用户名: 密码: 验证码:
索拉非尼逆转肝癌细胞多药耐药的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     原发性肝癌(HCC)是世界常见的恶性肿瘤之一,全世界半数左右的肝癌患者集中在中国,我国每年约有11万人死于肝癌,居恶性肿瘤病死率的第二位。目前临床肝癌诊疗中还存在着早期诊断难、复发转移率高、治疗缺乏针对性、源头创新药物和治疗手段少等问题。在肝癌的综合治疗中,化疗是其中重要方法之一,而肿瘤多药耐药(MDR)是严重影响化疗效果及患者生存的主要原因之一。肿瘤多药耐药在临床肿瘤治疗中已普遍存在,成为目前肿瘤化疗的主要障碍之一。
     MDR是指肿瘤细胞对一种抗肿瘤药物出现耐药的同时,对其他结构及作用机制不同的抗肿瘤药物也产生交叉耐药的现象。MDR的产生机制目前并未阐明,目前认为肿瘤化疗MDR的主要分子生物学机制为:①跨膜转运蛋白将化疗药物从肿瘤细胞中泵出,从而减少抗肿瘤药物在细胞中聚集,主要包括MDR1编码的P-糖蛋白(P-gp)、MDR相关蛋白(MRP)以及肺耐药相关蛋白(LRP);②细胞内与氧化还原和解毒有关的酶系统发生改变,如还原型谷胱苷肽(GSH)和谷胱苷肽巯基转移酶(GST);③药物靶分子的改变,如蛋白激酶C(PKC)和DNA拓扑异构酶Ⅱ(TOPOⅡ);④控制凋亡的基因和蛋白的改变,如Ras、Bcl-2、P53、c-fos和c-jun等。
     随着人们对肿瘤生物学行为的日益深入,肿瘤分子靶向治疗是继传统的三大治疗方法——手术、化疗和放疗后又一有力的肿瘤治疗手段而得到广泛的关注。肿瘤分子靶向治疗是针对可能导致细胞癌变的环节,如细胞信号传导通路、原癌基因和抑癌基因、细胞因子及受体、抗肿瘤血管形成、自杀基因等,从分子水平来逆转这种恶性生物学行为,从而抑制肿瘤细胞生长,甚至使其完全消退的一种全新的生物治疗模式。由于该治疗手段是特异性针对于在肿瘤的发生发展过程中起关键作用的靶分子及其调控的信号转导通路,因此,不但具有了抗肿瘤治疗的特异性和选择性,而且避免了常规化疗药物的无选择性所致的毒副作用和耐药性。
     分子靶向药物是肿瘤治疗研究的一个新领域,由于这类药物作用的高选择性以及较小的副作用,成为近年来抗癌药物研究的热点和发展趋势,也是提高肝癌治疗效果的研究方向之一。索拉非尼(sorafenib,BAY 43—9006)是一种新型口服多靶点的抗肿瘤药,它是一种双芳基尿素类口服多激酶抑制剂,具有双重抗肿瘤作用,一方面通过抑制RAF/MEK/ERK信号传导通路,直接抑制肿瘤生长,另一方面通过抑制几种与新生血管生成和肿瘤发展有关的酪氨酸激酶受体的活性,包括血管内皮生长因子-2(VEGFR-2)、血管内皮生长因子-3(VEGFR-3)、血小板源生长因子-β(PDGFR-β)和c-kit原癌基因,阻断肿瘤新生血管生成,间接抑制肿瘤细胞的生长,从而起到抗肿瘤作用。
     细胞内和细胞间的信号转导是生物体各种生物学行为的基础,信号通路的异常与肿瘤的关系十分密切。肝癌发生MDR过程中所涉及的各种细胞生理活动,需要依赖于细胞内复杂的信号转导系统与各种激酶的激活。丝裂原活化蛋白激酶(MAPK)信号转导通路是介导细胞外刺激到细胞内反应的重要信号转导系统,调节着细胞的增殖、分化、凋亡和细胞间相互作用。MAPK是哺乳动物细胞内广泛存在的一类丝氨酸/苏氨酸蛋白激酶,目前,发现了4条平行的MAPK信号转导通路,分别为细胞外信号调节激酶(ERK)通路、c-Jun氨基末端激酶(JNK)通路、p38通路及ERK5/BMK1通路。资料显示,MAPK通路在肿瘤化疗耐药中发挥着重要的作用,抗肿瘤药物能够引起MAPK信号转导系统的激活及MDR的产生。目前大多数研究都认为,ERK的过度激活与许多肿瘤的化疗耐药性存在明显正相关,其作用机制可能是通过调控耐药相关基因和蛋白的表达。通过调节肿瘤细胞MARK激酶系统的表达有可能逆转MDR,成为逆转MDR的新方法。
     肿瘤靶向治疗的进展随着分子生物学技术的发展和对发病机制从细胞、分子水平的进一步认识而进入一个全新的时代。国内尚未见有关分子靶向药物对肿瘤耐药相关蛋白的影响的研究,而国外研究也只多见于体外研究,有报道,单克隆抗体-西妥昔单抗能逆转大肠癌对化疗药物的耐药性,但是多靶向药物对耐药蛋白的影响尚未见报道。因此,对索拉非尼逆转肝癌耐药的分子机制进行深入研究,可以有计划地联合应用化疗药物和索拉非尼进行治疗,以取得最好的治疗效果,达到最大限度地改善病人生存质量的目的,为肝癌的综合治疗、提高疗效提供理论基础。
     二、研究目的
     多靶点药物索拉非尼分别在生长因子与其膜受体结合和细胞内信号转导两个水平上阻断肿瘤血管生成和肿瘤细胞的增殖,能有效的抑制肝癌细胞的生长和血管形成,本研究旨在确定索拉非尼对肝癌细胞多药耐药的逆转作用,寻找出索拉非尼对多药耐药蛋白的影响,并从分子水平和细胞信号转导两个方面探讨索拉非尼对化疗药物多药耐药的可能逆转机制。
