用户名: 密码: 验证码:
微粉煤燃前干法永磁高梯度磁选脱硫基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对微粉煤燃前干法永磁高梯度磁选脱硫的相关问题进行了研究,对解决火力发电厂煤粉炉和炼钢厂顶吹喷粉在线脱硫,实现提质提效和防治环境污染具有重要的理论意义和应用价值。论文在以下几方面进行了研究:
     在研究粉煤粒度分形分布的基础上,用物质相似普遍性的思想首次提出了煤粉硫分和灰分各粒级的总量也应符合分形分布,并应用Origin 7.5软件进行线性拟合,规划出了硫分和灰分的分形分布模型,其相关系数均在0.93以上,为脱硫降灰选择合适粒度级提供了理论依据。
     对鹤壁、洛阳、兖矿、宜洛等四种煤的磁性进行了试验研究,结果表明煤的比磁化率不是一个常数,其密度、粒度组成以及灰分都对煤比磁化率有较大影响。x射线衍射分析证明造成煤的比磁化率不是常数的根本原因是煤中所含矿物质不同。
     对义马结核状煤系黄铁矿磁系进行了试验研究,结果表明粒度是影响黄铁矿比磁化率的根本原因。在一定范围内,随着黄铁矿粒度减小,比磁化率直线提高,到325-500目时比磁化率最大,x衍射分析证明325-500目粒度级黄铁矿含有Fe3O4等强磁性物质。借助Design Expert6.0软件分析煤系黄铁矿磁性强化正交试验,黄铁矿粒度、磁铁粉加入量对煤系黄铁矿的比磁化率影响最大。
     采用Euler-Lagrange方法建立了高梯度磁场捕集磁性粒子的动力学模型,并首次用叠加法进行了近似简化,即: u p≈kuf+upM。依据计算的粒子运动轨迹,对粒子的动力学行为进行了分析。分析发现磁场作用力、流体曳力是高梯度磁场中聚磁介质捕集磁性粒子的主导作用力,粒子磁性越强、背景磁场强度越大、磁介质磁性越强、气体流速越低粒子均向吸力中心移动,有利于粒子的捕集。
     研制了圆形分选空间的永磁铠装挤压磁系试验用磁选机,采用多块环形磁体挤压和磁铠装的方式,形成了高磁场强度的圆形分选空间,该结构充分利用了永磁体的磁性能,既节约了永磁材料,又达到提高磁场强度的目的。提出了一种永磁高场强磁系装配技术工艺和工装夹具,解决了磁系装配过程中既要保护磁体又要保证装配质量的技术难题。利用该工装夹具实现了自行研制的永磁磁选机的一次装配成功,装配质量好,磁场强度高,经实测磁场强度达到1.14T。
     利用磁场模拟商业软件Megnet6.22对磁路进行了参数优化。挤压磁系设计中软铁极靴的厚度是主磁体厚度的20%时可获得最佳效果;为减少漏磁,提高永磁体的磁能利用率,软铁极靴可伸入分选空间,但长度应控制在0.5mm之内;对径向充磁的铠装扇形永磁体磁场分布的模拟结果表明磁场的不均匀性决定于磁体的形状,该结论对异形永磁磁路设计提供了新思路。
     设计建造了微粉煤干法高梯度永磁磁选试验系统,进行了微粉煤的分选试验研究。对洛阳煤的分选试验表明:煤粉粒度、风流速度、聚磁介质充填率等对分选效果有较大影响。以100~200目微粉煤为试验对象,采用2.5m/s风速,6~8g/min处理量,7.5%聚磁介质充填率和1.14T背景场强的分选条件,经二次分选后获得两段分选总精煤产率66.06%,总脱硫率59.8%,总脱灰率67.59%,分选效果很好。试验证明干法永磁高梯度磁选脱硫是可行的。
The thesis studies on the high gradient permanent magnetic separating desulphurization of micro-fine coal with dry method before combustion which can realize the online desulphurization of micro-fine coal furnace of fuel electric plant and top-blown converter of steel work. The research is as follows:
     On the research of fractal distribution of fine granularity, the sum of all granularities of sulfur content and ash content of fine coal agree with the fractal distribution according to the similarity generalization of material. Through the linear fit with origin 7.5, the correlation coefficient of fractal distribution model of sulfur content and ash content of fine coal is upward 0.93, which provides the theory law for the selection of proper granularity level to remove sulfur and reduce dust.
