用户名: 密码: 验证码:
废麦糟生物吸附剂深度净化水体中砷、镉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属废水排放不仅造成资源浪费,而且已成为饮用水源最大的安全隐患之一,其治理一直是世界环保领域的重大课题。目前,重金属废水的处理一般采用传统的石灰中和沉淀等化学法及离子交换、活性炭吸附等物理化学法,存在难以实现深度净化或成本过高等不足;另外,目前我国废麦糟年产量已达1000多万t,大多堆存处置,造成严重污染。因此,开展重金属废水深度净化及废麦糟综合利用等相关研究对保护环境具有重要意义。
     基于生物吸附法快速、经济、不可逆、环境友好等特性以及废麦糟量大易得的特点,同时为了顺应我国于2007年7月1日起在全国范围实施的新的《生活饮用水卫生标准》(GB5749-2005),即将饮用水砷标准从0.05 mg/L降低到0.01 mg/L,镉的标准为0.005 mg/L。本课题选择废麦糟作为生物吸附剂的原料,以工业废水中具有代表性的阴离子砷(Ⅲ,Ⅴ)及阳离子镉(Ⅱ)为处理对象,提出了“废麦糟生物吸附剂深度净化水体中砷、镉”新思路,系统研究了生物吸附剂处理工艺参数及净化机理;突破了传统工艺处理过程需将As(Ⅲ)氧化成As(Ⅴ)再进行处理的技术瓶颈,实现了高效净化脱除水中砷、镉离子的目标。
     研究了废麦糟生物吸附剂处理As(Ⅲ)、As(Ⅴ)及Cd(Ⅱ)的吸附行为。筛选了深度净化砷、镉离子的废麦糟改性剂Ca(OH)_2,Ca(OH)_2的改性大大地提高了砷、镉离子的净化效率,比NaOH改性的废麦糟对As(Ⅲ)、As(Ⅴ)及Cd(Ⅱ)的吸附去除率分别提高了83.4%、37.4%和14.6%。粒度小于0.833 mm的废麦糟经改性后制备的生物吸附剂仅需1g/L的用量即可使砷、镉离子的净化效率达到最大,且其颗粒粒径对其净化砷、镉离子的影响不大;在283 K—313 K范围内,反应温度的升高有利于废麦糟对As(Ⅲ)和As(Ⅴ)的吸附,却不利于对Cd(Ⅱ)的吸附。吸附等温方程模拟分析表明,Langmuir等温式能很好地拟合生物吸附剂对砷、镉离子的吸附,在303 K时废麦糟生物吸附剂对As(Ⅲ)、As(Ⅴ)及Cd(Ⅱ)吸附的最大吸附量分别为2.125 mg/g、3.089 mg/g、2.166 mg/g。
     采用ζ-电位、红外光谱、能谱以及X射线衍射等手段研究揭示了废麦糟生物吸附剂对砷、镉离子的吸附机理。废麦糟表面主要为纤维素和木质素的特征官能团,生物吸附剂对砷、镉离子的吸附主要发生在细胞壁上,而且主要表现为静电吸附,其吸附作用的最佳pH值范围分别为11.5~13.0、11.5~13.0、8.0~11.5。生物吸附剂对砷、镉离子高效净化不仅因为改性剂与As(Ⅲ)、As(Ⅴ)作用分别生成Ca_5(AsO_4)_3(OH)及Ca_5(AsO_3)_3(OH)·4H_2O,与Cd(Ⅱ)作用生成Cd(OH)_2,而且生物吸附剂表面的羧基、羟基基团与砷、镉离子发生作用,羧酸中羟基被亚砷酸根(砷酸根)取代生成羧酸衍生物;羧酸中H还被亲核取代生成羧酸镉。
     建立了废麦糟生物吸附剂固定床吸附柱动力学数学模型,且计算了不同操作条件下的穿透曲线。利用多种反应动力学方程探究了废麦糟生物吸附剂对砷、镉离子的吸附反应动力学过程。研究表明,废麦糟吸附As(Ⅲ)、As(Ⅴ)和Cd(Ⅱ)的吸附反应是一个先快后慢的过程,符合准二级反应动力学方程,而且吸附的q_t对t~(0.5)曲线在50~90 min内为不通过原点的直线,说明颗粒内扩散不是控制废麦糟生物吸附剂对砷、镉离子净化过程的唯一步骤,而是由膜扩散和颗粒内扩散联合控制。与外扩散速率相比,颗粒内扩散速率大小是决定整个吸附反应速度的关键。动态工艺研究表明,穿透曲线的形状与溶液的进口流速、吸附质初始浓度以及吸附床层高度等条件有关。动力学数学模型计算结果与实验结果具有较好的吻合,验证了该模型在一定程度上的可靠性和正确性。
     针对实际工业废水存在其它共存离子的特点,考察了体系中多种阴离子及阳离子对废麦糟生物吸附剂深度净化砷、镉离子的影响,同时对砷、镉共存的行为进行了剖析。筛选了解吸剂,并探求了解吸温度对吸附于废麦糟中砷、镉离子的解吸效果及生物吸附剂的再生利用行为;并进行了废麦糟生物吸附剂用于深度净化湖南某冶炼厂外排废水的连续化实验研究。结果表明,进水流速为1.36 mL/min的条件下,改性麦糟生物吸附剂连续净化含砷、镉离子浓度分别为2.860和9.957mg/L的废水时,砷、镉离子的穿透时间分别为400 min和320min,经过两次吸附-再生后的生物吸附柱连续处理该废水时砷、镉离子的穿透时间分别为160 min和150 min,表明废麦糟生物吸附剂对冶炼废水具有良好的净化效果。
Not only the outlet of wastewater containing heavy metals wastes lots of resourses,but also influences the safety of drinking water.So the treatment of the wastewater has always been an important project in the world environmental protection.At present,various conventional treatment methods such as lime-neutralization-precipitation,ion exchange and active carbon adsorption have a lot of shortages such as difficult to realize deeply purified or high cost.In addition,the yearly output of spent grains(SGs) is more than ten million tons in China.Most of it was deposited for disposition to lead to severity pollution.So it is of important to develop the study related to deeply purifying water containing heavy metals and the comprehensive utilization of SGs in order to protect our environment.