     三、研究方法
     1.选择肝癌细胞系BEL-7402细胞、肝癌耐药细胞系BEL-7402/5-FU细胞做为实验细胞,测量两种细胞的生长和死亡率曲线、细胞倍增时间、细胞核分裂指数,并以流式细胞仪检测细胞表面P-gp蛋白的表达率。
     2.以MTT比色法测定(1、2、4、8、16)/μmol/L索拉非尼对BEL-7402/5-FU细胞的剂量效应曲线,并以流式细胞仪检测上述剂量的索拉非尼对BEL-7402/5-FU细胞内罗丹明123(Rho123)浓度的影响,并根据上述实验结果选取合适的索拉非尼实验剂量。
     3.实验分为三组:BEL-7402细胞组、BEL-7402/5-FU细胞组、BEL-7402/5-FU细胞+sorafenib(4μmol/L)组。
     3.1以阿霉素(ADM)、健择(GEM)、顺铂(DDP)、氟尿嘧啶(5-FU)四种化疗药物作用上述三组细胞,通过MTT比色法检测细胞存活率的变化,评价上述四种化疗药物对三组细胞的生长抑制作用,并得出细胞的半数抑制率(IC_(50)),以判断化疗药物敏感性,并计算出索拉非尼对肝癌耐药细胞的逆转倍数;
     3.2流式细胞仪测定三组细胞表面P-gp蛋白的表达率、Rho123的蓄积作用及细胞的周期分布;
     3.3免疫细胞化学法检测三组细胞表面P-gp、MRP蛋白的表达;
     3.4半定量PCR及实时荧光定量PCR法检测三组细胞MDR1、MRP基因的mRNA水平的变化;
     3.5 Western-blot法检测三组细胞P-gp、MRP、ERK、pERK、pJNK蛋白水平并分析相关性。
     4.统计方法
     实验数据均采用SPSS 13.0软件进行统计学分析:两样本比较采用独立样本t检验分析。多组样本比较采用One-way ANOVA比较各组细胞的差异,用LSD法进行多重比较;如果方差不齐,采用近似F检验(Welch方法)及多重比较的Tamhane法分析。结果以均数±标准差((?)±SD)表示,P<0.05认为有统计学意义。
     四、结果
     1.BEL-7402细胞及BEL-7402/5-FU细胞形态均呈上皮样单层排列,每3d~4 d传代一次,对数生长期两种细胞的存活率均>95%,BEL-7402/5-FU细胞的多核巨细胞较BEL-7402细胞明显增多(P=0.000)。BEL-7402细胞倍增时间为23 h,BEL-7402/5-FU细胞倍增时间为32 h,明显高于BEL-7402细胞(P=0.007)。
     2.BEL-7402细胞表面P-gp蛋白的表达率为11.64%±1.03%,BEL-7402/5-FU细胞为68.94%±1.45%,显著高于亲本细胞(P=0.000)。传代后BEL-7402细胞分裂指数逐渐上升,到第4 d达到高峰,占69.33‰±0.96‰,培养5 d后,分裂指数开始下降,到第8 d降为最低。传代后BEL-7402/5-FU细胞分裂指数也呈上升趋势,到第5 d达到高峰,占69.83‰±1.82‰,培养6 d后,分裂指数开始下降,到第8 d降为最低。
     3.索拉非尼在4μmol/L以下对BEL-7402/5-FU细胞无明显毒性,超过此浓度,其毒性呈剂量效应,IC_(50)为(30.69±0.93)μmol/L。当索拉非尼在(1~8)μmol/L浓度时,细胞内Rho123荧光强度随索拉非尼的浓度的增加而升高;当索拉非尼浓度超过8μmol/L时,细胞内Rho123荧光强度不再增加,显示索拉非尼浓度在4μmol/L时逆转效率较高且毒副作用较小。
     4.对ADM、GEM、DDP、5-FU这四种化疗药物,BEL-7402/5-FU细胞均显示耐药性,其IC_(50)分别为:(16.74±1.12)μmol/L、(253.56±2.41)μmol/L、(11.48±5.45)μmol/L、(893.02±2.55)μmol/L,而BEL-7402细胞相对较敏感,其IC_(50)明显下降(P=0.000),分别为:(3.56±0.03)μmol/L、(17.82±0.13)μmol/L、(3.35±0.05)μmol/L、(38.31±0.09)μmol/L,耐药细胞较亲本细胞对四种化疗药物的耐药倍数分别为:4.70、14.23、3.30、23.36,经4μmol/L的索拉非尼作用后,耐药细胞BEL-7402/5-FU对各抗癌药的敏感性增强,其IC_(50)明显下降(P≤0.001),分别为:(5.57±0.57)μmol/L、(35.63±1.30)μmol/L、(5.45±0.88)μmol/L、(88.31±1.60)μmol/L,其逆转倍数分别为:2.98、7.16、1.99、10.08。
