用户名: 密码: 验证码:
四氯化碳的高效降解菌种筛选及其降解规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方某城市水源地受到了四氯化碳的污染,本文依托国家自然科学基金资助,系统研究了白腐真菌对四氯化碳的降解特征。从污染区土壤中分离出131个菌株,通过筛选,并以四氯化碳为唯一碳源培养,最终发现白腐真菌是降解四氯化碳的首选菌种。取得研究成果如下:
     1.本文研究了多因素综合条件对白腐真菌生长的影响,试验表明,当摇瓶机转速为160r/min,温度为30℃,稻壳浸出液为90mL/L,葡萄糖浓度为35g/L,pH值为4.5时,菌体生物质量浓度最大,达到4.563g/L。
     2.研究了环境条件对白腐真菌降解四氯化碳的影响。结果表明,四氯化碳质量浓度为48μg/L,稻壳浸出液体积浓度为50mL/L,葡萄糖质量浓度为15g/L,温度为30℃,摇瓶机转速为140r/min,是白腐真菌降解四氯化碳的最佳因素组合。
     3.通过白腐真菌发酵进程试验及各模型参数的计算,建立了菌体生长动力学模型: Cx(t)=0.091exp(0.0718t)/[0.976+0.0241exp(0.0718t)]胞外多糖生成动力学模型: P_x (t)= 0.0477+0.8318C_x(t)+0.105ln[0.976+0.024exp(0.0718t)]底物消耗动力学模型: C_s (t)= 14.107-3.023C_x(t)-0.856ln[0.976+0.024exp(0.0718t)]。同时通过降解试验和模型参数的计算,建立了白腐真菌对四氯化碳降解动力学模型: Y (t)= -0.1054t+3.129。
     4.通过土柱模拟污染区土壤层砂壤土静态降解试验,研究了污染区土壤四氯化碳的降解规律。结果表明,一定量的四氯化碳对白腐真菌的生长具有刺激作用,使其在污染物的诱导下成为优势菌。翻耕能有效地提高溶氧,提高电导率,在同等条件下,翻耕的降解率是不翻耕的1.45倍。同时表明,添加分散剂也能显著地提高生物降解率,其中以稻壳作为分散剂降解效率最高,其最终降解率可以达到93.9%。在土柱降解体系中,含水量也是影响降解的主要因素,当水分含量在25%时,降解率最高可达到94.6%,过高的含水量会降低对四氯化碳的降解。同样,过高的接种量也会使降解率不断降低。
     5.在土柱模拟污染区土壤层砂壤土的动态降解中,通过四氯化碳淋溶过程的垂向迁移,研究了各因素对降解四氯化碳的影响。试验表明,各取样孔的降解率随时间均表现出由低到高的变化,其中,底部(D5)取样孔降解效果较好,它的最终降解率达到60.1%。试验显示,温度是影响降解率的重要因素之一,通过计算在一定范围内,温度每增加4℃其降解率则提高14-23%。研究发现,降解菌株对高浓度四氯化碳有一定忍耐能力,当浓度为88.7μg/L时,其最终降解率最大达到64.2%。通过动态分析发现,低流量对土壤的通透性影响较小,有助于提高降解率,而过高的流量(90mL/min),会使填充层整体浸泡在水中,降解过程几乎停止。在土柱动态降解体系中,五种分散剂在填充层中的降解率均高于对照(砂壤土),其中稻壳的降解能力最为优秀,降解率达到81.2%。试验同时显示,定期翻耕能有效地提高微生物与四氯化碳的接触,通过翻耕处理会使降解率提高两倍。从动态的观点分析,适宜的葡萄糖浓度(25g/L)有利于菌体的降解,过高浓度,会使细胞渗透压增高,同时也增加了土壤对四氯化碳的吸附和滞留,因而也影响到菌体对其的降解,使降解率下降。
The article studies the carbon tetrachloride of difficult degradation for object and 131 strains is separated from the pollution soil sample. They are screened and cultured on the carbon tetrachloride as the only carbon source. The results showed finally that survival ability of the white-rot fungus is strongest in includes in selective medium which contains the carbon tetrachloride.
     This paper study that the effect of multi-factor comprehensive conditions on the white-rot fungus growth. Simultaneously the article study that the environmental condition influences the white-rot fungus to biodegrade the carbon tetrachloride. The test finally obtained optimum scheme for mycelium growth and to degrade the carbon tetrachloride.