     Based on the characteristics of biosorption being a rapid,reversible, economical and ecofriendly technology and that of SGs large quantity and easy gained,deeply purified water containing arsenic and cadmium using spent grains as biosorbent technique has been put forward.Also the technique is to conform the new (GB5749-2005),brought into effect in our country at 1/7/2007,in which the concentration of arsenic has fallen from 0.05 to 0.01 mg/L,and that of cadmium is 0.005 mg/L.In the dissertation SGs was chosen as raw material for adsorbent,arsenic(Ⅲ,Ⅴ) being a representational anion and cadmium a representational cation in industrial wastewater as treating object.The treatment technics parameters and purified mechanism of SGs biosorbent for arsenic and cadmium were systemic investigated.The technical bottleneck that only under the condition of oxidating As(Ⅲ) to As(Ⅴ) can the purified water treated by traditional technology has been broken through.The objective that water containing arsenic and cadmium being high efficient purified has been achieved.
     The biosorption behavior of As(Ⅲ)、As(Ⅴ) and Cd(Ⅱ) from water by SGs has been analyzed.The modifier Ca(OH)_2 for SGs to deeply purified arsenic and cadmium has been chosen,which can increase the purified efficiency for arsenic and cadmium ions by a long way.The adsorptional efficiency for As(Ⅲ)、As(Ⅴ) and Cd(Ⅱ) from water by SGs can be enhanced 83.4,37.4,14.6%respectively by adding Ca(OH)_2 to SGs than that of NaOH.Only the dosage of SGs which granularity less than 0.833 mm 1 g/L after modified to be biosorbent can get to the maximum efficiency for arsenic and cadmium.The particle size of biosorption has little effect on the purifying process.The sorption of As(Ⅲ) and As(Ⅴ) increased with increase in contacting temperature at 283 K—313 K,but sorption of Cd(Ⅱ) go against with it.The simulated analysis indicated that Langmuir isotherm was well fit to the experimental data of sorption of As(Ⅲ)、As(Ⅴ) and Cd(Ⅱ) by SGs.At 303 K the maximum sorptional capacity of As(Ⅲ)、As(Ⅴ) and Cd(Ⅱ) were 2.125、3.089、2.166 mg/g,respectively.Through various testing means such asξ-potential,Fourier transform infrared absorption spectrum,energy spectrum and X-ray diffraction,the biosorptional mechanism of biosorption of arsenic and cadmium ions by SGs biosorbent to has been put forward.The characteristic of cellulose and lignin were the mainly function groups at the surface of SGs.The biosorption of arsenic and cadmium ions occurred mainly at the cell wall of biosorbent.And static sorption between SGs and As(Ⅲ)、As(Ⅴ) and Cd(Ⅱ) were mainly biosorptional mechanism,which the optimal pH were 11.5~13.0、11.5~13.0、8.0~11.5,respectively.
     The high efficient for purifying arsenic and cadmium ions by biosorbent,not only for the modifier interacting with As(Ⅲ)、As(Ⅴ) to make Ca_5(AsO_4)_3(OH) and Ca_5(AsO_3)_3(OH)·4H_2O,respectively,and with Cd(Ⅱ) to gain Cd(OH)_2,but the carboxyl and hydroxyl groups at the surface of SGs were interacted with arsenic and cadmium ions.The hydroxyl in carboxylic acid was replaced by arsenite or arsenate to yield carboxylic acid ramification,and hydrogen H in carboxylic acid to obtain carboxylic acid cadmium.
     The kinetics mathematical model of sorption column packing SGs biosorbent was established,and the breakthrough curve under different conditions was calculated.Using various kinetics equations the sorption kinetics process of arsenic and cadmium by SGs biosorbent was discussed.The study indicated that the sorption for As(Ⅲ)、As(Ⅴ) and Cd(Ⅱ) by SGs was a rapid first and slow later process,which according with pseudo second-order kinetics equation.The curve q_t to t~(0.5) of sorption being a line not through initial point at 50~90 min illuminated the interior diffusion was not the only rate-limiting step at purifying process for arsenic and cadmium by SGs,but united-controled by film diffusion and granule interior diffusion.Compare with the rate of extenal diffusion,that of granule interior diffusion was a key deciding the whole sorption process.At dynamic process,the figure of breakthrough curve was related to experimental conditions,such as flow rate of solution, initial concentration of sorbate and the column height.The calculated result through kinetics mathematical model was coincidence with the experimental result,which to some degree validated the reliability and correctness of model.
     Aimed at the fact that other ions being in the actual industrial wastewater,the effect of various anions and cations in the system on sorption of arsenic and cadmium by SGs was studied.At the same time, the behavior of arsenic and cadmium coexist was also analyzed.The strippant was chosen,and desorption temperature that affect the desorption process on arsenic and cadmium from SGs were investigated. Meanwhile,the regeneration utilization behavior of biosorbent was researched.Moreover the continuum-experimental study on deeply purified the outlet wastewater from one metallurgical plant at Hunan by SGs biosorbent was fulfilled.The results indicated that at inlet velocity of flow 1.36 mL/min,the time of break-through were 400 min and 320 min for arsenic and cadmium,respectively when using SGs to continuously purify the wastewater containing 2.860 mg/L of arsenic and 9.957mg/L of cadmium.After two rounds of sorption-regeneration the times of break-through were 160 min and 150 min for arsenic and cadmium, respectively adsorpted by biosorbent,which indicated that the SGs biosorbent has highly purified effect for metallurgical wastewater.