     5.BEL-7402/5-FU细胞经索拉非尼4μmol/L作用24 h后,P-gp表达率为36.34%±1.12%,BEL-7402/5-FU细胞的P-gp表达率为67.44%±1.69%,BEL-7402细胞的表达率为30.66%±1.17%,肝癌耐药细胞BEL-7402/5-FU经索拉非尼作用后,P-gp表达率较用药前明显下降(P=0.002)。
     6.在Rho123蓄积实验中,BEL-7402细胞内Rho123荧光很强,表达率为76.01%±3.47%,而BEL-7402/5-FU细胞内Rho123荧光很弱,表达率仅为19.83%±1.44%,加索拉非尼4μmol/L后,波峰右移,细胞内荧光明显增强,表达率为49.80%±1.35%,提示索拉非尼可明显增加耐药细胞对Rho123的蓄积(P=0.000)。
     7.流式细胞仪检测细胞周期显示,索拉非尼可使细胞周期阻滞于G_0/G_1期,经4μmol/L索拉非尼作用24 h后,BEL-7402细胞、BEL-7402/5-FU细胞、BEL-7402/5-FU+sorafenib组G_0/G_1期细胞比率分别为:76.48%±1.23%、38.29%±1.40%、56.45%±2.08%,S期细胞比率分别为:15.69%±1.13%、48.15%±1.37%、34.70%±2.79%,加药后BEL-7402/5-FU细胞的G_0/G_1期细胞比率明显高于用药前(P=0.000),S期细胞比率明显低于用药前(P=0.000)。
     8.光学显微镜下观察,P-gp、MRP蛋白阳性反应呈棕黄色,主要位于胞质中,呈细颗粒状均匀分布,耐药细胞BEL-7402/5-FU组表达增加,颜色加深,广泛分布于胞核及胞质中;经4μmol/L索拉非尼作用后的耐药细胞P-gp、MRP蛋白表达明显下降,颜色变浅,胞质内棕黄色颗粒明显减少。
     9.半定量PCR结果显示:索拉非尼4μmol/L作用BEL-7402/5-FU细胞24 h后,BEL-7402、BEL-7402/5-FU、BEL-7402/5-FU+sorafenib组MDR1/β-actin比值分别为:0.484±0.065、0.776±0.069、0.503±0.082,BEL-7402/5-FU细胞经索拉非尼作用后,MDR1基因表达较用药前下降了27.3%(P=0.004)。MRP/β-actin比值分别为:0.350±0.026、0.698±0.123、0.493±0.024,BEL-7402/5-FU细胞经索拉非尼作用后,MRP基因表达较用药前下降了20.5%(P=0.000)。
     10.实时荧光定量PCR结果显示:BEL-7402组MDR1基因的CT值为23.65±0.21,β-actin的CT值为20.87±0.16;BEL-7402/5-FU组MDR1基因的CT值为23.85±0.23,β—actin的CT值为19.02±0.13;BEL-7402/5-FU+sorafenib组MDR1基因的CT值为23.33±0.22,β-actin的CT值为19.43±0.15。根据公式计算2~(-△△CT)为2~(-0.63),故BEL-7402/5-FU+sorafenib组MDR1基因的含量约为BEL-7402/5-FU组的64.62%,逆转率约为35.38%。BEL-7402组MRP基因的CT值为26.83±0.21,β-actin的CT值为20.87±0.16;BEL-7402/5-FU组MRP基因的CT值为26.87±0.23,β-actin的CT值为19.32±0.13;BEL-7402/5-FU+sorafenib组MRP基因的CT值为26.51±0.22,β-actin的CT值为19.43±0.15。根据公式计算2~(-△△CT)为2~(-0.47),故BEL-7402/5-FU+sorafenib组MRP基因的含量约为BEL-7402/5-FU组的72.20%,逆转率约为27.80%。
     11.Western-blot结果显示,经4μmol/L索拉非尼作用后,BEL-7402/5-FU细胞P-gp蛋白(0.257±0.014)表达较用药前(0.400±0.014)明显下降(P=0.000);MRP蛋白(0.253±0.024)表达较用药前(0.396±0.007)明显下降(P=0.000);ERK蛋白(0.913±0.006)表达较用药前(0.917±0.018)无明显变化(P=0.683);pERK蛋白(0.663±0.009)表达较用药前(0.934±0.006)明显下降(P=0.000);pJNK蛋白(0.536±0.007)表达较用药前(0.305±0.009)明显升高(P=0.000)。
