡法(质量平衡和电荷平衡),分析了Zn(Ⅱ)-NH_3-Cl~--CO_3~(2-)-H_2O体系中Zn(Ⅱ)配合平衡热力学,求出了氨和氯化铵浓度在0-5mol/L范围内变化时,体系中各物种的平衡浓度,绘制了多种热力学关系图。结果表明,体系中有CO_3~(2-)存在时,适当提高氨浓度有利于提高溶液中的总锌浓度。这些现象与不考虑CO_3~(2-)的Zn-NH_4Cl-NH_3体系有较大差异。用试验验证了上述热力学计算结果,试验结果和计算结果彼此符合较好,两者平均相对误差仅为7.47%。这说明热力学模型适用可行,所选数据准确性较好。
     系统地分析了Cu、Cd、Co、Ni、Pb、Mg等主要杂质元素在Zn(Ⅱ)-NH_4Cl-NH_3-H_2O体系处理氧化锌矿过程中的溶解行为和平衡规律,它们均能与NH_3、OH~-、Cl~-形成配合物,因此在NH_4Cl-NH_3-H_2O体系中浸出氧化锌矿时,这些杂质元素部分或全部进入浸出液中,对锌的提取产生不利影响,需要净化除去。
     绘制了Me(Ⅱ)-NH_4Cl-NH_3-H_2O体系的电位-浓度图,揭示了各主要杂质除去的难易程度。在Me-NH_4Cl-NH_3-H_2O体系中,当氨和氯化铵浓度在0-5mol/L范围内时,E_(Cu~(2+)/Cu)、E_(Ni~(2+)/Ni)、E_(Pb~(2+)/Pb)及E_(Co~(2+)/Co)与E_(Zn~(2+)/Zn)的差均大于0.4v,因此锌粉可以彻底置换它们。在高氨高氯化铵浓度区域内,E_(Cu~(2+)/Cu)、E_(Cd~(2+)/Cd)与E_(Zn~(2+)/Zn)相差较小,最小仅为0.16v。E_(Cd~(2+)/Cd)E_(Co~(2+)/Co)与E_(H~+/H_2)比较接近,在常温下,不会发生酸性体系锌粉置换过程中镉的返溶现象。
     研究了MACA法浸出氧化锌矿过程的动力学,发现浸出过程受通过固体膜层扩散过程控制,浸出速率可用收缩核模型描述,浸出反应的表观活化能为7.057 kJ/mol。动力学方程可表示为:
     首次提出“(循环)浸出-净化-电积”MACA法处理高碱性脉石氧化锌矿的新工艺,该工艺不需要富集过程即可电积,废电解液返回配制浸出剂,而且常温操作,直流电耗低,实属一种清洁和低能耗的湿法炼锌新方法。分别以云南兰坪中、低品位氧化锌矿为原料,对新工艺进行了系统研究,获得良好结果。
     MACA法处理兰坪中等品位氧化锌矿,在总氨浓度7.5 mol/L、NH_4Cl/NH_3=2:1、液固体积质量比4:1、常温、机械搅拌(300 rpm)、浸出时间60 min的优化条件下,锌平均浸出率为88.57%,浸出液中平均Zn~(2+)浓度为43.20 g/L。采用相同的浸出剂成分,在液固体积质量比2.5:1,在常温下,经过30 d柱浸,锌浸出率达到92.19%。
     采用胶体共沉淀法脱除As和Sb,其含量均降到0.3 mg/L。采用锌粉两段逆流置换法除去Cu、Cd、Co、Ni、Pb等杂质,其含量均可降至1 mg/L以下,净化后液的化学组成完全满足锌电积要求。
     添加剂对阴极锌的形貌有较大影响,净化后液如果不加入添加剂而直接电积,只能得到海绵状锌粉;单独添加骨胶、T-B、T-C,或者仅添加任意两种,同样不能得到致密锌板;在骨胶、T-B添加量为100 mg/L、T-C为2 ml/L的条件下电积,可以得到致密平整的锌板。
     在异极距3 cm、电流密度400A/m~2、温度40℃、电解废液锌离子浓度>15 g/L的优化条件下电积,添加剂用量如上所述,电锌质量达到国标1#电锌标准,电流效率>90%,直流电耗为2882 kWh/t锌,氨耗约0.2 t/t锌。
     废电解液调整成分后返回浸出,结果证明对工艺技术经济指标不产生影响。
     MACA法处理兰坪低品位氧化锌矿,采用循环浸出方式使锌离子在浸出液中富集,在总氨浓度6 mol/L、NH_4~+/NH_3=1:1、液固体积质量比等于4:1的优化条件下,常温浸出3 h,随着浸出过程的进行适当调整浸出剂成分,经过5次循环浸出,浸出液中Zn~(2+)浓度可富集到37.37 g/L,氨可浸锌浸出率98.47%,总锌浸出率73.66%。
     浸出液的净化和电积采用与处理中等品位氧化锌矿浸出液同样的工艺条件,经过净化操作,各杂质含量可降到1 mg/L以下,净化后液完全满足锌电积要求。净化后液经过电积,所得电锌质量达到国标1#电锌标准,平均电流效率>90%,直流电耗为2991 kwh/t锌,氨耗约0.2 t/t锌。废电解液调整成分后返回浸出,与前相同,对技术经济指标不产生影响。
In our country large reserves of low grade zinc oxide ores bearing high basic gangues can not be treated by traditional zinc metallurgical process. In this dissertation, a new process named as MACA method was proposed to produce cathode zinc from these zinc oxide ores in the system of Me-NH_4Cl-NH_3-H_2O.Theoretical and technical studies on the extraction zinc in Me-NH_4Cl-NH_3-H_2O (MACA) system were carried out in detail and some meaningful conclusions were obtained.