引文
[1]Williams M,Fordyce F,Paijitprapapon A,et al.Arsenic contamination in surface drainage and groundwater in part of the Southeast Asian,Nakhon Si Thammarat Province,Southern Thailand[J].Environmental Geology,1996,27:16-33.
    [2]Chen S L,Dzeng S R,Yang M H.Arsenic species in the blackfoot disease area Taiwan[J].Scientific Technology,1994,8:877-881.
    [3]胡铁骑.我国电镀行业的发展概况及展望[J].材料保护,1994,5:26-28.
    [4]曹守仁.中国大陆无机砷污染调查及现状研究.中华公共卫生杂志(台湾),1996,15(3附册):6.
    [5]郝阳,候培森.我国当前地方性砷中毒防治概况[J].中国地方病防治杂志.1994,9(3):169-170.
    [6]中华人民共和国国家标准—生活饮用水卫生标准(GB 5749—2005).
    [7]Http://www.cesp.com.cn.2007—9—3.
    [8]Pontius F W.A current look at the federal drinking water regulations[J].Am Water Works Assoc.,1992,84:36-42.
    [9]Carbonell-Barrachina A,Jugsujinda A.The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil[J].International Environment,1999,5:613-618.
    [10]Agusa T,Kunito T,Fujihara U,et al.Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi,Vietnam [J].Environmental Pollution,2006,139:95-106.
    [11]Bundschuh J,Farias B,Martin R,et al.Groundwater arsenic in the Chacopampean Plain,Argentina:case study from Robles county,Santiago del Estero Province[J].Applied Geochemistry,2004,19:231-243.
    [12]RahmanaM M,Sengup taa M Kr,Ahameda S.The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangione of the 85 arsenic affected blocks in West Bengal,India[J].Science of the Total Environment,2005,338:189-200.
    [13]汪大翬,徐新华,宋爽.工业废水中专项污染物处理手册[M].北京:化学工业出版社,2000:66-79.
    [14][日]碳素材料科学会编,高尚愚,陈维译.活性炭基础与应用[M].北京:中国林业出版社,1990.
    [15][日]立本英机,安部郁夫主编;高尚愚译.活性炭的应用技术[M].东南大 学,2002.
    [16]马峥,张振良等.活性炭对水中有机物去除的研究[J].环境保护.1995,5:41.
    [17]国家环境保护局编,活性炭水处理技术[M].北京:中国环境科学出版社,1991,3.
    [18]汤义武,舒余德等.活性炭处理冶炼厂废水的基础研究[J].湘潭矿业学院学报,1997,2(4):69-73.
    [19]钱慧娟,国外活性炭水处理技术的应用与发展[J].活性炭.1988,66(3):56.
    [20]李鸿旺,美国工业废水处理新技术[J].给水排水.1998.24(8):32.
    [21][日]北川睦夫编著,丁瑞芝 等译.活性炭处理水的技术和管理[M].北京:新时代出版社,1987.
    [22][德]H·亨利,E·巴德著,魏成同 译.活性炭及其工业应用[M].北京:中国环境出版社,1990.
    [23]活性炭的应用[M].国营新华化工厂研究所,1980.
    [24]陆婉珍.工业水处理技术(第四册)[M].北京:中国石化出版社,2000.
    [25]张世润.活性炭水处理的应用实践[J].活性炭.1988,66(3):38.
    [26]Smedley P.L.,Kinniburgh D.G.A review of the source,behaviour and distribution of arsenic in natural water[J],J.Appl.Geochem.2002,17:517.
    [27]Lien H.L.,Wilkin R.T.High level arsenite removal from ground water by zerovalent iron[J],Chemosphere 2005,59:377.
    [28]中国标准出版社第二编辑室编,中国环境保护标准汇编(废气、废水、废渣分析方法)[M],北京:中国标准出版社,2001.
    [29]曹会兰.砷对人体的危害与防治[J].化学世界.2003,10:559-560.
    [30]Smith A H.Cancer risks from As in drinking water[J].Environ Health Persp.1992.97:259-262.
    [31]杨洁,顾海红,赵浩等.含砷废水处理技术研究进展[J].工业水处理.2003,23(6):14-17.
    [32]J.C.Saha,A.K.Dikshit,M.Bandopadhyay,et al,A review of arsenic poisoning and its effects on human health[J],Crit.Rev.Env.Sci.Technol.1999,29:281.
    [33]Mukhopadhyay R and Rosen B P.Arsenate Reductases in Prokaryotes and Eukaryotes [J].Environmental Health Perspectives,2002,110:745-748.
    [34]KarimM DMasud.Arsenic in groundwater and health problems in Bangladesh [J].Water Research.2000,34:304-310.
    [35]Erdogan Ergican,Hatice Gecol,Alan Fuchs.The effect of co-occurring inorganic solutes on the removal of arsenic(V) from water using cationic surfactant micelles and an ultrafiltration membrane[J].Desalination.2005,181:9-26.
    [36]Jekrl M R.Removal of Arsenic in Drinking Water Treatment.In:Nriagu J.O.Arsenic in the environment[M].New York:John Wiley & Sons Inc,1994.
    [37]J.S.Wang,C.M.Wai,Arsenic in drinking water—a global environmental problem [J],J.Chem.Educ.2004,81:207-213.
    [38]S.Kundu,A.K.Gupta,Analysis and modeling of fixed bed column operations on As(Ⅴ) removal by adsorption onto iron oxide-coated cement(IOCC)[J],J.Colloid Interface Sci.2005,290:52.
    [39]J.Q.Jiang,Removing arsenic from groundwater for the developing world—a review [J],Water Sci.Technol.2001,44:89-98.