     五、结论
     1.索拉非尼在体外可明显提高肝癌耐药细胞对化疗药物的敏感性,并可以使细胞周期阻滞于G_0/G_1期,同时减少S期细胞比率,使肿瘤细胞增殖受阻。
     2.通过免疫细胞化学、半定量及实时荧光定量PCR、蛋白印迹结果显示,索拉非尼在体外逆转肝癌多药耐药的机制可能是下调MDR1、MRP基因的表达,从而抑制了跨膜转运蛋白的功能,使进入细胞内的化疗药物泵出减少,增加了细胞内化疗药物的浓度,使其对耐药细胞的杀伤作用增强。
     3.索拉非尼还可以使ERK信号转导通路受抑制,JNK信号转导通路激活,从而使肿瘤细胞增殖受阻,说明索拉非尼逆转肝癌多药耐药的机制还可能与影响MAPK信号转导通路的有关分子相关。
     4.通过本实验证明索拉非尼在体外表现出较强的逆转肝癌细胞多药耐药性的作用,为进一步深入进行动物体内实验逆转MDR和临床MDR逆转提供了重要的参考价值。
Background
     Primary liver cancer is one of the most common malignant tumors in the world, and about half of the patients with liver cancer focused in China,where about 110,000 people die from liver cancer each year,ranking the second in malignant tumor mortality.Presently,there still existed some problems in clinical diagnosis and treatment of liver cancer,such as a difficult early diagnosis to make,high rate of recurrence and metastasis,and lack of relevance for treatment,original innovative drugs and various treatment means.Chemotherapy is one of the important ways in the comprehensive treatment for liver cancer,while the tumor multidrug resistance (MDR) is one of the main reasons for significant effects on chemotherapy and patients'survival.The tumor MDR has been widespread in clinical tumor therapy, becoming one of the main obstacles in chemotherapy.
     MDR refers to the drug resistance of tumor cells to a kind of antitumor drug, simultaneously,cross resistance also occurs to other antitumor drugs with different structure and mechanism.At present,the production mechanism of MDR remains unclear,the main MDR mechanisms of molecular biology in tumor chemotherapy are considered as:①transmembrane proteins,reduce the antitumor drug accumulation in cells by pumping chemotherapy drugs from tumor cells,mainly including MDR1 encoded P-glycoprotein(P-gp),MDR-related protein(MRP) and lung resistance related protein(LRP);②enzyme systems which relate to oxidation reduction and detoxification in cells change,such as reduced glutathione(GSH) and glutathione S-transferase(GST);③target molecule of drug change,like protein kinase C(PKC) and DNA topoisomeraseⅡ(TOPOⅡ);④genes and proteins which control apoptosis change,such as Ras,Bcl-2,P53,c-fos and c-jun.