     Thermodynamics of Zn(Ⅱ) complex equilibria in Zn(Ⅱ)-NH_3-Cl~--CO_3~(2-)-H_2O system was studied based on the conservation of mass and charge neutrality. When the concentration of ammonia and ammonium chloride is variable in range of 0-5mol/L, the equilibrium concentrations of all species were calculated, respectively, and thermodynamic diagrams were plotted. It indicated that the total equilibrium concentration of zinc is enhanced with the increasing of ammonia concentration in presence of CO_3~(2-) ion. The theoretical calculation results were testified by solubility experiments. The results show that the average relative error is less than 8%, which indicates that the thermodynamic models and critical data are feasible and reliable.
     The behavior and equilibrium law of major impurities, such as Cu, Cd, Co, Ni, Pb and Mg, during the leaching of zinc oxide ores in Zn(Ⅱ)-NH_4Cl-NH_3-H_2O system were detailedly analyzed. Cu, Cd, Co, Ni and Mg in raw material can be leached out with certain rate due to the formation of metallic complex like Me(NH_3)_i~(n+),Me(OH)_j~(n-j),or MeCl_k~(n-k). The impurities in leaching solution have adverse effect on zincelectrowinning, and must be removed.
     The difficulties or ease of removal major impurities from Zn(Ⅱ)-NH_4Cl-NH_3-H_2O system were systematically revealed by potential-concentration diagrams. The potential differences between E_(Me~(2+)/Me)(Me represent Cu~(2+),Ni~(2+),Pb~(2+),Co~(2+)) and E_(Zn~(2+)/Zn) are higher than0.4V when the concentration of ammonia and ammonium chloride is variable in range of 0-5mol/L, respectively. So they can be cemented thoroughly by zinc powder. When the concentration of ammonia and ammonium chloride is higher,the potential differences between E_(Me~(2+)/Me) (Me represent Cu~+,Cd~(2+)) and E_(Zn~(2+)/Zn) are low, and the minimum value is 0.16V.E_(Cd~(2+)/Cd)、E_(Co~(2+)/Co) is close to E_(H~+/H_2),cadmium and cobaltcemented will not resolve in Zn(Ⅱ)-NH_4Cl-NH_3-H_2O system at ambient temperature.
     Leaching kinetics of zinc oxide ore in the system of NH_4Cl-NH_3-H_2O was studied. It is indicated that diffusion through the inert ash film is the controlling step. The leaching kinetics follows shrinking-core model, and the apparent activation energy is about 7.057 kJ/mol. Dynamical equation can be expressed as follow:
     A new process of "cycle leaching-purification-electrowinning" in the system of Zn(Ⅱ)-NH_4Cl-NH_3-H_2O was proposed for extracting zinc from the zinc oxide ores bearing high basic gangue. Zinc concentrations in the obtained pregnant solution may be met the case of zinc electrowinning. Spent electrolyte was recycled to leaching operation. The whole process was carried out at ambient temperature and the direct-current consumption was low. So it is a cleaning and energy-saving process for zinc hydrometallurgy. Middle and low grade zinc oxide ores from Lan-ping in Yunnan province were used as raw materials in present dissertation and wonderful results were obtained.
     Middle-grade zinc oxide ores from Lan-ping were leached under the following optimum conditions: total ammonium concentration of 7.5 mol/L,n_(NH_4Cl)/n_(NH_3)=2:1,the ratio of liquid to solid being 4, mechanically stirring speed of 300 rpm, leaching time for 60min at ambient temperature. The average leaching rate was 88.57%, and the average concentration of zinc in pregnant solution was 43.20g/L. During heaping leaching, the composition of lixiviant was the same as bottle leaching, and the leaching rate of zinc was 92.19% after 30 days at ambient temperature when the ratio of liquid to solid is 2.5.
     The concentration of As and Sb in pregnant solution can be decreased to 0.3 mg/L by colloid coprecipitation method. After two-stage of counter-current cementation by zinc powder, the concentration of impurities, such as Cu, Cd, Co, Ni and Pb, may be less than 1 mg/L, respectively. The obtained purificatory solution meets the requirements of zinc electrowinning.
     The additives have significant influence on the surface morphology of cathode zinc. Sponge zinc was produced during zinc electrowinning without additives. Compact zinc plate can not be obtained when electrowinning adding any one or two of additives as bone glue, T-B and T-C. Compact zinc plate was obtained when the amount of bone glue, T-B and T-C is 100mg/L,100mg/L and 2ml/L, respectively.
     According to the results of single-factor experiments, the optimum conditions of zinc electrowinning was determined as follow: electrode space of 3 cm, current density of 400A/m~2,zinc concentration in spent electrolyte >15g/L, bone glue of 100mg/L, T-B of 100mg/L, T-C of 2ml/L,and at 40℃.Cathode zinc obtained under optimum conditions meets the requirements of first-grade zinc in GB 470-1997 1~# standard. Current efficiency was higher than 90%. The power and ammonia consumption was about 2882 kWh/t zinc and 0.2 t/t-zinc, respectively. Spent electrolyte was recycled to leaching operation after its composition adjusted. The results show that spent electrolyte circulation hasn't adverse influences on the technical and economic indexes of the process.