    [40]Ruiz J M and Romero L.First evidence of arsenic phytoremediation[M].Trends in Plant Science.2002.
    [41]WHO.Guidelines for Drinking Water Quality.2~(nd) ed.Vol 2.Health Criteria and Other Supporting Information.Geneva:WHO,1996.156-167.
    [42]USEPA National Primary DrinkingWater Regulations,Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring[J],Federal Register 2001,66(14):69-75.
    [43]BGS.Arsenic in groundwaters from major aquifers:Sources,effects and potential mitigation.London:DFID summary report.British Geological Survey,2000.
    [44]王国荃,郑玉健,刘开泰 等.地方病砷中毒的干预实验及其效应分析[J].地方病通报,2001,16(1):16-20.
    [45]S.L.Chen,S.R.Dzeng,M.H.Yang,et al,Arsenic species in groundwaters of the blackfoot disease area[J],Taiwan,Env.Sci.Technol.1994,28:877-881.
    [46]H.Zhang,D.Ma,X.Hu,Arsenic pollution in groundwater from Hetao Area[J],China,Env.Geol.2002,41:638-643.
    [47]Astrue,M.,Metal forms and speciation.Proc.Int.Conf.Heavy Metals in the Environment[M].London,1979:439-445.
    [48]Zeng X,Jin r,Zhou Y,et al.Changes of germ Sex hormone levels and mRNA expression in Y exposed to cadmium[J].Toxicology,2003,186:109-118.
    [49]雷立健,常秀丽.镉接触健康效应危险度评价[J].中华劳动卫生职业病杂志,2006.1:1-2.
    [50]王岙,白梅,崔勇.吉林省部分地区食品中铅、镉污染状况分析[J].中国食品卫生杂志,2006,3:239-243.
    [51]余海平,方敬文,陈晓鸿.中山市重点调查区镉污染调查研究及治理方法探讨 [J].西部探矿工程.2006,9:289-290.
    [52]李文智.镉—危及人体健康的有毒元素(综述)[J].中国环境卫生,2006,1:18-22.
    [53]Jin T,Nordberg Ⅵ,Frech W,et al.Cadmium biomonitoring and renal dysfunction among population environmentally exposed to cadmium from smelting in China[J].Biometals.2002,15:397-410.
    [54]Wu X,Jin T,Wang Z,et al.Urinary calcium as biomarker of renal dysfunction in general population exposed to Cadmium.J Occup Environ Vied.2001,43:898-904.
    [55]Johnson M D,Kenney N,Stoica A,et al.Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland[J].Nature Medicine,2003,9:1081-1084.
    [56]陈怀满,郑春荣,涂从.中国土壤重金属污染现状与防治对策[J].人类环境杂志,1999,28(2):130-134.
    [57]冯德福.镉污染与防治[J].沈阳化工.2000,29(1):44-45,62.
    [58]李青仁,王月梅,王惠民.微量元素铅、汞、镉对人体健康的危害[J].世界元素医学,2006,2:32-38.
    [59]杜瑜,尚琪.环境镉污染人群健康影响研究回顾[J].卫生研究,2006,2:241-243.
    [60]李文辉,唐业梅.酸性高砷废水处理方法的探讨[J].湖南有色金属,2001,17(6):40-41.
    [61]郭向辉.废酸水处理、回用技术的工艺及效果[J].天津冶金,2003,2:31.
    [62]黎明.中和铁盐法处理高砷污酸废水[J].有色冶炼,2000,29(3):24-27.
    [63]蒋剑虹,曾光明,张盼月等.锌冶炼厂重金属废水处理试验研究[J].工业水处理,2005,25(11):44-46.
    [64]于秀娟,刘军深,蔡伟民等.氢氧化镁处理含镉废水的研究[J].环境化学,2003,22(6):601-604
    [65]马艳飞,工九思,宋光顺等.氢氧化镁对废水中镉吸附性能的研究.兰州铁道学院学报(自然科学版)[J],2003,22(4):120-122
    [66]陈晋阳,黄卫.无定形氢氧化铁吸附水溶液中镉离子机理的XPS研究[J].分析测试学报,2002,21(3):70-72.
    [67]Viriraghavan T,Subramanian K S,Aruldoss J A.Arsenic in drinking water problems and solutions[J].Water Science and Technology,1999,40(2):69-76.
    [68]曹广峰.化学絮凝法处理含砷废水[J].硫酸工业.1995,(4):35-37.
    [69]刘鸿仪,谢冬根.凝聚沉淀法处理含砷废水的研究[J].上海环境科学.1989,8(3):8-10.
    [70]Rosehart,R.and J.Lee.Effective Methods of Arsenic Removal from Gold Mine Wastes[M].Can.Min.J.1972.53-57.
    [71]杨力.砷污染及含砷废水治理[J].有色金属加工,1999,4:27-29.
    [72]周淑珍.贵溪冶炼厂废酸废水除镉工艺探讨[J].硫酸工业,1996,5:1-6.
    [73]傅贤书.含砷废水的硫化铁处理[J].环境化学.1988,7(1):50-56.
    [74]陈敬军,蒋柏泉,王伟.除砷技术现状与进展[J].江西化工,2004,2:1-4.
    [75]张玉梅.含镉废水处理的试验研究[J].环境工程,1995,13(1)15-20,21.
    [76]Suzuki T M,Bomani J O,Matsunaga H,et al.Removal of As(Ⅲ) and As(Ⅴ) by a porous pherical resin loaded with monoclinic hydrous zirconium oxide [M].Chemistry Letters,1997:11-19.
    [77]Vagliasindi F G A,Benjamin M.Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors[J].Water Science and Technology,1998,38(6):337-343
    [78]Min J H,Hering J G.Arsenate sorption by Fe(Ⅲ)-doped alginate gels[J].Water Research.1998.32(5):1544-1552.