     The experiments on the magnetism of coal from He-bi, Luo-yang, Yan-kuang and Yi-luo show that the relative magnetic susceptibility are not constant and are greater influenced by intensity, granularity and ash content, which is caused by the different contained materials testified by the X-ray diffraction analysis.
     The experiment on the magnetic system of iron pyrites of Yi-ma coal series shows that the granularity is the main reason to influence the relative magnetic susceptibility of iron pyrites. In a certain range, with the decrease of granularity the relative magnetic susceptibility increases straightly to reach the maximum when the granularity is 325-500 meshes. The X-ray diffraction analysis testifies that the iron pyrite of 325-500 meshes granularity level contains the ferromagnetic materials such as Fe3O4. The orthogonal experiments of iron pyrite magnetism show that the granularity of iron pyrite and the addition of magnet powder influence the relative magnetic susceptibility of iron pyrites greatly.
     With the Euler-Lagrange method, the dynamical model of capturing magnetic particle in the high gradient magnetic field is established and simplified approximately as: u p≈kuf+upM. According to the calculated particle trace, the particle dynamics shows that the magnetic effort and the fluid effort are the main efforts to capture the magnetic particle in the high gradient magnetic field. Stronger is the particle magnetism, higher is the magnetic field and more powerful is the magnetism of magnetic medium, which is favorable to the capture of the particle.
     The encased extruded magnetic separator of the round sorting field is developed and the assemblage technology and clamping fixture of high gradient permanent magnetic system are made to protect the magnetic body and guarantee the assemblage quality during the assemblage course of magnetic system. The permanent magnetic separator is assembled well whose intensity of magnetic field reaches 1.14T.
     Through the parameter optimization of magnetic path with the software of Megnet 6.22, the extruded magnetic system can reach the best when the pole shoe thickness of soft iron reached 20 percents of the thickness of main magnetic body. To reduce the leakage and improve the usage of magnetic energy of permanent-magnet, the pole shoe of soft iron can insert into the separation field whose length should be controlled within 0.5mm. The simulation results of magnetic field distribution of radial magnetizing encased permanent magnet show that the inhomogeneity of magnetic field is decided by the shape of magnet, which provide the new method to the design of abnormity permanent magnetic path.
     The experiment system of high gradient permanent magnetic separator of micro–fine coal with dry method is built. The separation result shows that the coal granularity, the air speed and the filling ratio of magnetic medium influence the separation effectiveness greatly. When the air speed is 2.5m/s, the handling capacity is 6-8g/min, the filling ratio of magnetic medium is 7.5% and the magnetic field intensity is 1.14T, the micro-fine coal of 100~200 meshes can attain 66.06% productivity of float coal, 59.8% desulphurization ratio and67.59% reducing dust ratio after double separation. Test results show that permanent magnet HGMS desulfurization is entirely feasible.