     Through the white-rot fungus ferment experiment and calculate various model parameters the mycelium growth kinetics model was established: C_x(t)=0.091exp(0.0718t)/[0.976+0.0241exp(0.0718t)] Extracellular polysaccharide formation kinetics model: P_x(t)= 0.0477+0.8318C_x(t)+0.105ln[0.976+0.024exp(0.0718t)] Base consumption kinetics model: C_s(t)= 14.107-3.023C_x(t)-0.856ln[0.976+0.024exp(0.0718t)] The degeneration kinetics model which the white-rot fungus degrades the carbon tetrachloride: Y (t )= -0.1054t+3.129
     Through the packing column simulates static biodegeneration experiment in shallow layer sandy loam, the research discovered that a certain amount carbon tetrachloride can stimulate the white-rot fungus's growth. It can become dominant fungi under the pollutant induction. The plowing can enhance effectively the dissolving oxygen and raises the conductivity. Under the same condition, plowing degeneration rate is 1.45 times of not plowing. The increase dispersant can also enhance obviously the biodegradation rate. Rice husk as dispersant, its degradation rate is highest, the final degeneration rate is 93.9%. Similarly, the overhigh inoculation amount will also reduce the degeneration rate unceasingly.
     In the packing column simulation shallow layer sandy loam's dynamic degeneration, through carbon tetrachloride vertically migrates in leaching process, we study the effect of each factor on carbon tetrachloride degradation. Experiment shows that the degradation rate of sampling holes change with time. The change is shown from low to high. Simultaneously experiments showed that temperature is one of the important factors to influence degradation rate. Through the calculation, the degradation rate will increase 14-23% when the temperature increases 4 degrees Celsius in a certain range.
     In the dynamic experiment, the degeneration rate of five kind of dispersant is higher than the sandy loam (control) in packing layer. The rice husk's degeneration ability is most excellence and the degeneration rate is 81.2%. The regular ploughing can also enhance the contact opportunity with microorganism and the carbon tetrachloride, increases porosity, maintains the temperature, promote degeneration. The experiment shows that the degeneration rate can enhance two times through ploughing processing.
     Analyzes from the dynamic viewpoint, the suitable glucose concentration (25g/L) can promote mycelium's degeneration, the overhigh concentration will increases the osmotic pressure of cell, the cell of dehydration will be inhibited. Simultaneously, the soil viscosity is increased, the carbon tetrachloride isl increased adsorption and detention, reduces contact opportunity with microorganism's, thus will affect its degeneration rate.
引文
[1]刘晓茹,冯惠华,张燕.我国水环境有机污染现状与控制对策[J].水利技术监督,2002,(5):58-60.
    [2]前川统一朗.日本地下水污染问题、土壤污染对策及污染治理技术[C].北京:中国铁道出版社,2004:1-3.
    [3]国家环境保护总局. 2007年中国环境状况公报:淡水环境[M].北京:国家环境保护总局出版社,2008.
    [4]朱雪强,韩宝平,尹儿琴.地下水DNAPLs污染的研究进展[J].四川环境.2005,24 (2): 65-70.
    [5]邓绍坡,裴宗平,韩宝平等.某市南郊水源地土壤四氯化碳污染特征[J].环境污染与防治,2007,29(1):67-69.
    [6]吴金亮.处理四氯化碳的技术方案分析[J].氯碱工业,2000,(3):37-38.
    [7]刘俊娓,于季男.四氯化碳的毒性作用及危害[J].职业与健康,1996,(5):18-20.
    [8] Marx J.Drinking water getting rid of the carbon tetrachloride[J]. Science,1996,(4290):632.
    [9] Yang K.,Zhu L.Z.,Lou B.F.et al..Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties[J].Chemosphere,2005,61:116-128.
    [10] An T.C.,Chen H.,Zhan H.Z.,et al..Sorption kinetics of naphthalene and phenanthrene in loess soils[J].Environmental Geology,2005,47(4):467-474.
    [11] US Natl. Res. Counc.. Drinking water and health[R]. US Natl. Res. Counc. Report, 1983.
    [12]本刊编辑部.饮水卫生若干问题的探讨[J].环境与健康杂志,1997,14 (2):52-53.
    [13] S.Sautter, BHI ERC Team. Zeroes in on sources of carbon tetrachloride contamination[R].Hanford Rench. 2001.
    [14] J.F.Manwaring, D.B.Lowell A.Van, Barbara Faust. EPA puts emergency water provisions into action[J].Water&Waster Eng.,1980,17(4):40-43.
    [15] Bhopal water, http://www.greanpeace.org
    [16] A.N Helperin et al, 2001.Colifonia’s contaminated groundwater[R].Natural Resources Defense Council, 2001,(4):3-18.
    [17] M.J.Feiria-griandara,R.A.Ferreira. Occurrence of halogenated hydrocarbons in the water supply of different cities of Galicia(Spain) [J].Environ.Tech.,1992,13(5):437-447.