     During leaching low-grade zinc oxide ores, the concentration of zinc in leaching solution was enriched continuously by the method of circulation leaching. After five-cycle of lixiviant, the concentration of zinc in leachate was higher than 37g/L under the conditions that total ammonium concentration is 6 mol/L,n_(NH_4Cl)/n_(NH_3)=1:1,the ratio of liquid to solid is 4, mechanically stirring speed is 300rpm, and leaching time for 3h at ambient temperature. The average leaching rate of zinc was 98.47%. The purification and electrowinning of obtained leachate was carried out under the above-mentioned optimum conditions. The concentration of impurities, such as As, Sb, Cu, Cd, Co, Ni and Pb in purificatory solution may be less than 1mg/L. Cathode zinc obtained meets the requirements of first-grade zinc in GB 470-1997 1# standard. Current efficiency was higher than 90%. The power and ammonia consumption was about 2991 kWh/t·zinc and 0.2 t/t-zinc, respectively.
引文
[1]李振寰 编著.元素性质数据手册[M].石家庄:河北人民出版社,1985
    [2]赵天从.重金属冶金学(下册)[M].北京:冶金工业出版社,1981
    [3]彭容秋.重金属冶金学[M].长沙:中南工业大学出版社,1998
    [4]梅光贵,王得顺,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [5]黄佩丽,田荷珍编著.基础元素化学[M].北京:北京师范大学出版社,1994
    [6]徐鑫坤,魏昶.锌冶金学[M].昆明:云南科技出版社,1994,8
    [7]王忠实.中国锌冶金现状[J].有色冶炼,1996,(6):1-5
    [8]陈邦俊.世界铅锌工业现状与展望[J].世界有色金属,1997,(5):19-24
    [9]刘彦龙.中国电池行业市场分析[A].2002年中国国际铅锌年会论文集[C],北京安泰科信息开发有限公司,云南昆明:84-97
    [10]《无机化学丛书》编委会.无机化学丛书[M].第六卷.北京:科学出版社,1995年12月:671-755
    [11]许采栋,林蓉,汪大成编著.锌冶金物理化学[M].上海:上海科学技术出版社,1979年:9-66
    [12]蔡少华,黄坤耀,张玉蓉编著.元素无机化学[M].广州:中山大学出版社,1998年4月:193-215
    [13]Morgan S W K. Zinc and its Alloys[M]. MacDonalde&Evans Ltd. Eatover,Plymouth, 1977: 4-183
    [14]蔡强编著,锌合金[M].长沙:中南工业大学出版社,1987
    [15]李明.纳米氧化锌的生产和应用进展[J].化工文摘,2007,5:53.56
    [16]刘永刚.纳米氧化锌在橡胶行业中的应用[J].科技信息,2007,12:245-246
    [17]李云峰,兰尧中.纳米硫化锌的制备与应用状况[J].湿法冶金,2007,26(3):123-127
    [18]陈朝华.立德粉.硫酸锌生产与应用技术问答[M].北京:化学工业出版社,2000年7月
    [19]石玲斌.七水硼酸锌的制备[J].昆明理工大学学报,2003,28(2):14-16
    [20]Tamaura Y,Tabata M. Complete reduction of carbon dioxide to carbon using cation-excess magnetite[J]. Nature, 1990, 346(6281): 255-256.
    [21]田庆华,黄凯,郭学益.纳米铁酸锌粉末制备的研究进展[J].粉末冶金材料科学与工程,2005,10(4):200-204[22]戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005,3: 15-23
    [23]戴自希,张家睿.世界铅锌资源和开发利用现状[J].世界有色金属,2004,3:22-29
    [24]李盛霖.中国的资源形势和发展政策[J].中国高新技术企业.2005,5:10-12
    [25]任巍,高帆,王殿茹.矿产资源紧缺与我国矿产资源战略体系的构建[J].中国国土资源经济,2005,5:14-16
    [26]Norton G A, Groat C G Mineral Commodity Summaries 2004[M]. Washington:U.S.Government Printing Offices, 2004,188-189
    [27]谭铁军,肖功明.中国铅锌原料供应战略探讨[J].世界有色金属.2000,7:14-16
    [28]左仁广.解决资源危机矿山的策略与方法[J].中国矿业,2005,14(7):44-47
    [29]苗俊杰.矿产资源缺口有多大[J].膫望,2005,28:32-33
    [30]罗大锋.当代中国矿产资源开发存在的问题及对策[J].中国工程科学,2005,7(增刊):49-53
    [31]毛玉元,刘援朝.非传统矿产资源的开发研究及前景浅析[J].成都理工学院学报,2000,27(增刊):60-62
    [32]刘树臣,李树枝,吴初国,等.2004年矿产资源形势回顾[J].国土资源情报,2005(1):7-13
    [33]葛振华.我国铅锌资源现状及未来的供应形势.世界有色金属[J].2003,9:4-7
    [34]王淑玲.我国西北五省区矿产资源现状及其开发利用对策建议[J].中国矿业,2000,9(2):1-3
    [35]马永刚.铅锌精矿短缺制约我国铅锌工业长足发展[J].世界有色金属.2002,2:14-15
    [36]肖松文,肖骁,刘建辉,等.二次锌资源回收利用现状及发展对策[J].中国资源综合利用,2004,2:19-23
    [37]汤文俚.ISP工艺在韶冶的发展与实践[J].湖南有色金属,2006,22(6):21-23
    [38]李夏林.韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践[J].有色冶炼,2001,5:12-15
    [39]Sasaoka H, Tatsuta N,Kadoya H. Recent operational improvements in the ISP plant[J].Metallurgical Review of Mining and Metallurgical Institute of Japan,1996,13(1):154-165
    [40]赵晓声.ISP炼铅锌技改清洁生产评价[J].工程设计与研究,2007,123:11.19
    [41]Nishikawa M, Oshita T. Improvements in ISP operation with a single condenser at Hachinohe smelter. Proceedings of the 1st International Conference on Processing Materials for Properties[A].Publ by Minerals, Metals & Materials Soc(TMS)[C].1993:401-404
    [42]王志刚.密闭鼓风炉炼铅锌技术改进及展望[J].湖南有色金属,2003,19(6):19-22
    [43]Takewaki M,Kubota H. Zinc-lead smelting and refining at Sumitomo Harima Works[J].Metallurgical Review of Mining and Metallurgical Institute of Japan,1995,12(1):77-95
    [44]蒋继穆.我国锌冶炼现状及近年来的技术进展[J].中国有色冶金,2006,5:19-23
    [45]高良宾.葫芦岛锌厂竖罐炼锌70年回望[J].中国有色冶金,2007,1:1-4
    [46]陈志强.论降低长沙锌厂竖罐渣含锌的主要途径[J].湖南有色金属,1999,15(1):26-29