引文
[1]上海大宗钢铁交易网.2005年中国煤炭产量达21.1亿吨[EB/0L].(2006-6-10)[2006-5-17]. http://www.ssec-steel.com/main/rdgz/19438.html
    [2]谌天兵,武建军,韩甲业.燃煤污染现状及其治理技术综述[J].煤,2006,15(2):3~7
    [3]周生贤.全国大气污染防治会议讲话[EB/0L] .( 2006 - 6 - 3 ) [2006-5-17]. http://bbs.xhjj.net/archiver/tid-529.html
    [4]焦红光,胡正彬.浅谈我国燃煤污染危害及其防治[J].选煤技术,2004,(2):3~6
    [5]胡秀莲.中国电力生产及环境问题[J].中国能源,2005,17(11):11~18
    [6]丁卫东,王建英,张兰真,等.河南省城市酸雨状况及其成因分析[J].中国环境监测,2004,20(5):11~14
    [7]Thomas A.link etal,Intial Study of Dry Ulrafine Coal Beneficiation vtiling Triboelectric Charging with Subsequent Electrostatic Separation, Report DOE/PETC/TR—90/11
    [8]Hucko.R.E etal, Status of DOE-Spondored Advanced Coal Cleaning Proasses, Report DOE/PET/TR—831976P May.1989
    [9]李莉,裴亚生.煤炭洗选废水处理利用技术综述[J] .山西能源与节能,2001,(1):36~37
    [10]Stanleg R. Rich, Bench—Scale Performance Testing and Economic Analysis of Electrostatic Dry Coal Cleaning, Report EPA/600/7—87/008.Feb.1987
    [11]Tuholski Darid.R,Coal Beneficiation and Triboelectric Effectsin a Circulating Fluidized Bed, MS Thesis Submitted to Iowa State University, May.18 1992
    [12]崔敬媛,焦红光,铁占续等.密度组成及磁场强度对煤比磁化率影响的研究[J] .煤炭转化,2008,(1):6~9
    [13]焦红光,崔敬媛,陈清如.微粉煤燃前干法脱硫降灰工艺技术评述[J].煤质技术,2007,(2):43~45
    [14]张慧明,王娟.中国燃煤工业锅炉SO2污染综合防治对策(三)[J].电力环境保护,2005,21(1):51~54
    [15]陈清如.第十届全国煤炭分选及加工学术会议研讨会论文集[C].徐州:中国矿业大学出版社,2004:25~28
    [16]陈鹏.中国煤炭性质分类和利用[M].北京:化学工业出版社,2004:398~404
    [17]焦红光,谌伦建,铁占续.细粒煤重选设备的技术现状与分析[J].煤炭工程,2006,(1):14~17
    [18]安振连,章新喜,陈清如.微细粒煤摩擦电选的研究现状[J].煤炭加工与综合利用,1996,(6):15~18
    [19]高孟华,章新喜,陈清如.应用摩擦电选技术降低微粉煤灰分[J].中国矿业大学学报, 2003, 32 (6):674~677
    [20]潘伟尔. 2003年煤炭经济运行评析[J].中国能源,2004,26(3):11~16
    [21]濮洪九.洁净煤技术产业化与我国能源结构优化[J].煤炭学报,2002,27(1):1~5
    [22]陈贵锋,郗小林.燃用洗选煤与锅炉改造配合是实现工业锅炉清洁燃烧的经济有效途径[J].洁净煤技术,2002,8(2):30~35
    [23]朱书全,戚家伟,崔广文.我国洁净煤技术发展现状及其发展意义[J].选煤技术,2003,(6):47~51
    [24]戴少康.选煤工艺设计的思路与方法[M].北京:煤炭工业出版社,2003
    [25]徐永生.浅析风力干法分选机及其应用[J].洁净煤技术,2006,(3):40~42
    [26]孟阳冰.干法选煤技术在龙口矿区的应用[J].煤矿开采,2005,(5):79~82
    [27]任舟国,邢成国.山脚树选煤厂动筛跳汰机应用[J].煤,2007,(4):32~37
    [28]杨云松,芦连永.干法选煤的现状及发展前景[J] .煤炭加工与综合利用.1993,(6):49~50
    [29]王利剑. FX - 12风选机在东荣二矿的应用[J].中国煤炭,2003,(1):51
    [30]纵丽英,徐永生. FX - 12型风选机在哈煤公司的应用[J].选煤技术,2005,(2):27~28
    [31]衷海平,占重游风力干法选煤技术在乐平局运用前景初探[J].江西煤炭科技,2003,(2):48~49
    [32]王淀佐,卢寿慈,陈清如,张荣曾.矿物加工学[M] .中国矿业大学出版社,2003
    [33] T. Fraser and H. F. Yancey, The Air-Sand Process of Cleaning Coal. U.S. Patent 1 534 846(1925)
    [34] T. Fraser and H.F. Yancey, Artificial Storm of Air-Sand Floats Coal on Its Upper Surface,leaving Refuse to Sink,Coal Age, March 4(1926)325~347.
    [35] T. Fraser and H. F. Yancey, Amer. Inst. Mining and Metallurgical Engrs. Trans., 1561F(1926)
    [36]Т.Г.фоменкоидр.,ТехнопогияОбогащенияУглей,<<Недра>>,1985.стр.:137.