    [18] Erogia environmental protection division hazardous site inventory[R]. Site Summary. 2002(7).
    [19] Alex N. Helperin, David S. Beckman, Dvora Inwood. California’s contaminated groundwater[R],. Natural Pesources Defense Council, 2001,(4):3-18.
    [20] A.Richard, R.C.Brown, E.R. Blake. Groundwater protection management program[R]. LLNL Environmental Report. 1995:9-11.
    [21] Partrick R.,E.ford, J.quarles.Groundwater contamination in the U.S.A[M]. Philadephia: University of Pennsylvania Press,1987.
    [22] J.T.Loadergan, H.W.Meinardus, P.E.Mariner et al.DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation[J]. Groundwater Monitoring and Remediation,2001,(6):71-81.
    [23]韩宝平,朱雪强,孙晓菲等.某岩溶水源地四氯化碳污染途径研究[J].中国矿业大学学报,2006,35(1):61-65.
    [24]张达政,陈鸿汉,李海明等.浅层地下水卤代烃污染初步研究[J].中国地质,2002,29(3):326-329.
    [25]田家怡等.小清河沿岸地下水污染强度及发展速度预测的研究[J].环境科学学报,1994,14(2):160-167.
    [26]刘明柱.氯代烃在浅层地下水中运移转化的数值模拟研究[D].武汉:中国地质大学,2002.
    [27]何江涛,史敬华,崔卫华等.浅层地下水氯代烃污染天然生物降解的判别依据[J].中国地质大学学报-地球科学, 2004,29(3):357-362.
    [28]李彬,李培军,王晶等.污染土壤毒性研究方法进展[J].环境污染治理技术与设备, 2003,4(5):42-46.
    [29] State of Californla regional water quality control board central coast region[C]. Staff Report for Regular Meeting,2002,(10):3-16.
    [30] B. Priest Mar. Underground injection control program overiew state of Oregan[M]. Oregan : University of Oregan Press,2002:124-129.
    [31] E.J. Andrews, P.J. Novak. Influence of ferrous iron and pH on carbon tetrachloride degradation by Methanosarcina Thermophila[J]. Wat. Res,2001,35(9):2307-2313.
    [32] N Assaf-Anid, K.Y. Lin. Carbon tetrachloride reduction by Fe2+,S2-,and FeS with vitamin B12 as organic amendment[J]. Journal of Environmental Engineering,2002,(7):94-98.
    [33] Park E.,Zhan H. Analytical solutions of contaminant transport from finite one-,two-,and three-dimensional sources in a finite-thickness aquifer[J].Journal of Contaminant Hydrology. 2001,53(1-2):41-61.
    [34] Wadley S.L.,Gillham R.W.,Gui L..Remediation of DNAPL source zones with granular iron: Laboratory and field tests[J].Ground Water.2005,43(1):9-18.
    [35] Lai K.,Lo I.,Birkelund V.,et al..Field monitoring of a permeable reactive barrier for removal of chlorinated organics[J].Journal of Environmental Engineering.2006,132(2):199-210.
    [36]吴玉成.治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998,(1):27-29.
    [37] Yang Y.,Pesaro M.,Sigler W.et al..Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community[J].Water Resources. 2005,39(16):3954-3966
    [38] M.Gauthier, B.H.Kuper. Removal of PCB-DNAPL form a rough-walled fracture using alcohol/ploymer flooding[J].Journal of Contaminant Hydrogeology,2006,8(6):18-27.
    [39]单爱琴,郝红艳,韩宝平等.四氯化碳浓度对其自身厌氧生物降解的影响[J],环境科学与技术,2008,31(1):1-4.
    [40] David M Bagley,MIichelle Lalonde,Vasilios Kaseros, et al. Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presense of carbon tetrachloride and chloroform[J]. Water Resources, 2000, 34(1): 171-179.
    [41]周克钊.受污染土壤和地下水的就地化学氧化恢复[J].西南给排水,2002, 24(1):36-43.
    [42]周启星,林海芳.污染土壤及地下水修复的PRB技术及展望[J],环境污染治理技术与设备,2001,2(5):48-53.
    [43]刘菲,钟佐燊.地下水中氯代烃的格栅水处理技术[J].地学前缘,2001,8(2):309-314.
    [44]王建坤,陈广春,梁诚.四氯化碳转化与处理技术[J].氯碱工业,2004,(11):21-24.
    [45] Criddle C.S., DeWitt J.T., Grbic D. et al, Transformation of carbon tetrachloride by Pseudomonas Sp.Strain KC under denitrification conditions[J]. Environ.Microbiol., 2000, 56(4):3240-3246.