    [47]傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术[J].冶金能源,1995,14(2):32-36
    [48]郭天立 高良宾.当代竖罐炼锌技术述评[J].中国有色冶金,2007,36(1):5-6
    [49]周同光.竖罐炼锌技术的新发展[J].有色金属,1980,1:5-7
    [50]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003,2:20-23
    [51]刘特明,陈德喜.电炉炼锌工艺实践与探讨[J].有色冶炼,1998,27(5):11-15
    [52]杨声海.Zn(Ⅱ)-NH_3-NH_4Cl-H_2O体系制备高纯锌理论及应用:[博士学位论文].长沙:中南大学,2003
    [53]Gray P M J. Warner zinc process [A]. Proceedings of the International Symposium on Zinc[C],Publ by Australasian Inst of Mining & Metallurgy, 1993: 483
    [54] Warner N A, Davies M W, Holdsworth M L,et al.Direct zinc smelting with virtually zero gas emission[A]. Proceedings of the 2nd International Symposium on Metallurgical Processes for the Year 2000 and Beyond and the 1994 TMS Extraction and Process Metallurgy Meeting[C]. Part 2 (of 2) Minerals, Metals & Materials Soc(TMS), 1994:333
    [55]Gray P.Warner process[J]. Mining Magazine,1992,166(1):14
    [56]窦明民.沃纳法炼锌[J].有色冶炼,1996,17:20-26
    [57]孙德堃,国内外锌冶炼技术的新进展[J].中国有色冶金,2004,33(3):1-4
    [58]匡立春.锌焙砂中铁的浸出与利用[J].湖南有色金属,2000,(6):17-20
    [59]曹修运.日本秋田冶炼厂锌冶炼生产介绍(一)[J].株冶科技,1992,20(2):84-101
    [60]曹修运.日本秋田冶炼厂锌冶炼生产介绍(二)[J].株冶科技,1992,20(4):217-228
    [61]郭天立.新建电锌厂浸出工序的试生产[J].有色冶炼,1995,(1):17-21
    [62]李夏湘,何醒民.论常规法与热酸浸出黄钾铁矾法炼锌工艺流程的选择[J].湖南有色金属,2000,(6):15-16
    [63]曹修运.锌十万吨浸出试生产回顾及展望[J].株冶科技,1997,25(2):1-5
    [64]张佐民,康厚林.小型湿法炼锌厂的设计与生产实践[J].有色金属(冶炼部分),1995,1:1-3
    [65]兰兴华.硫化锌精矿流化床焙烧过程中的矿物形态变化[J].世界有色金属,2005,12:20-22
    [66]张金成.西北铅锌冶炼厂锌浸出工艺的研究[J].甘肃有色金属,1998,3:2-8
    [67]Elgersma F, Witkamp G J, Van Rosmalen G Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J]. Hydrometallurgy, 1993,34(1):23-47
    [68]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属(冶炼部分),2005,5:13-15
    [69]Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jarosite[J].JOM, 1999, 51(12): 30-32
    [70]Dutrizac J E. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite[J]. Hydrometallurgy, 1996, 42(3):293-312
    [71]王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践[J].有色冶炼,2001,(2):19-22
    [72]窦明民,周德林.湿法炼锌除铁新工艺研究[J].有色冶炼,2000,29(3):27-30
    [73] Mario P,Carlo C,Carlo A,et al.Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc[J]. Hydrometallurgy, 1996, 40(1-2):25-35
    [74]陈阳.湿法炼锌中铁的行为、作用及控制[J].湖南有色金属,2006,22(3):30-32
    [75]钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出-亚硫酸锌还原-针铁矿法试验研究[J].有色金属,1981,(1):82-87
    [76]Gord A R, Pickering R W.Improved leaching technology in the electrolytic zinc industry[J]. Metallurgical Transactions B (Process Metallurgy), 1975, 6B(1):43-53
    [77]张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究[J].湿法冶金,1999,(2):36-40
    [78]Cheng T C M, Demopoulos G P. Analysis of the hematite precipitation process from a crystallization point of view[A]. TMS Annual Meeting[C],1997,599-617
    [79]林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用[J].有色金属(冶炼部分),1996,5:4-6
    [80]李衍林,王吉坤,杨大锦.高锗硫酸锌溶液深度净化工业实践[J].云南冶金,2007,36(4):34-37
    [81] Vakil S.Technological innovation in the zinc electrolyte purify-
    [82] cation process of a hydrometallurgical zinc plant through reduction in zinc dust consumption[J].Hydrometallurgy,1996, 40(1-2):247-262 陈敬阳.锌湿法冶炼中高钴矿的处理[J].材料研究与应用,2007,1(1):69-71
    [83]刘中清,唐谟堂.硫酸锌溶液低温锑盐除钻研究[J].湿法冶金,1999,4:22-27
    [84]刘芝勇,刘显彬,高良宾.湿法炼锌净化钴渣处理工艺的改进[J].中国有色冶金,2006,35(3):37-38
    [85] V van der Pas, Dreisinger D B. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives[J].Hydrometallurgy,1996, 43(1-3):187-205
    [86]郭天立,高良宾.硫酸锌溶液净化技术的现状与展望[J].有色矿冶,2006,22(1):26-28
    [87]曾桂生,谢刚,杨大锦,等.镉离子对硫酸锌溶液除钴的影响及机理探索[J].科学技术与工程,2005,5(13):872-875
    [88]马杨辉,阳雄魁.湿法炼锌锑盐锌粉除钻的生产实践[J].中国有色冶金,2005,34(1)22-23
    [89]郭天立.硫酸锌溶液逆锑净化实践[J].有色金属(冶炼部分),1995,6:22-24
    [90]尹华光.逆锑锌粉净化工艺的技术改进[J].湖南有色金属2005,21(2):20-22
    [91]张林.株冶三段逆锑连续净化试生广之我见[J].株冶科技,1997,25(4):7-20
    [92]唐道文,毛小浩,黄碧芳,等.硫酸锌溶液中氟氯净化的实验研究[J].贵州工业大学学报:自然科学版,2004,33(3):15-17
    [93]张家国,王辉.试论我厂硫酸锌溶液的锑盐净化[J].株冶科技,1992,20(1):32-42
    [94]刘志宏,唐朝波,张多默,等.锑盐除钴净化工艺研究[J].中南工业大学学报(自然科学版),2000,31(3):225-227
    [95]Trina M D, Amy N, George P D, et al.The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu,Cd,Pb,Sb and Sn additives[J].Hydrometallurgy, 2001, 60(2):105-116