     With people go increased deep into the tumor biological behavior,molecular target therapy--another powerful mean for tumor treatment after the three major traditional methods(surgery,chemotherapy and radiotherapy)--has attracted wide attention.Molecular target therapy for tumor aim at the links which may lead to cell carcinogenesis,such as cell signaling pathway,proto-oncogene,tumor suppressor gene,cytokine,receptor,anti-tumor angiogenesis and suicide gene.It is a new biotherapy mode for inhibiting,even dissipating the tumor cell by reversing the malignant biological behavior from molecular level.Because the treatment is specific for the target molecule and signal transduction pathway which play a key role in the development of tumor,it not only possess specificity and selectivity of anti-tumor-treatment, but also avoid side effects and drug resistance caused by the no-choice conventional chemotherapy.
     Molecular targeted drug is a new research field on tumor therapy.For the high selectivity and small side-effect of this kind of drugs,it has become a hot research and a development trend on anticancer drugs in recent years,as well as a research direction to enhance the curative effect of liver cancer.Sorafenib(BAY 43-9006) is a new type of oral multi-target antitumor drug.It is a type of oral multikinase inhibitor of dual-aryl ure with dual anti-tumor effect.One hand,it inhibits tumor growth directly by inhibiting the RAF/MEK/ERK signal transduction pathway;the other hand,by inhibiting the activity of several tyrosine kinase receptors related to tumor angiogenesis and development,including vascular endothelial growth factor -2 (VEGFR-2),vascular endothelial growth factor -3(VEGFR-3),platelet-derived growth factor-β(PDGFR-β) and c-kit proto-oncogene,it blocks tumor angiogenesis, indirectly inhibiting tumor cell growth,thus playing the effect on anti-tumor.