    [46]刘兆昌,张兰生,聂永锋等.地下水系统的污染与控制[M].北京:地质出版社,1999:125-130.
    [47]吴畏,张学枫.土壤/沉积物中多氯代有机物的生物降解行为及修复[J].辽宁城乡环境科技,2001,21(2):24-25.
    [48]方生,陈秀玲.地下水开发引起的环境问题与治理[J].地下水,200l,23(1):8-11.
    [49]王帅杰,陈景文,赵志强等.土壤/沉积物中多氯代有机物的生物降解及其在污染修复中的应用[J].环境污染治理技术与设备,2000,1(6):1-6.
    [50] Thomas D Doty, Dr Stefan J Grimberg. The role of microorganisms on DNAPL interfacial properties and transport[A]. 2002 Proceedings of the Third International Conferenceon Remediation of Chlorinated and Recalcitrant Compounds, 2002(2B): 46.
    [51]翟福平,张晓健,何苗等.氯代芳香化合物生物降解性能与其化学结构的相关性[J].环境科学, 1998,19(6):26-28.
    [52]翟福平,张晓健,何苗等.氯苯驯化污泥中氯苯类同系物共存对氯苯生物降解影响[J].中国环境科学,1998,18(3):202-205.
    [53]翟福平,张晓健,何苗等.易降解有机物对氯苯好氧生物降解性能影响[J].中国环境科学,1998,18(5):407-409.
    [54] Vasilios B.Kaseros, Brente Sleep, David M.Bagley. Column studies of biodegradation of mixtures of chloroethene and cabon tetrachloride[J]. Wat.Res.,2000,34(17):1461-1468.
    [55]施国涵,马瑞霞,陈兴吴等.污水库底泥微生物对六六六降解的研究[J].生态学报,1984,(4):328-336.
    [56]郭华明,王焰新.地下水有机污染治理技术现状及发展前景[J].地质科技情报,1999,18(2):69-72.
    [57] Aulenta F.,Tomassi C,Cupo C.,et al..Influence of hydrogen on the reductive dechlorination of tetrachloroethene(PCE)to ethene in a methanogenic biofilm reactor role of mass transport phenomena[J].Journal of Chemical Technology and Biotechnolog, 2006,81(9):1520-1529.
    [58] Aulenta F.,Bianchi A.,Majone M.,et al..Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy:A microcosm study[J]. Environment International,2005,31(2):185-190.
    [59]朱雪强.四氯化碳在岩溶含水层中的运移规律研究[D].徐州:中国矿业大学,2005.
    [60]王小英.徐州市南郊地下水有机污染研究[D].徐州:中国矿业大学,2003.
    [61]单爱琴.四氯化碳污染生物学特征及生物降解规律研究[D].徐州:中国矿业大学,2005.
    [62]隋红,李鑫钢等.三氯乙烯共代谢生物降解研究[J].农业环境科技学报,2004,23(1):170-173.
    [63]夏淮海,林玉锁.有机污染土壤生物修复技术进展[J].污染防治技术,2000,13(l):46-47.
    [64]刘永娟,韩宝平,王小英.地下水四氯化碳污染现状与治理技术研究进展[J].水资源保护,2005,21(2):5-8.
    [65]韩宝平,王小英,朱雪强等.某市岩溶地下水四氯化碳污染特征研究[J].环境科学学报,2004,24(6):982-988.
    [66]何德文,蒋柱武,肖羽堂.白腐真菌在生物难降解有机废水处理中的应用[J].工业安全与防尘,2000,(3):11-13.
    [67]张金萍,王敬文,姜景民等.灵芝属木质素降解高效菌株筛选[J].林业科学研究,2005,18(1):106-108.
    [68] Zhang Y.,Gillham R.W..Effects of gas generation and precipitates on performance of Fe0 PRBs[J].Ground Water,2005,43(1):113-121.
    [69]李慧蓉.白腐真菌的研究进展[J].环境污染治理技术与设备,1996,4(6):69-77.
    [70]许云贺,张莉力,王凤娥等.白腐真菌研究进展[J].畜牧兽医科技信息,2007,(12):11-12.
    [71]黄俊,周申范.白腐真菌生物降解TNT装药废水的研究[J].环境科学与技术,1999,(3):17-19.
    [72]唐婉莹,黄俊,周申范.白腐真菌用于有机废水处理的研究[J].化工环保,1999,19(5):269-272.
    [73]李慧蓉.白腐真菌在石化环保中的应用[J].石油化工环境保护,1996(1):56-60.
    [74]邹世春,张展霞.白腐菌降解氯代农药的机理[J].中山大学学报(自然科学版),1998,37(5):112-115.