    [79]王焰新,郭永龙,杨志华等.利用粉煤灰合成沸石及其去除水中重金属的实验研究fJ].中国科学D辑.2003,33(7):636-643.
    [80]张德强,康海彦,杨莉丽等.离子交换树脂吸附Cd(Ⅱ)和Pb(Ⅱ)的研究[J].环境科学与技术,2003,26(6):4-5,23
    [81]杨莉丽,康海彦,李娜等.离子交换树脂吸附镉的动力学研究[J].离子交换与吸附,2004,20(2):138-143.
    [82]Mathilde R J,et al.Electrodial5rtic removal of cadmium from wastewater sludge [J].Journal of Hazardous Materious,2004,106(2-3):127-132.
    [83]王志忠,高以恒.反渗透技术处理镀镉废水的探讨[J].工业水处理,1985,5(5):17-21.
    [84]王岩,王玉军,骆广生等.中空纤维膜萃取镉离子的研究[J].化学工程,2002,30(5):62-66.
    [85]薛福连.微孔过滤处理含镉废水[J].内蒙古环境保护,1999,11(1):40-41.
    [86]许振良,徐惠敏,翟晓东.胶束强化超滤处理含镉和铅离子废水的研究[J].膜科学与技术,2002,22(3):15-20.
    [87]马铭,何鼎胜,谢赛花.三正辛胺—二甲苯支撑液膜萃取Cd(Ⅱ)的研究[J].膜科学与技术,1999,19(2):45-48.
    [88]陶有胜.电化学法添加铁和化学氧化法相结合治理含砷废水[J].国外环境科学技术,1997,1:39-40.
    [89]陈志荣.流化床电极技术及在治理含金属废水中的应用[J].工业水处理,1996,16(6):3-5.
    [90]魏先勋.环境工程设计手册[M].长沙:湖南科技出版社,1992,83-85.
    [91]邱立萍,莫晓丹.砷污染处理的工业应用研究[J].工业水处理.2002,22(9):29-31.
    [92]邱立萍,刘宏儒.高浓度含砷盐酸废水处理的试验研究[J].中国给排水,2000,16(9):58-60.
    [93]钟细斌.硫酸生产中废水治理工艺的改进[J].化工环保,1995,5:307-311.
    [94]邱廷省,成先雄,郝志伟等.含镉废水处理技术现状及发展[J].四川有色金属,2002,4:38-41.
    [95]Suhendrayatna,Akira Ohki,Takayoshi Kuroiwa,et al.Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite[J].Applied Organometallic Chemistry,1999,13:127-133.
    [96]Weeger William,Didier Lievremont,Magalie Pen-et,et al.Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment[J].Bio-Metals,1999,12(2):141-149.
    [97]Green H.Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths[J].Rep Dir Vet Res S Afr,1988,6:593-599.
    [98]Anderson GL,Williams J,Hiller R.The purification and characterization of arsenite oxidase from Alcaligenes faecalis,a molybdenum-containing hydroxylase [J].Journal of Biological Chemistry 1992,267(33):23674-23 682.
    [99]Leblance M,Achard B,Personne J-Ch.Arsenic-rich bacterial mats from acidic mine water.In:Pasava,Kribek and Zakeds.Mineral Deposits:from their origin to their environment impacts[M].Camoules,France,1995.127-130.
    [100]Mokashi S A,Paknikar K M.Arsenic(Ⅲ) oxidizing microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater[J].Letters in Applied Microbiology,2002,34(4):258-262.
    [101]Kuhn S P.Appol[J].Microbiol.Biotechnol.1989,31(5-6):613-618.
    [102]T.J.Butter.The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale[J].Water Res,1998,32(2):400.
    [103]吴乾菁,李听,李福德等.微生物治理电镀废水的研究[J].环境科学,1997, 18:47-51.
    [104]曹德菊,程培.3种微生物对Cu、Cd生物吸附效应的研究[J].农业环境科学学报,2004,23(3):471-474.
    [105]Gupta Shailendra K.Chen Kenneth Y.Arsenic removal by adsorption[J].J.WPCF,1978,3:493-506.
    [106]Singh D B,Prasad G.Rupainwar D C.Adsorption technique for the treatment of As(Ⅴ)-rich effluents[J].Colloids and Surfaces A.1996,111(1):49-56.
    [107]Lin T F,Wu J K.Adsorption of arsenite and arsenate within activated alumina grains:equilibrium and kinetics[J].Water Research,2001,35:2049-2057.
    [108]吴艳林.活性炭纤维处理含镉废水的研究[J].辽宁城乡环境科技.2002,22(5):15-18.
    [109]Zhang W,Singh P,Paling E,et al.Arsenic removal from contaminated water by natural iron ores[J].Minerals Engineering,2004,17:517-524.
    [110]Ste phanie O,Mariedile S,Philippe de D,et al.Diffusion-Controlled Adsorp tion of Arsenate on a Natural Manganese Oxide[J].Ind Eng Chem Res,2002,41:6194-6199.
    [111]Driehaus W,Jekel M.Granular ferric hydroxide-a new adsorbent for the removal of arsenic from nature water[J].Water SRT Aqua,1998,47(1):30-35.
    [112]Zhang Y,Yang M,Huang X.Arsenic(Ⅴ) removal with a Ce(Ⅳ)-doped iron oxide adsorbent[J].Chemosphere,2003,51:945-952.
    [113]Butter T J,Evison L M,Hancock I C,et al.The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale[J].Water Research,1998,32(2):400.
    [114]沈耀良等.废水生物处理新技术[M].北京:中国环境科学出版社,1999:88-90.