    [96] 王德全,林茂森.砷净液与锑净液除钴的进展[J].有色金属(冶炼部分),1995,4:9-11
    [97]Raghavan R, Mohanan P K, Verma S K. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process[J].Hydrometallurgy, 1999, 51(2): 187-206
    [98]Saba A E, Elsherief A E. Continuous electrowinning of zinc[J]. Hydrometallurgy,2000, 54(2-3): 91-106
    [99] Rashkov S,Dobrev T, Noncheva Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes[J]. Hydrometallurgy, 1999, 52(3): 223-230
    [100] Lupi C,Pilone D. New lead alloy anodes and organic depolariser utilization in zinc electrowinning[J].Hydrometallurgy, 1997, 44(3): 347-358
    [101] Liana M,Maurin G,Oniciu L,et al.Influence of metallic impurities on zinc electrowinning from sulphate electrolyte[J]. Hydrometallurgy, 1996, 43(1-3):345-354
    [102] Ivan I. Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors[J]. Hyriometallurgy, 2004,72(1-2):73-78
    [103] Petrova M, Noncheva Z, Dobrev T, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag,Pb-Ca and Pb-Ag-Ca alloys[J].Hydrometallurgy, 1996, 40(3): 293-318
    [104] Rashkov S, Stefanov Y, Noncheva Z, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc Ⅱ.Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction[J].Hydrometallurgy, 1996, 40(3): 319-334
    [105] 孙成余,王吉坤,杨大锦.富锗锌原料浸出-深度净化-长周期锌电积工业生产实践[J].云南冶金,2007,36(4):34-37
    [106] 陈新峰.锌电积过程中杂质行为研究[J].2006,22(2):24-25
    [107] 张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171
    [108]魏昶,何蔼平,任国民.锌电积过程中杂质行为及其相互反应[J].昆明理工大学学报,1996,21(6):71-74
    [109]李仕雄,刘爱心.电解液质量对锌电积过程的影响及其在线控制[J].中国有色金属学报,1998,8(3):519-522
    [110]董巧龙.锌精矿常压浸出与加压浸出工艺比较[J].中国有色冶金,2007,4:24-26
    [111]谢克强,杨显万,王吉坤,等.高铁闪锌矿加压浸出过程中Fe的动力学研究[J].中国有色冶金,2007,2:37-40
    [112]高良宾,赫冀成,徐红江.硫化锌精矿高温高压浸出技术[J].有色矿冶,2007,23(4):33-36
    [113]王海北,蒋开喜,施友富.硫化锌精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,5:2-4
    [114]何捍卫,胡岳华,黄可龙.硫化锌矿化学浸出技术进展[J].矿冶工程,2001,21(3):1-5
    [115] Chalkley M E, Collins M J, Ozberk E. Behaviour of sulphur in the Sherritt zinc pressure leach process[A]. Proceedings of the International Symposium on Zinc[C], 1993: 325
    [116] Ozberk E, Jankola W A, Vecchiarelli M, et al.Commercial operations of the Sherritt zinc pressure leach process[J]. Hydrometallurgy,1995,39(1-3):49-52
    [117] Ozberk E, Collins M J, Makwana M, et al. Zinc pressure leaching at the Ruhr-Zink Refmery[J]. Hydrometallurgy, 1995, 39(1-3): 53-62
    [118] Jankola W A. Zinc pressure leaching at Cominco[J].Hydrometallurgy,1995,39(1-3): 63-70
    [119] Harvey T I, Yen W T. Influence of chalcopyrite, galena and pyrite on the selective extraction of zinc from base metal sulphide concentrates [J]. Minerals Engineering, 1998, 11(1):1-21
    [120]Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes[J].JOM,1999,51(12):23-25
    [121]徐志峰,邱定蕃,王海北.铁闪锌矿在硫酸浸出过程中的电化学行为[J].北京科技大学学报,2007,29(3):267-271
    [122]刘祺,王继峰,宋功文.高铁闪锌矿氧化酸浸试验研究[J].湖南有色金属,2007,23(2):27-28
    [123]Wiesener K,Scheneider W, Moebius A. Hydrogen diffusion electrodes as anodes for the metal winning electrolysis[J]. Journal of the Electro- chemical Society, 1989, 136(12): 3770-3772
    [124]戴祖源,周杰南.自氯化锌溶液中电积锌[J].有色金属(冶炼部分),1987,(1):22-25
    [125]李云金.用传统电解槽进行氯化锌电积的小型试验[J].中国有色冶金,2004,33(5):53-59
    [126]李谦 张元福.氯盐溶液锌——二氧化锰同槽隔膜电解的研究[J].无机盐工业,1999,31(6):14-16
    [127]曾振欧,赵瑞荣.酸性氯化物水溶液电积锌初探[J].湖南有色金属,1990,(20):37-41
    [128]Majima H, Peters E, Awakura Y, et al.Fundamental studies on chlorine behavior as related to zinc electrowinning from aqueous chloride electrolytes[J].Metallurgical Transactions B (Process Metallurgy), 1990, 21(2): 251-258
    [129]Baik D S, Frav D I. Electrodeposition of zinc from high acid zinc chloride solutions[J]. Journal of Applied Electrochemistry, 2001, 31(10): 1141-1147
    [130]Tuffrey N E,Jiricny V,Evans J W. Fluidized bed electrowinning of zinc from chloride electrolytes[J]. Hydrometallurgy,1985,15(1):33-54
    [131]Limpo J L, Figueiredo J M,Amer Amezaga Sebastian, et al. Method for the recovery of zinc, copper and lead of oxidized and/or sulfurized ores and materials.EP0434831A1,1991