    [75] De Koker T H., Zhao J, AllsopS.F..Isolation and enzymatic characterization of South African white rot fungi[J]. Microbilogical Research, 2000,104(7):820-824.
    [76]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
    [77]裘维蕃,余永年.菌物学大全[M].北京:科学出版社,1998:48,153,194,198,500,321,1039.
    [78]范秀容,李广武,沈萍.微生物实验[M].北京:高等教育出版社,1989.
    [79]有马启(日),田村学造(日),郭丽华(译).生物净化环境技术[M].北京:化学工业出版社,1990.
    [80].卯晓岚.中国大型真菌[M].郑州:河南科学技术出版社,2000:413-451.
    [81]诸葛键,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1998.
    [82]刘玲,叶博,刘长江.白腐真菌及其木质素酶的研究进展[J].饲料工业,2006,27(8):25-28.
    [83]李慧蓉.白腐真菌及其技术的潜在工业应用[J].工业微生物,1996,26(2):35-39.
    [84] Ortiz L, Quintero R, Nava A, et al. Study of the mechanism of Flavobacterium sp. for hydrolyzing or ganophosphate pesticide[J].Fundamental and Clinical Pharmacology, 2003, 17(6):717-723.
    [85] Somara S, Manavathi B, TebbeCC, et al.Localisation of identical organophosphorus pesticide degrading(opa)genes on genetically dissimilar indigenous plasmids of soil bacteria:PCR amplification , cloning and sequencing of opa gene from Flavobacterlum balustialum[J].Indian J. Exp Biol, 2002,40:774-779.
    [86]李华钟,章燕芳,华兆哲等.黄孢原毛平革菌选择性合成木质素过氧化酶和锰过氧化物酶[J].过程工程学报.2002.2(2):137-141.
    [87]张业录.白腐真菌在漂白废水污染控制中的应用[C].天津:天津轻工业学院出版社, 2000:39-42.
    [88]程东升.森林微生物学[M].哈尔滨:东北林业大学出版社,1993.
    [89]赵继鼎.中国真菌志(第三卷,多孔菌科)[M].北京:科学出版社,1998.
    [90]管位农,朱晓玫.白腐真菌处理难降解污染物[J].江苏化工,2000,28(8):10-12.
    [91]林刚,文湘华,钱易.应用白腐真菌技术处理难降解有机物的研究进展[J].环境污染治理技术与设备报,2001,2(4):1-8.
    [92] PEI Zong-ping, HAN Bao-ping, LIU Han-hu, LIANG Zhi, et al.Tracer experimental study of the main conveying conduits of CCl4 pollutant in the Qiligou water supply resource[J].Journal of China University of Mining and Technology,2007,17(2):184-187.
    [93] LIANG Zhi, HAN Bao-ping, ZHANG Kai. Investigation on physicochemical conditions affecting the growth of mycelial pellet of white-rot fungus(Phanerochaete chrysosporium) [J]. Journal of Pure and Applied Microbiology,2008,2(4):73-80.
    [94]梁峙,韩宝平,陈波.四氯化碳优势降解细菌筛选及其降解特性研究[J].中国矿业大学学报,2008,37(1):134-138.
    [95]梁峙,韩宝平,张旭.白腐真菌对四氯化碳的生物降解特性研究[J].武汉理工大学学报,2008,30(5):74-78,86.
    [96] ]LIANG Zhi, HAN Bao-ping.White-rot fungus growth conditions and Its metabolic kinetic models [J]. Agricultural Science and Technology,2008,9(6):1-9.
    [97]梁峙,张凯.白腐真菌菌丝球形成的物化条件研究[J].河南信阳师范学院学报(自然科学版).2009,22(1):66-70.
    [98]夏邦权,吴学凤.白腐真菌处理煤泥水的实验研究[J].中国煤炭,2006,32(8):63-64.
    [99] Liu C.C.,Tseng D.H.,Wang,C.Y..Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron[J].Journal of Hazardous Materials.2006,136(3):706-713.
    [100]荚荣,谢萍,秦易.固定化白腐真菌对多种染料脱色的研究[J].菌物系统,2003,22(2):308-313.
    [101] Changwen Ma,Yanqing Wu,Chengxing Sun et al..Adsorption characteristics of perchloroethylene in natural sandy materials with low organic carbon content[J]. Environmental Geology.2007,52(8):1511-1519.
    [102] Jeen S.W.,Gillham R.W.,Blowes D.W..Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE[J].Environmental Science & Technology,2006,40(20):6432-6437.
    [103]吴涓,李清彪,邓旭等.白腐真菌吸附铅的研究[J].微生物学报,1999,39(1):87-90.
    [104]戴芳澜.真菌的形态和分类[M].北京:科学出版社,1987.