     Intracellular and intercellular signal transduction is the basis of various biological behaviors of organisms,and the abnormal signal pathway is closely related to tumor.The physiological activities of various cells involved in the development of MDR depend on the intracellular complex signal transduction system and the activation of various kinase.Mitogen-activated protein kinase(MAPK) signal transduction pathway is the important signal transduction system to mediate extracellular stimulation to intracellular response,regulating the cell proliferation, differentiation,apoptosis and interaction.MAPK is a class of serine / threonine protein kinase widely distributed in mammalian cells.At present,4 parallel MAPK signal transduction pathway have been found,namely,extracellular signal-regulated kinase(ERK) pathway,c-Jun N-terminal kinase(JNK) pathway,p38 pathway and ERK5/BMK1 pathway.It is showed that MAPK pathway played an important role in chemotherapy MDR,antitulnor drug could induce the activation of MAPK signal transduction system and the emergence of MDR.It is considered in most current studies that the excessive activation of ERK and chemotherapy MDR of many tumors showed significant positive difference,its possible mechanism might be the regulation of drug resistance gene and protein expression.It may become a new method to reverse MDR by regulating the expression of MARK kinase system in tumor cells.
     With the development of molecular biological technique and the further understanding of the pathogenesis on cells and molecular level,the targeted tumor therapy goes into a new era.The relevant research of the effect of molecular targeted drug on tumor resistance-associated protein has not been found in China,and only most in vitro studies in other countries.It has been reported that monoclonal antibody - cetuximab could reverse colorectal cancer resistance to chemotherapeutic drugs, properties,but no impact of multi-targeted drugs on drug-resistant protein has been reported.Therefore,a further study of the molecular mechanism of Sorafenib reverse liver cancer resistance can help to the treatment by the designed combination of chemotherapy drugs and Sorafenib,obtaining the best curative effect,maximizing the improvement for patient survival quality,and providing a theoretical foundation for the comprehensive treatment and efficacy enhancement for liver cancer.
     Objective
     The multi-target drug Sorafenib blocks tumor angiogenesis and tumor cell proliferation on both the level of growth factor combining with its membrane receptor and intracellular signal transduction.It can effectively inhibit hepotoma cell growth and angiogenesis.This study was to determine the reversal effect of Sorafenib on liver cancer cell MDR,look for the effect of Sorafenib on MDR protein,and explore the possible reversal mechanism of Sorafenib to chemotherapy drug MDR from molecular level and cellular signal transduction.
     Methods
     1.BEL-7402 cell of hepatoma cell line and BEL-7402/5-FU cell of hepatoma cell line resistant were selected as experimental cell.Their growth curve,cell doubling time and cell mitotic index were measured,and expression rate of P-gp protein in cell surface was checked by flow cytometry.
     2.By MTT colorimetric assay,the dose-response curve of(1,2,4,8,16)μmol/L Sorafenib on BEL-7402/5-FU cell was drawn,and with the flow cytometry to detect the effect of Sorafenib with above-mentioned dose on Rho123 concentration in BEL-7402/5-FU cell,then,the appropriate dose of Sorafenib was selected according to the above experimental results.
     3.It was divided into three groups:BEL-7402 cell,BEL-7402/5-FU cell,and BEL-7402/5-FU cell + sorafenib(4μmol/L) group.
     3.1 The effect of the four kind of chemotherapy drugs,including adriamycin (ADM),gemcitabine(GEM),cisplatin(DDP),fluorouracil(5-FU),was taken on the above three groups of cells.Changes in cell survival rate were detected by MTT colorimetric assay,and the growth inhibition effect of these drugs on the three groups of cells was evaluated,coming to the half cell inhibition rate(IC50),thus,the sensitivity of chemotherapeutic drugs was determined and the reversal multiple of Sorafenib to hepatoma drug resistance cells.