    [37] S. G.. Butcher and D. F. Symonds, A Review of Dry Cleaning Processes. Alberta Coal Mining Research Center Report CMRC 81/21-T, March 1981.
    [38] J.M. Beeckmans, A. Jeffs and D. Muzyka, Solids Separation in a CCFC Jetsam-Rich Mixture at Total Reflux,Canad. J. Chem. Eng.56(1978)286.
    [39] J. M. Beeckrnans and E. W. Chan,Pneumatic Beneficiation of Coal Fines Using the Counter-Current Fluidized Cascade,Int.J.MinerProc.9(1982)157.
    [40] J.M. Beeckmans et al,Enhancement in segregation of Mixed Powder in a Fluidized Bed in the Present of an Electrostatic Field,Powder Technology, 1979,24
    [41]俞少功,陈清如,重介质-气固系统的散式流化,中国矿业大学硕士论文.1986.5.
    [42]余智敏,陈清如,干式流化床选煤工艺特性的研究,中国矿业大学硕士论文,1987.7.
    [43]陈清如等,干式流化床选煤技术,第四届全国流态化会议论文集,1987.
    [44]中国统配煤矿总公司技术发展局,5~10t/h空气重介质干式流化床选煤系统技术鉴定书,(89)中煤总技鉴定第191号,1989.
    [45]煤炭工业部科教司,黑龙江省计委,50t/h空气重介流化床干法选煤系统与设备技术鉴定书,(94)煤部鉴字第011号,(94)黑计鉴字第001号,1994.6.
    [46]谢广元,陈清如,干式流化床选煤工艺参数研究——流化介质制备及其研究,中国矿业学院硕士学位论文,1987.7.
    [47]李建民,陈清如,空气重介流化床分选机选煤过程的动态分析,中国矿业大学硕士学位论文,1988.12.
    [48]安振连,陈清如,干法分选技术参数的测试——γ射线浓相分选流化床密度,中国矿业大学硕士学位论文,1989.
    [49]何亚群,陈清如,空气重介流化床层密度在线测量研究,中国矿业大学硕士学位论文,1990.9.
    [50]骆振福,陈清如,空气重介流化床密度稳定性的研究,中国矿业大学硕士学位论文,1990.1l..
    [51]王连栋,陈清如,两种不同密度加重质组成的混合介质流化床特性的研究,中国矿业大学硕士学位论文,1992.l.
    [52]章新喜,杨毅.空气重介流化床干法选煤系统非磁性介质回收净化的研究,中国矿业大学硕士学位论文,1992.1.
    [53]黎浩明,杨毅,空气重介流化床低密度分选技术,中国矿业大学硕士学位论文,1992. 11.
    [54]吴立新,杨毅,空气重介流化床干法选煤提高分选上限的研究,中国矿业大学硕士学位论文,1992.12.
    [55]王亭杰,陈清如,振动流化床的流化特性和分选细粒煤的研究,中国矿业大学博士学位论文1993.7.
    [56]章新喜,陈清如,微粉煤干法脱硫降灰的研究,中国矿业大学博士学位论文,1994.7.
    [57]韦鲁滨,陈清如,双密度层空气重介流化床形成特性的研究,中国矿业大学博士学位论文,1995.1.
    [58]骆振福,陈清如.<6mm级煤炭振动流化床分选机理及分选效果的研究,中国矿业大学博士学位论文,1996.3.
    [59]杨国华,陈清如,宽分布大颗粒煤炭振动流化床快速干燥研究,中国矿业大学博士学位论文.1996.4.
    [60]管玉平,陈清如,干法选煤流化床的气固两相流体动力学基础,中国矿业大学博士后研究工作报告,1999.5.