    [105] Glenn, J.K., Gold M.H.. Decolorization of several poly-mericdyes by the lign in-degrading basidiomy cete phane-rochaete chrysosporium[J]. Appl. Environ. Microbiol.,1983,45:1741-1747.
    [106]戴树桂.环境化学[M].北京:高等教育出版,2001.
    [107] Liu Y.,Lowry G.V..Effect of particle age(Fe0 content)and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination[J].Environmental Science & Technology.2006,40(19): 6085-6090.
    [108] Changwen Ma,Yanqing Wu.Dechlorination of perchloroethylene using zero-valent metalsand microbial community[J]. Environmental Geology,2007,10:254-263.
    [109]林刚,文湘华,钱易.液体培养基中添加天然成分对白腐真菌Phanerochaete chrysosporium生长的促进作用[J].环境科学,2003,24(4):41-47.
    [110]范伟平,曹惠君,张俊等.稻草末固定白腐菌处理染料废水的研究[J].化工环保,2002,22(1):7-11.
    [111]李丽,张学才,徐美红.白腐真菌锰过氧化物酶的动力学研究[J].安徽理工大学学报(自然科学版), 2005,25(2):63-66.
    [112]党凤霞,董金霞,罗人明.白腐真菌降解阿维菌素废水的试验研究[J].污染防治技术,2006,19(4):9-10.
    [113] Qiu X.J.,Stock M.K.,Davis J.W..Remedial options for chlorinated volatile organics in apartially anaerobic aquifer[J].Remediation.2004,14(4):39-47.
    [114]张景来,常冠钦,陆爱军.白腐工程菌处理TNT炸药废水的研究[J].中国矿业大学学报(自然科学版),2001,30(2):161-164.
    [115]王志国.碘量法测定葡萄糖注射液的含量[J].黑龙江医药科学,2004,27(3):56.
    [116]赵勇胜,曹玉清.地下水的有机污染[J].工程勘察,1995,(1):28-32.
    [117]刘晓牧,李福昌,王中华等.白腐真菌与秸秆饲料的有效利用[J].饲料研究,2000,(1):42-43.
    [118]陈翠微,刘长江.利用白腐真菌提高秸秆利用率[J].中国农业科技导报,2001,3(3):53-56.
    [119]赵士豪,赵学库,杨丽宁.锰依赖过氧化物酶研究进展[J].安徽农业科学,2007,35(4):957-959.
    [120]韩建林,徐振清,李精鸿等.白腐真菌可提高秸秆利用率[J].中国饲料,1996,(24):28-29.
    [121]陈谊,杭怡琼,薛惠琴等.白腐真菌降解稻草转化饲料的研究[J].上海交通大学学报(农业科学版),2001,19(2):151-153.
    [122]黄俊,余刚,成捷等.白腐真菌生物降解五氯苯酚的动力学研究[J].农业环境科学学报,2004,23(1):167-169.
    [123]朱明旗,曹支敏,李振歧.栓菌属高产漆酶菌株的筛选及其发酵产酶条件研究初报[J].中国农学通报,2006,22(2):119-121.
    [124]张辉,戴传超,朱奇等.生物降解木质素研究新进展[J].安徽农业科学,2006,34(9):1780-1784.
    [125] Feng J.,Lim T.T..Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:Comparison with commercial micro-scale Fe and Zn[J]. Chemosphere,2005,59(9):1267-1277.
    [126] Oviedo C., Contreras D., Freer J..A Screening method for detecting iron reducing wood-rot fungi[J].Biotechnology Letters,2003,25(11):891-893.
    [127] Kim H-Y, Song H-G.. Transformation and mineralization of 2,4,6-trinitrotoluene by the White rot fungus Irpex lacteus[J].Applied Microbiology and Biotechnology, 2003,61(2): 150-156.
    [128] Belinky P A., Goldberg D., Krinfeld B. et al.Manganese-containing superoxide dismutase from the White-rot fungus phanerochaete chrysosporium: its function,expression and gene structure[J]. Enzyme and Microbial Technology,2002,31(6):754-764.
    [129] Zheng Z., Obbard J P..Removal of surfactant solubilized polycyclic aromatic hydrocarbons by phanerochaete chrysosporium in a Rotating Biological Contractor Reactor[J].Journal of Biotechnology,2002,96(3):241-249.
    [130] Nuske J., Scheibner K., Dornberger U.. Large Scale Production of Manganese-peroxidase Using Agaric White-rot Fungi[J].Enzyme and Microbial Technology, 2002,30(4): 556-561.
    [131] Koroleva O V, Gavrilova V P., Stepanova E V..Production of lignin modifying enzymes by co-cultivated white-rot fungi cerrena maxima and coriolus hirsutus and characterization of laccase from cerrena maxima[J].Enzyme and Microbial Technology,2002,30(4):573-580.