    [115]WHO,Arsenic,Environmental Health Criteria 18,IPCS International Programme of Chemical Safety,Vammala(Finland):Vammalan Klirjapaino Oy.,1981.
    [116]Masri M S,Reuter F W,Friedman M.Binding of metal cations by natural substances [J].J.Appl.Polymer Sci.,1974,18(3):675.
    [117]Rorrer G L,Hsien T Y,Way J D.Synthesis of porous-magnetic chitosan beads for removal of cadmiumions fromwastewater[J].Ind.Eng.Chem.Res.,1993,32(9):2 170-2 178.
    [118]Shukla S R,Jawed M.Column studies on metal ion removal by dyed celluloic materials[J].J.Appl.Polymer Sci.,1992,44(5):903-910.
    [119]Freeland G N,Hoskinson R M,Mayfield R J.Adsorption of heavy metal aqueous solutions by polyethylenimine modified wool fibers[J].Envir.Sci.Technol.,1974,8(10):943-944.
    [120]Babel,S.,Kumiawan,T.A..Low-cost adsorbents for heavy metals uptake from contaminated water:a review[J].J.Hazard.Mater.2003,97(1),219-243.
    [121]Bailey,S.E.,Olin,T.J.,Bricka,R.M.,Adrian,D.D.A review of potentiality low-cost sorbents for heavy metals[J].Water Res.1999,33(11),2 469-2 479.
    [122]Wang,Y.H.,Lin,S.H.,Juang,R.S.Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents[J].J.Hazard.Mater.2003,B102,291-302.
    [123]韩润平,石杰,李建军.生物材料对重金属离子的吸附富集作用[J].化学通报,2000,7:12-15.
    [124]杨智宽,单崇新,苏帕拉.竣甲基壳聚糖对水中Cd~(2+)的絮凝处理研究[J].环境科学与技术.2000,1:10-12.
    [125]McKey,G.,Ho,Y.S.,Ng,J.C.P.Biosorption of copper from waste waters:a review[J].Sep.Purif.Methods,1999,28(1),87-125.
    [126]Volesky,B.Sorption and Biosorption[M].BV Sorbex,Inc.,Canada.2003.
    [127]Babel,S.,Kumiawan,T.A.,2003.Low-cost adsorbents for heavy metals uptake from contaminated water:a review[J].J.Hazard.Mater.1977,97(3),219-243.
    [128]Low,K.S.,Lee,C.K.,Mak,S.M.Sorption of copper and lead by citric acid modified wood[J].Wood Sci.Technol.2004,38,629-640.
    [129]沈振国,刘友良.重金属超积累植物研究进展[J].植物生理学通讯,1998,34(2):133-139.
    [130]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    [131]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [132]吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究[J].环境科学学报,2001,21(3):291-295.
    [133]GLOAB Z,OPLOWSKA B.Biosorption of lead and uranium by Streptomyces sp[J].Water,Air and Soil Pollution,1991,60:99-106.
    [134]Yin H,Ye J X,Peng H,et al.Study on the adsorption capablity of Sporobolomy cetaceaesp,on chromium[J].Environ Chem,2003,22(5):469-473.
    [135]Prakasham R S,Merrie J S,Sheela R,et al.Biosorption of chromium(Ⅵ) by free and immobilized Rhizopus arrhizus[J].Environ Poll,1999,104:421-427.
    [136]Cetinkaya D G,Aksu Z,Ozturk A,et al.A comparative study on heavy metal biosorption characteristics of some algae[J].Proc Biochem,1999,34:885-892.
    [137]MATIS K A,ZOUBOULIS AI.Flotation of cadmium-loaded biomass[J].Biotechnol Bioeng,1994,44:354-360.
    [138]刘月英,傅锦坤,李仁忠等.细菌吸附Pd~(2+)的研究[J].微生物学报,2000,40(5):535-539.
    [139]牛慧,许学书,王建华[J].微生物学报,1993,33(6):459-463.
    [140]Omar N B,Merroun M L,Penalver J M,et al.Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthusbiomass[J].Chemosphere,1997,35(10):2277-2283
    [141]Srinath T,Verma T,Ramteke P W,et al.Chromium(Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria[J].Chemosphere,2002,48:427-435
    [142]Brierley J A,Vance D B[M].Biohydrometa Proc Int Symp,1988,477-485.
    [143]Lloyd J r,Yong P,Macaskie L E[J].Appl Environ Microbiol,1998,64(11):4607-4609.
    [144]Gadd G M,de Rome L[J].Appl Microbiol Biotechnol,1988,29:610-617.
    [145]SRIVASTAVA S K,SINGH A K,SHARMAA.Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material[J].Environment Technology,1994,15:353-361.
    [146]ORHAN Y,BUYUKGUNGOR H.The removal of heavy metals by using agricultural wastes[J].Water Science and Technology,1993,28:247-255.
    [147]BAILEY S E,OLIN T J,BRICKA R M,et al.A review of potentially low-cost sorbents for heavy metals[J].Water Research,1999,33(11):2 469-2 477.
    [148]RANDALL J M.Variations in effectiveness of barks as scavengers for heavy metal ions[J].Forest Products Journal,1977,27(11):51-56.
    [149]张力平,黄贞,刘晓燕.落叶松改性树皮对金属离子吸附性能的研究[J].北京林业大学学报.2004,26(4):69-72.
    [150]章明奎,方利平.利用非活体生物质去除废水中重金属的研究[J].生态环境.2006,15(5):897-900.
    [151]Rajeshwarisivaraj,Sivakumar S,Senthilkumar P,et al.Carbon from cassava peel,an agricultural waste,as an adsorbent in the removal of dyes and metal ions from aqueous solution[J].Bioresour.Technol.,2001,80(3):233-235.
    [152]董绮功,张军平,李亚荣等.新型含氮、硫纤维素螯合树脂的合成及其吸附性能[J].高等学校化学学报,2003,24(4):719-723.