    [61]骆振福, Maoming FAN ,赵跃民,陶秀祥,陈增强.物料在振动力场流化床中的分离[J].中国矿业大学学报,2007,(1):27~32
    [62]骆振福, Maoming FAN,陈清如等.振动参数对流化床分选性能的影响[J].中国矿业大学学报,2006,(2):209~213
    [63]骆振福,赵跃民,邢洪波等.磁场流化床分选粒度下限的研究[J].中国矿业大学学报,2002,(4):335~337
    [64]骆振福,樊茂明,陈清如.磁场流化床的稳定性研究[J].中国矿业大学学报,2001,(4):350~353
    [65]安振连,章新喜,陈清如.微细粒煤摩擦电选的研究现状[J].煤炭加工与综合利用,1996,(6):15~18
    [66]袁楚雄等.特殊选矿.中国建筑工业出版社,1982
    [67] E.G.凯利等.选矿导论.冶金工业出版社,1991
    [68] J.B.Taylor.Dry Electrostatic Separation of Granular Materials,1998 IEEE
    [69] Carta.M.国外金属矿选矿,1973(4)
    [70] TAuveron.P.科技动态,1973(4)
    [71](日)菅义夫.静电手册,科学出版社,1981
    [72] O.Willian T.Alel etal.Removing Pyrite from Coal by Dry Separation Methods.U.S Bureau of Mines Report of Investigation 32.1973
    [73] P.F.Lipari etal .Commer Cializing Electrostation Dry Coal Cleaning.Proceedings of Secend Annual Pittsburgh Coal Comference,Sept 1985
    [74] Bitumimous Coal Research Inc,Electrostatic Separation of Pyritc from Coal,Special Report 4 1962
    [75] J.M.Beechmars etal.Enhancement in Segregation lf a Mixed Powderin a Fluidiged Bed in the Presence of an Electrostatic Field,Vol24,1979
    [76]焦红光,崔敬媛,陈清如.微粉煤燃前干法脱硫降灰工艺技术评述[J].煤质技术,2007(2):43~45
    [77] Chen qingru ,Zhang xinxi etal,Electrostatic Removal of Sulfur and Ash from FineCoal with Drum Separator,23rd Annual Meeting of the Fine Particle Society,July 14—17,1992,Las Vegas Navada U.S.A
    [78]章新喜,高孟华,马瑞新等,火电站脱硫新模式——燃前煤粉在线脱硫[J].能源环境保护,2004(5):1~4
    [79]章新喜,段超红,于凤芹等,微粉煤的电性质及摩擦带电研究[J].中国矿业大学学报,2005(6):694~697
    [80]王仙洲.论指南针的发明[J].青岛大学学报,2000(3):120~122
    [81]林崇德主编.中国少年儿童百科全书(科学技术卷),浙江教育出版社,1991
    [82]周寿增,董清飞.超强永磁体——稀土铁系永磁材料,冶金工业出版社,1999
    [83] Sagawa M, Fujimura S,Togawa N, er al. New Materials for Permanent Magnets on a Based of Nd and Fe[J].Appl phys. 1984,55(6):2083
    [84] Croat J J,Herbst J F,Lee R W,Pinkerton P E. Pr-Fe and Nd-Fe Based Materials:A New Class of High Performance Permament Magnets[J].Appl phys. 1994,55(6):2078
    [85]高汝伟,王标,刘汉强等.高性能烧结钕铁硼磁体的研究与开发(一)[J].磁性材料及器件,2004(6):1~5
    [86]斯沃波达.磁选法的最新进展.国外金属矿选矿,2003.(12):256一312
    [87]颜幼平,康新宇,周为吉.高梯度磁分离技术在给水排水处理中的研究与应用.北方环境,1999,(3):30一32
    [88]俞集辉,电磁场原理,重庆大学出版社,2003
    [89]李明德,细粒氧化铁矿石的高梯度磁选,金属矿山,1979,2
    [90] Wet GHMS applied to the removel or tungste loom tin one using magnetic wuids,IEEE.trans.On Mag.Vol.Mag-16,No5,1980;
    [91] HGMS of tim are ta:ling,IEEEtrans on Mag Mag-15,No6,1979;
    [92]李正南,黑钨细泥高梯度磁选的研究,中南矿冶学院学报,No4,1982
    [93]刘树贻,彭世英,珊瑚锡矿细粒钨锡混合物料的振动高梯度磁选研究,中南矿冶学院学报,1983,增刊1
    [94]国内外科技水平发展与动向,长沙矿冶研究院,1979,6
    [95] All:s-Chaimars,SALA Magnetic of INC.高梯度磁选机对集中卡的分选试验结果,北京矿冶研究总院,磁选论文集,1982,3
    [96] Y.S.Kin,etal.,The removal of coppers sulplide minemals from lead flotation concentration of Black ore by HGMS,XV Int.Min.Proc.longr.1985