    [132]Limpo J L, Amer S, Figueiredo J M, et al. Hydrometallurgical treatment of complex sulphide ores using highly concentrated ammonium chloride solutions[A].ICHM'92,Proceedings of the Second International Conference on Hydrometallurgy[C] (vol.2).Changsha,China,1992:302-309
    [133]Limpo J L, Figueiredo J M, Amer S,et al. The CENIM-LNETI process: a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions[J]. Hydrometallurgy, 1993, 28(2):149-161.
    [134]Limpo J L, Luis A, Gomez C. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process[J]. Hydrometallurgy, 1993, 28(2):163-178.
    [135]Limpo J L, Luis A. Solubility of zinc chloride in ammoniacal ammonium chloride solutions[J].Hydrometallurgy, 1993, 32(2): 247-260
    [136]Figueiredo J M, Novais A Q, Limpo J L, et al.The CENIM-LNETI process for zinc recovery from complex sulphides [A]. International Symposium World Zinc'93,The Australasian Institute of Mining and Metallurgy[C], Hobart,1993:333-339
    [137]Figueiredo J M, Novais A Q, Limpo J L, et al. The CENIM-LNETI process for zinc recovery from complex sulphides[A]. Lead and zinc'95[C]. Sendai, Japan,1995
    [138]Amer S,Figueiredo J M,Luis A. The recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraction with di(2-ethylhexyl)phosphoric acid[J].Hydrometallurgy, 1995, 37(3): 323-337
    [139] Novais A Q, Figueiredo J M, Medeiros A R. The zinc and copper solvent extraction operations in the CENIM-LNETI process for treatment of complex sulphide concentrates[A]. IV International Symposium on the Polymetallic Sulphides of the Iberian Pyrite Belt[C]. Lisboa, Portugal.1998
    [140]唐谟堂,杨声海.Zn(Ⅱ)-NH_3-NH_4Cl-H_2O体系电积锌工艺及阳极反应机理研究[J].中南工业大学学报,1999,30(2):153-156.
    [141]Olper M, Fracchia P L, Maccagni M. Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process.EP0551155A1,1993
    [142]Olper M. EZINEX process[A]. TMS Annual Meeting[C]. TMS. Publ.by Minerals, Metals & Materials Soc (TMS): 1994: 513
    [143]Olper M. EZINEX process: A new and advanced way for electrowinning zinc from a chloride solution[A]. Proceedings of the International Symposium on Zinc[C]. Publish by Australasian Inst of Mining & Metallurgy.1993:491
    [144]Olper M, Maccagni M. Electrolytic zinc production from crude zinc oxides with the Ezincx Process[A].2000 TMS Fall Extraction & Processing [C], Pittsburgh,2000
    [145]邓良勋,吴保庆.络合物电解制锌[J].有色金属(冶炼部分),1996,(3):16-18
    [146]邓良勋,吴保庆.络合物电解制锌.中国专利,ZL93104303.4,1997-3-12
    [147]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保护与利用[J].2004,4:39-43
    [148]JEAN F. Leaching of oxidized zinc ores in various media[J].Hydrometallurgy,1985, 15: 243-253
    [149]G(u|¨)rmen S,Emre M. A laboratory-scale investigation of alkaline zinc electrowinning[J].Minerals Engineering, 2003,16:559-562
    [150]杨声海,唐谟堂.由氧化锌烟灰生产高纯锌工艺研究[J].中国有色金属学报,2001,11(6):110-113
    [151]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121
    [152]王成彦.高碱性脉石低品位难处理氧化铜矿的开发利用-浸出工艺研究[J].矿冶,2001,10(4):49-53
    [153]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,34(6):619-623
    [154]张保平,唐谟堂.NH_4Cl-NH_3-H_2O体系浸出氧化锌矿[J].中南工业大学学报,2001,32(5):484-486
    [155] YANG Sheng-hai, TANG Mo-tang. Thermodynamics of Zn(Ⅱ)-NH_3-NH_4Cl-H_2O system[J].Trans Nonferrous Met Soc China, 2000,10(6):830-833
    [156]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85
    [157] Ju S H, Tang M T, Yang S H, et al.Dissolution kinetics of smithsonite ore in ammonium chloride solution[J]. Hydrometallurgy, 2005, 80: 67-74
    [158]刘晓丹,张元福.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报(自然科学版),2004,33(2):82-84
    [159]刘荣荣,文书明.氧化锌矿浮选现状与前景[J].国外金属矿选矿,2002,(7):17-19
    [160]段秀梅,罗琳.氧化锌矿浮选研究现状评述[J].矿冶,2000,9(4):47-51
    [161]张覃,唐云.氧化锌矿石活化浮选行为的观察[J].贵州工业大学学报,1998,19(2):89-91
    [162]汪伦.有机螯合剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1999,23(2):25-28
    [163]朱建光.浮选药剂的进展[J].国外金属矿选矿,1999,4:30-36
    [164] Barbaro M P. Comparison of Pb/Zn selective collectors using statistical methods[J].Mineral Engineering,1999,12(4):356-366
    [165]王凤琴.国内外氧化锌矿处理方法[J].有色矿冶,1994,1:31-35
    [166]陈世明,翟开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,5:31-35