    [132] Robinson T; Chandran B, Nigam P..Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes[J]. Enzyme and Microbial Technology,2001, 129(8-9):575-579.
    [133] Pointing S B, Feasibility of bioremediation by white-rot fungi[J].Applied Microbiology and Biotechnology,2001,57(1-2):20-33.
    [134] Hara J., Ito H., Suto K., et al. Kinetics of trichloroethene dechlorination with iron powder[J].Water Research, 2005, 39 (6): 1165-1173.
    [135] Adamson D.T.,Mcdade J.M.,Hughes J.B..Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE[J].Environmental Science & Technology,2003,37(11): 525-2532.
    [136] MAO Feng-lan.The Macrofungi in China[M].ZhengZhou,China: Henan science and technology Press,2000:413-451.
    [137] Arnold W.A., Roberts A.L..Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environmental Science&Technology, 2000, 34:1794-1805.
    [138] Duhamel M.,Wehr S.D.,Yu L.et al..Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene,trichloroethene,cis-dichloroethene and vinyl chloride[J]. Water Resources,2002,36(17):4193-4202.
    [139] Olaniran A.O.,Pillay D.,Pillay B..Chloroethenes contaminants in the environment:still a cause for concern[J].African Journal of Biotechnology,2004,3(12):675-682.
    [140] L ee H.S., Matthews C.J., Braddock R.D. et al. A MATLAB method of lines template for transport equations[J]. Environmental Modeling&Software, 2004, 19: 603-614.
    [141] Morrill P.L.,Lacrampe C.G..,Slater G.F.,et al..Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes[J].Journal of Contaminant Hydrology,2005,76(3-4):279-293.
    [142] JIA Rong, XIE Ping, QIN Yi. Study on decolorization of various dyes by immobilized white rot fungus Schizophyllum sp.[J].Mycosystema, 2003,22(2):308-313.
    [143] Sevella B., Bertalan G. Development of a MATLAB based bioprocess simulation tool[J]. Bioprocess Engineering, 2000, 23: 621-626.
    [144] TANG Lin, ZENG Guang-ming, SUN Wei. The application of logistic equationin kinetics of microbial batch culture[J]. Journal of Hunan University,2004,31(3):23-28.
    [145]李文灿.对Logistic方程的再认识[J].北京林业大学学报,1999,12(2):121-128.
    [146] Rekha S.,Adrian L.,Derrick E.,et al..Genome sequence of the PCE-dechlorinating bacterium dehalococcoides ethenogenes[J].Science,2005,307:105-108.
    [147]Sung Y.,Fletcher K.E.,Ritalahti K.M.et al..Geobacter lovleyi sp.Nov.Strain SZ,a novel metal-reducing and tetrachloroethene-dechlorinating bacterium[J]. Applied and Environmental Microbiology,2006,72:2775-2782.
    [148] LIU Jian-zhong,WENG Li-ping,ZhANG Qian-ling.A mathematical model for glucose and fermentation by Aspergillus niger[J].Biochemical Engineering Journal,2003,14:137-141.
    [149]武秋立,安家彦.羊肚菌胞外多糖发酵动力学模型[J].南开大学学报(自然科学版),2005,38(1):43-48.
    [150] WU Li-qiu, AN Jia-yan. Kinetic models for exopolysaccharides of Morchella esculenta by fermentation[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2005,38(1):43-47.
    [151]冯元珍,屠小明,罗建平. MATLAB软件在曲线拟合中的应用[J].福建电脑,2007,(3):109,160.
    [152] HE De-wen, JIANG Zhu-wu, XIAO Yu-tang. Application of white rot fungi on treatment non-biodegradative organic waste water[J].Industrial Safety and Dust Control,2000,(3):11-13.
    [153] XU Yun-he, ZhANG Li-li, WANG Feng-e. White-rot fungus's research progress[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine,2007,(12):11-12.
    [154]唐智新.西北黄土地区石油污染土壤生物修复研究[D].西安:西安建筑科技大学,2007.
    [155]彭胜,陈家军,王红旗.挥发性有机污染物在土壤中的运移机制与模型[J].土壤学报.2001,38(3):315-323.
    [156]金志刚,张彤,朱怀兰.污染物生物降解[M].上海:华东理工大学出版社,1997.
    [157] Yeh T.Y.,Kao C.M.,Lee M.S..Field investigation at a chlorinated ethylene contaminatedsite Practice Periodical of Hazardous,Toxic,and Radioactive[J].Waste Management, 2006,10(4):207-215.