    [97]何平波,孙仲元,德兴铜矿铜-钼混合精矿高梯度磁分离铜钼的研究,中南矿冶学院学报,1986,3
    [98]孙仲元,振动高梯度磁选硫化矿的研究,第十五届国际选矿会议论文,1988,6
    [99]鹫见新一等,日本硬质粘土用高梯度磁选法脱铁,金属矿业文摘,1986,12
    [100]鹫见新一,用高梯度磁选脱出粘土中的黄铁矿,金属矿业文摘,1987,2
    [101]Triudade,Sic.,etal,Magnetic desulfurization of coal,IEEE trans, on May.,Vol.May-19,No3,1973
    [102]A.D.Appleton,Some situation of high gradient mmagnetic separation,Filtration and Separation,May/June,1977
    [103]D.Melv:lle,etal.,High gradient magnetic separation of red cells from whole blood,IEEE Trans.Magn Mag-11,No6,1975
    [104]P.A.Munro,etal.,Magnetic particles as supports in Immobilised enzyme reactors,IEEE Trans.Magn Mag-11,No5,1975
    [105]J.A.Willians,rtal.,High gradient magnetic separation inn the nuclear fuel cycle,IEEE Trans. Msg.Mag-17,No6,1981
    [106]周平,郭绍安.国外高梯度磁选的发展[J].昆明工学院学报,1994(5):115~120
    [107]孙仲元,磁选设备的进展,第二届选矿设备学术会议论文,1989
    [108]熊大和,新型工业立坏脉动高梯度磁选机的研制,中南大学博士论文,1988
    [109]胡绪业,选矿机械新进展,选矿机械,1984,1
    [110]熊大和,SLon立环脉动高梯度磁选机的应用研究,矿冶,2002,7:Vo1.11增刊
    [111]李彪,高梯度磁选机的发展与应用[J],冶金矿山与冶金设备,1996(3):68~72
    [112]中国选矿科技情报网,第十五届国际选矿会议论文选集,1986
    [113]吴芬明.国外选矿快报[J],1989(3):4~6
    [114]李小静,周岳远,曹传辉. CRIMM型双箱往复式永磁高梯度磁选机研制及应用[J].金属矿山,2008(1):47~48
    [115]程宝杰.包头稀土研究院两项课题通过鉴定[J].稀土,2006(2):56
    [116] J.A.Oberteuffer.Magnetic separation: a review of Princiles Devices and Applications ,IEEE Trans on Mag. No1,1974,P223~P229
    [117] Bean C P.Bull A M.Phys.Soc, 1971,16:350~356
    [118] Watson J H P. Magnetic Filtration .J.Appl .Phys. 1973,44:4209~4213
    [119] Watson J H P. Theory of capture of Particals in Magnetic High Intensity Filters.IEEE Trans. On Mag,1975,11(5):1597~1601
    [120] Luborsky F E,Drummond B J. High Gradient Magnetic Separation Theory Versus Experiment.IEEE Trans.on Mag,1976,12(6):1696~1705
    [121] Luborsky F E,Drummond B J.Buildup of Particals on Fibers in a High Field-high GradientSeparator. IEEE Trans.on Mag,1976,12(5):463 ~465
    [122] Cown C, Friedlaender F J,Jalurea R. Single Wire Model of High Gradient Magnetic Separation Process. IEEE Trans.on Mag,1976,12(5)466~470
    [123] Friedlaender F J. Studies of single wire parallel stream type HGMS. IEEE Trans.on Magn,1978,14 (5)404~407
    [124] Nesset J E,Todd I. A loading equation for high gradient magnetic separation. IEEE Trans.on Mag,1980,16(5)833~835
    [125] Nesset J E,Finch J A.The static(buildup) model of particle accumulation on single wires in high gradient mangnetic separation:experimental confirmation. IEEE Trans.on Mag,1981,17(4)1506~1509
    [126] Watson J H P. Approximate solution of the magnetic separator equations. IEEE Trans.on Magn,1978,14 (4):240 ~243