    [153]高路.啤酒副产物在饲料工业中的应用[J].啤酒科技.2004,12:30-31.
    [154]郝鲁江,于同立,刘丽萍.啤酒生产中副产物的产生及处理技术[J].啤酒科技.2003,5:42-43.
    [155]孙小琴.啤酒糟饲料的加工与利用[J].粮食与饲料工业,2000,23(5):20.
    [156]Low,K.S.,Lee,C.K.,Low,C.H.Sorption of chromium(Ⅳ) by spent grain under batch conditions[J].J.Appl.Polym.Sci.2001,82(9),2128-2134.
    [157]Low,K.S.,Lee,C.K.,Liew,S.C.Sorption of cadmium and lead from aqueous solutions by spent grain[J].Process Biochem.2000,36(2),59-64.
    [158]Shuguang Lu a,b,Stuart W.Gibb.Copper removal from wastewater using spent-grain as biosorbent[J].Bioresource Technology.2007,99:1509-1517.
    [159]Yenkie M K,Natarajan G S.Adsorption Equilibrium Studies of some Aqueous Aromatic Pollutants on Granulm Activated Carbon Samples[J].Separation Science and Technology,1991,26(5):661-674.
    [160]催化剂、吸附剂表面积测定法.中华人民共和国国家标准,GB5816-86.
    [161]刘瑞霞.多配位基离子交换/螯合纤维的合成、特征及应用.中科院生态环境研究中心博士论文,1998.
    [162]Wasay S A,Tokunaga S,Park S W.Removal of Hazardous Anions from aqueous solutions by La- and Y- impregnated alumina[J].Separation Sci and Technol,1996.31(10):1501-1514.
    [163]P.J.Van Soest,J.B.Rovertson,B.A.Lewis.Methods for dietary fiber,neutral detergent fiber,and nonstrach polysacchafides in relation to animal nutrition[J].J.Dairy Sci.,1991,74:3 583-3597.
    [164]Shashi Prabha Dubey,Krishna Gopal.Adsorption of chromium(Ⅵ) on low cost adsorbents derived from agricultural waste material:A comparative study[J].J.Hazard Mater 2007,145:465-470.
    [165]Volesky,B.Sorption and Biosorption[M].BV Sorbex,Inc.,Canada.2003.
    [166]Goldberg S,Johnston CT.Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements,vibrational spectroscopy,and surface complexation modeling[J].J Colloid Interf Sci,2001.234(1):204-216.
    [167]Sun X H,Doner H E.An investigation of arsenate and arsenite bonding structures on goethite by FTIR[J].Soil Science,1996.161(12):865-872.
    [168]蒋先明,何伟平.简明红外光谱识谱法[M].广西师范大学出版社,1992,31.
    [169]曲荣君,阮文举.甲壳质—重金属离子配合物的红外光谱研究[J].离子交换与吸附,2000,16(3):213-218.
    [170]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.99-198.
    [171]中西香尔,P H 索罗曼.王绪明 译.红外光谱分析100例[M].北京:科学出版社,1984.8-59.
    [172]洪山海.光谱解析法在有机化学中的应用[M].北京:科学出版社,1981.7-75.
    [173]蒋疆,王果.草炭溶解态有机物质与Cu~(2+),Cd~(2+),Ph~(2+),Zn~(2+)络合物的红外光谱[J].福建农林大学学报(自然科学版),2002,31(2):266-269.
    [174]F.Pagnaelli,P.M.Papini,L.Toro et al.Biosorption of metal ions on arthrobacter sp.:biomass charaterization and biosorption modeling[J].Environ.Sci.Technol,2000,34:2 773-2 778.
    [175]Azab M S,Petersen P J.The removal of cadmium from water by the use of biological sorbents[J].Water Sci Technol,1989,21:170-176.
    [176]Marshall W E,Johns M M.Agricultural by-products as metal adsorbents:sorption properties and resistance to mechanical abrasion[J].Chem Tech Biotechnol,1996,66:192-198.
    [177]Takeshi Itakura,Ryo Sasai,Hideaki Itoh.Arsenic recovery from water containing arsenite and arsenate ions by hydrothermal mineralization[J].J.Hazard.Mater,2007,146:328-333.
    [178]Villaescusa I,Martinez M,Miralles N[J].Chem Technol Biotechnol,2000,75,812-816.
    [179]Aksu,Z.Equilibrium and kinetic modelling of cadmium(Ⅱ) biosorption by C.vulgaris in a batch system:effect of temperature[J].Separation and Purification Technology,2001,21:285-294.
    [180]Sheng,P.X.,Ting,Y.P.,Chen,J.P.,et al.Sorption of lead,copper,cadmium,zinc,and nickel by marine algal biomass:characterization of biosorptive capacity and investigation of mechanisms[J].Journal of Colloid and Interface Science,2004,275:131-141.
    [181]Chubar,N.,Carvalho,J.R.,Neiva,M.J.Cork biomass as biosorbent for Cu(Ⅱ),Zn(Ⅱ) and Ni(Ⅱ)[J].Colloids and Surfaces B:Biointerfaces,2004,230:57-65.
    [182]Jansson-Charrier M,Guibal E,Roussy J,et al.Dynamic removal of uranium by chitosan:indluence of operating parameters[J].Water Sci Technol 1996,34:169-177.
    [183]Teixeira Tarley CR,Zezzi Arruda MA.Biosorption of heavy metals using rice milling by-products.Characterisation and application for removal of metals from aqueous effluents[J].Chemosphere 2004,54:987-995.
    [184]Ho YS,Ng JCY,McKay G.Removal of lead(Ⅱ) from effluents by sorption on peat using second-order kinetics[J].Sep Sci Tech 2001,36(2):241-261.