    [158]武晓峰,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处置[J].环境污染治理技术与设备,2000,1(4):46-51.
    [159]胥思勤,王焰新.土壤及地下水有机污染生物修复技术研究进展[J].环境保护,2001,(2):22-23,37.
    [160] Schirmer M.,Butler B.J..Transport behaviour and natural attenuation of organic contaminants at spill sites[J].Toxicology, 2004,205(3):173-179.
    [161]黄国强,李鑫钢,李凌等.地下水有机污染的原位生物修复进展[J].化工进展,2001,(10):13-16.
    [162] Sun Y.W.,Lu X.J.,Petersen J.N.et al..An analytical solution of tetrachloroethylene transport and biodegradation[J].Transport in Porous Media,2004,55:301-308.
    [163] Nonaka H.,Keresztes G.,Shinoda Y.,et al..Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195[J].Journal of Bacteriology,2006,188(6):2262-2274.
    [164] Guerin T F, Horner S, McGovern T, et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater[J]. Water Research, 2002,36: 15-24.
    [165]林舜隆,黄德焊,陈大麟等.释氧剂在地下水中之扩散行为-现地模场试验[C].第二届海峡两岸土壤及地下水污染与修复研讨会论文汇编,2004.
    [166]钟佐燊.地下水有机污染控制及就地恢复技术研究进展(二)[J].水文地质工程地质,2001,(4):26-31.
    [167] Clement T.P.,Gautam T.R.,Lee K.K.et al..Modeling of DNAPL-Dissolution,rate-limited sorption and biodegradation reaction in groundwater systems[J]. Bioremediation Journal,2004, 8(1-2):47-64
    [168]魏新平,王文焰,王全九.用对流扩散方程确定非饱和土壤水动力弥散系数[J].灌溉排水,2000,19(2):48-51.
    [169] Mao M.,Ren L..Simulating nonequilibrium transport of atrazine through saturated soil[J].Ground Water.2004,42(4):500-508.
    [170]李锡夔.饱和-非饱和土壤中污染物运移过程的数值模拟[J].力学学报,1998,30(3):321-331.
    [171]任理,李春友,李韵珠.粘性土壤溶质运移新模型的应用[J].水科学进展,1997,8(4):321-328.
    [172]任理,李保国,叶素萍等.稳定流场中饱和均质土壤盐分迁移的传递函数解[J].水科学进展,1999,10(2):107-112.
    [173]许秀元,陈同斌.土壤中溶质运移模拟的理论与应用[J].地理研究.1998,17(1):99-106.
    [174]张瑾.除草剂胺苯磺隆在土壤中的淋溶及其影响因素的研究[D].合肥:安徽农业大学,2003.
    [175]张大弟,张晓红,吴仲可. 4种农药流失性质的研究[J].上海环境科学,2000,19(9):444-446.
    [176] Huang W.,Peng P.,Yu Z.,et al..Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments[J].Applied Geochemistry,2003, 18(7):955-972.
    [177]张凯顺.硝基苯低温降解菌的选育及其模拟地下水修复的实验研究[D].长春:吉林大学,2007.
    [178]张爱云,单正军,蔡道基.甲基异柳磷等四种农药在土壤薄板上的移动性能[J].农村生态环境,1994,10(2):29-32.
    [179]朱文达,涂书新,王楼明.不同剂型甲磺隆在土壤中淋洗和迁移分布的研究[J].农药,1998,37(2):20-22.
    [180]丁应祥,朱琰,黄剑朎.有机污染物在土壤-水体系中的分配理论[J].农村生态环境,1997,13(3):42-45.
    [181]吴艳春,庄舜尧,杨浩等.土壤磷在农业生态系统中的迁移[J].东北农业大学学报,2003,34(2):210-218.
    [182]吕家珑,张一平,张君常等.土壤磷运移研究[J].土壤学报,1999,36(1):75-82.
    [183]王道涵,梁成华,孙铁珩等.磷素在土壤中的垂直迁移潜力研究[J].农业环境科学学报,2005,24(6):1157-1160.
    [184]李晓华,许嘉琳,王华东等.污染土壤环境中石油组分迁移特征研究[J].中国环境科学,1998,18(Suppl.):54-58.
    [185]胡永梅,王敏健.土壤中有机污染物迁移行为的研究方法[J].环境污染治理技术与设备,1998,6(4):44-55.
    [186]陶澎,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学,1996,16(6):410-414.
    [187]李勇,徐瑞薇.有机污染物在土壤和地下水中迁移建模[J].农村生态环境,1994,10(3):64-68.
    [188]章卫华,李广贺,邵辉煌等.包气带土层中石油污染物的微生物降解研究[J].环境科学研究,2002,15(2):60-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700