    [127] Collan H K,Kokkala M,Ritvos A. Analysis of magnetic filter experiments with polydisperse partical suspensions. IEEE Trans.on Magn,1979,15 (6):1529~1531
    [128] Akoto I Y.Mathematical modelling of high gradient magnetic separation devices. IEEE Trans.on Magn,1977,13 (5)1486~1489
    [129] erzig J P, Leclerc K M, Goff P L.Flow of Suspensions Through Porous Media-new differential Equation for Clogged Beds is Derived.Indust.and Engineering Chem,1970, 62(5):8~35
    [130]王卫星。随机过程在流膜选矿中的应用。科学出版社,1995。
    [131]张东民,解庆林,张萍等.煤炭脱硫的研究现状[J].广西轻工业,2007(5):84~85
    [132] Y.A. Liu, C.J. Lin. Assessment of sulfur and ash removal from coals by magnetic separation [J]. IEEE Transaction on Magnetics, 1976,MAG-12(5):538~550
    [133]D.R. Kelland. A review of HGMS of coal cleaning [J]. IEEE Transaction on Magnetics, 1982,MAG-18(3):841~846
    [134]王力,张素清,陈鹏.煤系矿物表面磁性强化技术的研究[J].煤炭转化,1996,19(4):31~35
    [135] D.R. Kelland, M. Lai-Fook, E. Maxwell, et al. HGMS coal desulfurization with microwave magnetization enhancement [J]. IEEE Transactions on magnetic, 1988,24(6): 2434~2436
    [136] E.C. Hise, A.S. Holman, F.J. Friedlaender. Development of high-gradient and open-gradient magnet separation of dry fine coal [J]. IEEE Transaction on magnetics, 1981,MAG-17 (5):3314~3316
    [137] H. Alan Fine, Michael Lowry, Leslie F. Power, et al. A proposed process for thefinely divided coal by flash roasting and magnetic separation [J]. IEEE Transaction on magnetics, 1976,MAG-12(5):523~527
    [138]唐跃刚,任德诒,郑建中等.煤中黄铁矿的磁性及其机理研究[J].科学通报,1995,40(16):1483~1486
    [139]郑建中.细粒煤脱硫——煤及伴生矿物的磁化率及高梯度磁选煤脱硫的研究[D].北京:中国矿业大学(北京校区),1993
    [140]吴士彬,张恒建,张思靖.干法煤粉磁选脱硫的实验研究[J].环境科学,1989,11(6):25~28
    [141]朱复海,朱申红.燃煤高梯度磁选脱硫脱灰的试验研究[J].煤炭科学技术, 2005,33(7):61~68
    [142]王东路,李勇.高梯度磁选脱硫实验研究[J].山东电力技术,2004,(3):7~11
    [143]谢和平,张永平,宋晓秋等编译.分形几何——数学基础与应用.重庆大学出版社,1991
    [144]张小花,陈玮,孙延明等.分形理论及其在制造系统中的应用研究综述[J].制造业自动化,2007(3):4~8
    [145]谢和平.分形-岩石力学导论,北京:科学出版社,1997
    [146]铁占续.现代设计理论课程相似设计法的哲学思考,机械类课程论坛文集.高等教育出版社,2006
    [147] Birss R R,Gerber R ,Parker M R et a1.Laminar Flow Model of Particle Capture of Axial Magnetic Filters[J].IEEE Tansactionson Magnetics,1978,14(6):1165~1169
    [148] Gerber R and Kelland D R. Coljision effects Axial HGMS[J].IEEE Transaction Magnetics,1989,25(5):3800~3802
    [149] Schewe H,Takayasu M and Friedlaender F J.Observation of Particle Trajectories in an HGMS single wire system[J].IEEE Transaction Magnetics,1980,16(1):149~154
    [150]刘大有.二相流体动力学[M].高等教育出版社,1993
    [151]冯定伍.干式永磁高梯度磁选的工艺及理论研究[D].中南工业大学博士论文.1995年
    [152]嵇敬文.除尘器[M].1981
    [153]赵萍,陈丽君,李永奎.矩形入口旋风除尘器结构尺寸优化设计[J].农机化研究,2007(2):114~117
    [154]彭丽华,姜文玲,李佳磊等.耐磨旋风除尘器的设计[J].干燥技术与设备,2008(2):99~101
    [155]马广大.除尘器性能计算[M].1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700