    [167]郭兴忠,张丙怀,阳海彬,等.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程,2003,23(1):57-60
    [168]杜挺,邓开文.钢铁冶炼新工艺[M].北京:北京大学出版社,1994
    [169]Rankin W J, Wright S. The reduction of zinc fron slags by an Iron carbon melt[J]. Metallurgical and materials transaction, 1990, 21(10): 885-897
    [170]Donald J R, Pickles C A. A kinetic.study of the reaction of Zinc oxide with iron powder[J]. Metallurgical and Materials Transactions B,1996,27(6): 363-373
    [171]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65
    [172]张显生,石明忠,许永红.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分)2003,2:14-15
    [173]邓奕小.氧化锌高酸浸出的研究[J].湖南有色金属,2000,11:3-4
    [174]李国民.高硅氧化锌矿浸出脱硅工艺研究[J].中国有色冶金,2005,4:32-35
    [175]谢美求,陈志飞,冯剑,等.氧化锌矿湿法浸出提锌工艺研究[J].矿冶工程.2004,24(1):67-68
    [176]林祚彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,5:9-11
    [177]周德林,窦明民,陈世明.高硅氧化锌矿全湿法冶炼工艺的研究应用和发展[J].有色金属,1995,3:1-3
    [178]舒毓璋,宝国峰,张琦,等.氧化锌矿的浸出工艺.中国专利,CN02133663.6,2006.1.11
    [179]Bodas M G Hydrometallurgical treatment of zinc silicate ore from Thailand[J].Hydrometallurgy, 1997, 40(1):37-49
    [180]陈远望.氧化锌矿溶剂萃取-电积工艺实现工业化[J].世界有色金属,2003,(9):66
    [181]段天平,游贤贵,段朝玉.溶剂萃取分离铁锌[J].高校化学工程学报,1996,9:245-251
    [182]李春,李自强,刘小平,等.溶剂萃取法从锌电积废液中分离钙镁的研究[J].有色金属,2000,6:20-22
    [183]Zhao Y, Stanforth R. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores[J]. Hydrometallurgy, 2000, 56(2): 237-249
    [184]Mikhnev A D, Pashkov G L,Drozdov S V,et al.Ammonia-carbonate technology of zinc extraction from blast furnace slimes[J].Tsvetnye Metally,2002,(5):34-38
    [185]杨大锦,谢刚,贾云芝,等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62
    [186]Agatzini-Leonardou S, Dimaki D. Heap leaching of poor nickel laterites by sulphuric acid at ambient temperature[A].Proc Int Symp Hydrometall 94[C].1994:193
    [187]Sidenko N V,Giere R, Bortnikova S B, et al.Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Regin,Russia)[J]. Journal of Geochemical Exploration. 2001,74(1-3):109-125
    [188]Merrington G, Alloway B J. Leaching characteristics of heavy metals form three historical Pb-Zn mine tailings heaps in the United Kingdom[J].Transactions of the Institution of Mining & Metallurgy, Section A: Mining Industry, 1993, 102: 75-82
    [189]Druzhina G Y,Blindov O G,Zhizhin S M,et al.Heap leaning of oxidized ores of molybdenum deposit[J].Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal.1997(11-12):207-211
    [190]邹平,赵有才,杜强,等.低品位辉钼矿堆浸回收钼的新工艺[P].中国专利,CN1386870A.2002.12.25.
    [191]Heil D, Hanson A, Samani Z. Competitive binding of lead by EDTA in soils and implications for heap leaching remediation[J].Radioactive Waste Management and Environmental Restoration. 1996, 20(2-3): 111-127
    [192]Qin W Q, Li W Z, Lan Z Y, et al. Simulated small scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc[J]. Minerals Engineering, 2007, 20(7): 694-700
    [193]Komadina, James J. Overcoming climatological limitations on heap leaching[A].TMS Annual Meeting , Global Exploitation of Heap Leachable Gold Deposit[C].1997:825-841
    [194]蒋继穆.我国铅锌冶炼现状与持续发展[J].中国有色金属学报,2004,14(1):52-62
    [195]Ju S H,Tang M T, Yang S H. Fundamental thermodynamic and technologic study for extracting gold from low-grade gold ore in system of NH_4Cl-NH_3-H_2O[J],Transactions of Nonferrous metals society of China, 2006, 16(1):203-208
    [196]Yang S H,Tang M T, Cen Y F, et al.Anodic reaction kinetics of electrowinning zinc in system of Zn(Ⅱ)-NH_3-NH_4Cl-H_2O[J].Transactions of Nonferrous metals society of China, 2004,14(3):626-630
    [197]巨少华,唐谟堂,杨声海,用MATLAB编程求解Zn(Ⅱ)-NH_3-NH_4Cl-H_2O体系热力学模型[J].中南大学学报,2005,36(5):821-827
    [198]石西昌,赵瑞荣,蒋汉赢,Zn-Cl~--NH_3-CO_2~(2-)-H_2O系的热力学分析[J].中南工业大学学报,1998,29(2):193-196
    [199] Smith R M, Matell A E. Critical stability constants inorganic complexes[M].New York: Plenum Press, 1976
    [200]Dean A J. Langes handbook of chemistry(14th Ed)[M]. New York: Plenum Press,2001
    [201]张保平.锰锌软磁铁氧体前躯体碳酸盐共沉淀过程基础理论及工艺研究:[博士学位论文].长沙:中南大学,2004
    [202]Tang M T, Zhao T C. A thermodynamic study on the basic and negative potential fields of the systems of Sb-S-H_2O and Sb-Na-S-H_2O[J].J Cent South Inst Min Metall,1988,19(1):35-43.