    [185]梁英教.物理化学[M].冶金工业出版社,1988,11:75-77.
    [186]杜清枝,杨继舜.物理化学[M].重庆大学出版社,1999.
    [187]S.I.Lyubchik,A.I.Lyubchik,O.L.Galushko[J],Colloids and Surfaces A:Physicochem Eng Aspects,242(2004),151-158.
    [188]李志勇,郭祀远,李琳等.利用藻类去除与回收工业废水中的金属[J].重庆环境科学.1997,19(6):27-32.
    [189]中本一维.无机和配位化合物的红外和拉曼光谱[M].北京:化学工业出版社,1986.144,234.
    [190]Hingston F J,Atkinson R J,Posner A M,et al.Specific adsorption of anions [J].Nature.1967,215:1459-1461.
    [191]Nriagu J O.Arsenic in the Environment[M].New York:John Wiley & Sons Inc.1994.133-152.
    [192]Imai H,Nomura J,Ishibashi Y and Konishi T.Anion Adsorption Behavior of Rare Earth Oxide Hydrates[J].The Chemical Society of Japan,1987.(5):807-813.
    [193]Pierce ML,Moore CB.Adsorption of arsenite and arsenate on amorphous iron hydroxide[J].Water Res,1982.16:1 247-1 253.
    [194]A.Jain,K.P.Raven,R.H.Loeppert,Arsenite arsenate adsorption on ferrihydrite:surface charge reduction and net OH-release stoichiometry[J],Environ.Sci.Technol.1999,8:1 179-1 184.
    [195]H.Gecol,E.Ergican,A.Fuchs,Molecular level separation of arsenic(Ⅴ) from water using cationic surfactant micelles and ultrafiltration membrane[J],J.Membr.Sci.2004,1:105-119.
    [196]A.Jain,K.P.Raven,R.H.Loeppert,Response to comment on "Arsenite and arsenate adsorption on ferrihydrite:surface charge reduction and net OH-release stoichiometry"[J],Environ.Sci.Technol.1999,20:86-96.
    [197]S.Fendorf,M.J.Eick,P.Grossl,et al,Arsenate and chromate retention mecha- nisms on goethite.1.Surface structure[J],Environ.Sci.Technol.1997,2:315-320.
    [198]D.M.Sherman,S.R.Randall,Surface complexation of arsenic(Ⅴ) to iron(Ⅲ)(hydr)oxides:structural mechanism from molecular geometries and EXAFS spectroscopy[J],Geochim.Cosmochim.Acta 2003,22:4 223-4 230.
    [199]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985.
    [200]陈绍炎.武汉水利电力学院.水化学[M].北京:水利电力出版社,1989.
    [201]T.Mathialagan,T.Viraraghavan[J],J.Hazard.Mater.2002,B94:291.
    [202]Y.S.Ho,D.A.J.Wase,C.F.Forster[J],Environ.Technol.1996,17:71.
    [203]M.R.Unnithan,T.S.Anirudhan[J],Ind.Eng.Chem.2001,40:2693.
    [204]Hao Chen and Aiqin Wang,Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay[J],Colloid and Interface Science,307(2)(2007)309-316.
    [205]Han R P,Zou W H,Zhang Z P,et al.Removal of copper(Ⅱ) and lead(Ⅱ) from aqueous solution by manganese oxide coated sand-Ⅰ.Characterization and kinetic study[J].J Hazard Mater,2006,B137:384-395.
    [206]Yasunaga T,Ikeda T.In "Geochmical processes at mineral surfaces" Davis J A,Hayes K F,eds,American Chemical Society,Washington,DC,1986,323,231-253.
    [207]Strawn D G,Scheidegger A M,Sparks D L.Kinetics and mechanisms of Pb(Ⅱ)sorption and desorption at the aluminum oxide-water i.nterface[J].Environ Sci Technol,1998,32(17):2596-2601.
    [208]S.Y.Quek and B.A1-Duri,Application of film-pore diffusion model for the adsorption of metal ions on coir in a fixed-bed column[J],Chemical Engineering and Processing,2007,46(5):477-485.
    [209]Sun,Q.Y.,Yang,L.Z.The adsorption of basic dyes from equilibrium solution on modified peat-resin particle.Water Res.2003,37:1 535-1 544.
    [210]V.Gopal and K.P.Elango,Equilibrium,kinetic and thermodynamic studies of adsorption of fluoride onto plaster of Paris[J],J Hazard Mater,2007,141(1):98-105.
    [211]王乃忠,滕兰珍.水处理理论基础[M].四川峨嵋:西南交通大学出版社,1988,115-120.
    [212]何潮洪,冯霄.化工原理[M].北京:科学出版社,2001.592-595.
    [213]袁可能.土壤化学[M].北京农业出版社.1990.
    [214]马青山.絮凝化学和絮凝剂[M].北京:中国环境科学出版社,1988,40-47.
    [215]常青,傅金镒,郦兆龙.絮凝原理[M].兰州:兰州大学出版社,1993,109-110.
    [216]吴宏海,吴大清.溶液介质条件对重金属离子与石英表面反应的影响[J].地球化学,2000,29(1):62-66.
    [217]国家环保局《水和废水监测分析方法》.水和废水监测分析[M].北京:中国环境科学出版社,1998.
    [218]Hiemstral T,Van Riemadljk W H.Surface structural ion absorption modeling of competitive binding of oxyanions by metal(Hydr)oxides[J].Journal of Colloid and Interface Science,1999,210(1):182-193.
    [219]Sushil Rai kanel,Bruce Manning.Removal of arsenic from groundwater by nanoscale zero-valent iron[J].Environ.Sci.Technol,2005,39(5):1 291-1 298.
    [220]顾学民.无机化学丛书第二卷[M].北京:科学出版社,1998,1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700