    [203]Tang M T, Zhao T C, Lu J L. Principle and application of the new chlorination-hydrolization process[J]. J Cent South Inst Min Metall,1992,23(4): 405-411
    [204]王沫然,MATLAB与科学计算[M].北京:电子工业出版社,2003
    [205]Ju S H , Tang M T , Yang S H , et al.Thermodynamics of Cu(Ⅱ)-NH_3-NH_4Cl-H_2O system[J]. Transactions of Nonferrous Metals Society of China,2005,15(6):1414-1419
    [206]何静,唐谟堂,刘维.氨法提镉新工艺[J].化工学报,2006(57)7:1727-1731
    [207]柴立元,常皓,王云燕,等.Cd(2+)-H_2O系羟合配离子配位平衡[J].中国有色金属学报,2007,17(3):487-491
    [208]史凤梅.废镍镉电池中镉的回收及资源化研究:[硕士学位论文].青岛:青岛大学,2004
    [209] Chander S,Sharma V N. Reduction roasting/ammonia leaching of nickeliferous laterites[J]. Hydrometallurgy, 1981, 7: 315-327.
    [210] Panda S C,Sukla L B,Rao P K,et al. Extraction of nickel through reduction roasting and ammoniacal leaching of lateritic nickel ores[J].Trans.Indian Inst.Met.1980,33:161-165.
    [211] Jana R K,Pandey B D, Premchand. Ammoniacal leaching of roast reduced deep-sea manganese nodules[J]. Hydrometallurgy,1999,53:45-56.
    [212] Zhong S L, Malcolm T H. A calculation method for determining equilibria in metal-ammonia-water system[J].Hydrometallurgy, 1995, 38: 15-37.
    [213]Natalia V. Plyasunava, Zhang Y, et al.Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions.Ⅳ.Hydrolysis and hydroxo-complexes of Ni~(2+)at 298.15K[J].Hydrometa-llurgy,1998, 48: 43-46.
    [214] 刘建华,李新海,郭炳昆,等.氢氧化亚镍制备中[NH_3]-[Ni~(2+)]-pH值的相互关系研究[J].湘潭矿业学院学报,1997,12(4):61-64.
    [215] 曹华珍,郑国渠,郑利峰,等.Ni(Ⅱ)-NH_3-NH_4Cl-H_2O体系中物种研究[J].浙江工业大学学报,2003,31(5):488-491.
    [216]Oishi T,Yaguchi M, Koyama K,et al. Effect of phosphate on lead removal during a copper recycling process from wastes using ammoniacal chloride solution[J]. Hydrometallurgy 2008, 90(1-2)161-167
    [217]张保平,张金龙,唐谟堂.共沉法制备锰锌软磁铁氧体微粉钙镁脱除实验[J].吉首大学学报(自然科学版),2005,26(3):39-42
    [218]Allen J B, Roger P,Joseph J. Standard potentials in aqueous solution. New york and Bessel,1985:787-802
    [219]J L Fern(?)ndez, M R Gennero de Chialvo, A C Chialvo. Kinetic study of the chlorine electrode reaction on Ti/RuO_2 through the polarisation resistance: Part Ⅰ,experimental results and analysis of the pH effects. Electrochimica Acta, 2002,47(7):1129-1136
    [220]D V Kokoulina and L V Bunakova. Oxygen evolution at the oxide electrodes RuO_2 and RuO_2+TiO_2 in chloride solutions.Journal of Electroanalytical Chemistry, 1984,164(2):377-383
    [221]潘懋.钌钛金属阳极涂层改进的途径探讨.氯碱工业,1994,(1):14-19
    [222]彭容秋.有色金属提取冶金手册(锌镉铅铋).冶金工业出版社,1992:114
    [223]吴仲达,朱耀武,吴万伟译(L I Antropov.著).理论电化学.北京:高等教育出版社,1982:405
    [224]龚竹青.理论电化学.长沙:中南大学出版社,1982
    [225]Xuin G H, Yu D Y, Su Y F. Leaching of Scheelite by hydrochloric acid in the presence of phosphate [J].Hydrometallurgy, 1986,16(1):27-40.
    [226]Pohlman S L, Olson F A. A kinetic study of acid leaching of Chrysocolla using a weight loss technique[A]. Solution Mining Symposium [C], AIME, New York,1974, pp. 447-460.
    [227]Wen C. Noncatalytic heterogeneous solid fluid reaction model[J].Ind Eng Chem.,1968,60(9):35-54
    [228]Kunkul A, Muhtar K M, Yapici M, et al. Leaching kinetics of malachite in ammonia solutions[J]. Mineral processing, 1994,41(3):167-182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700