     3.2 P-gp protein expression rate in cell surface,Rho123 accumulation and cell cycle distribution of the cells in three groups were determined by flow cytometry;
     3.3 Immunocytochemistry method was applied to detect P-gp and MRP protein expression;
     3.4 Semi-quantitative PCR and fluorescent real-time quantitative PCR were adopted to detect the mRNA level of MDR1 and MRP gene;
     3.5 With the western-blot method,protein level of P-gp,MRP,ERK,pERK and pJNK was determined and the relevance was analyzed.
     4.Statistical Methods
     All data were analyzed with software SPSS 13.0,the independent sample t was adopted to check the two-sample compare.Multi-group compare was analyzed with One-way ANOVA to detect the differences,LSD analysis to detect homogeneity of variance;while Pseudo F test(Welch) and Tamhane analysis used if uneven variance. The results were expressed as mean±standard deviation((?)±SD),P<0.05 was treated as statistical significance.
     Results
     1.BEL-7402 cell and BEL-7402/5-FU cell showed epithelioid single-layer arrange,with passage once every 3 to 4 days,the survival rates of the two kind of cells in logarithmic growth phase were>95%.The multinucleated giant cells in BEL-7402/5-FU cell increased significantly compared with which in BEL-7402 cell (P=0.000).The doubling time of BEL-7402 cell was 23 h,and BEL-7402/5-FU cell 32 h,significantly higher than that of BEL-7402 cell(P=0.007).
     2.The expression rate of P-gp protein in BEL-7402 cell surface was 11.64%±1.03%,while which in BEL-7402/5-FU cell was 68.94%±1.45%,significantly higher than which of the parental cell(P=0.000).The mitotic index of BEL-7402 cell gradually increased after passage,reached the peak in the 4th day,accounting for 69.33‰±0.96‰.After 5 d cultivation,the mitotic index began to decline,was the lowest in the 8th day.The mitotic index of BEL-7402/5-FU cell was also on the rise after passage,reached the peak in the 5th day,accounting for 69.83‰±1.82‰.After 6 d cultivation,the mitotic index began to decline,and was the lowest in the 8th day.
     3.Sorafenib showed no obvious toxicity to BEL-7402/5-FU cell under the dose of 4μmol/L,and its toxicity showed dose effect once over this concentration,IC_(50) was(30.69±0.93)μmol/L.At(1~8)μmol/L concentration,intracellular Rho123 fluorescence intensity increased with the Sorafenib concentration;While over the concentration of 8μmol/L,the intracellular Rho 123 fluorescence intensity would no longer increase,indicating higher reverse efficiency and less side-effects of Sorafenib at the concentration of 4μmol/L.
     4.To all these four chemotherapy drugs - ADM,GEM,DDP and 5-FU, BEL-7402/5-FU cell showed resistance,and their IC_(50) were(16.74±1.12)μmol/L, (253.56±2.41)μmol/L,(11.48±5.45)μmol/L and(893.02±2.55)μmol/L, respectively.While BEL-7402 cell are relatively sensitive,the IC_(50) were respectively (3.56±0.03)μmol/L,(17.82±0.13)μmol/L,(3.35±0.05)μmol/L and(38.31±0.09)μmol/L.Compared with parental cells,the resistance multiple of drug-resistant cells to the four chemotherapy drugs were 4.70,14.23,3.30 and 23.36,respectively.Under the action of 4μmol/L Sorafenib,the sensitivity of the drug-resistant cell BEL-7402/5-FU enhanced to all the anticancer drugs,the IC50 decreased significantly(P(?)0.001),were(5.57±0.57)μmol/L,(35.63±1.30)μmol/L,(5.45±0.88)μmol/L and(88.31±1.60)μmol/L,respectively.The reversal multiple were 2.98,7.16,1.99 and 10.08.
     5.After the 24 h effect of 4μmol/L Sorafenib on BEL-7402/5-FU cell,P-gp expression rate was 36.34%±1.12%,P-gp expression rate of BEL-7402/5-FU cell was 67.44%±1.69%,and the expression rate of BEL-7402 cell was 30.66%±1.17%. P-gp expression rate of hepatoma cell drug-resistant cell BEL-7402/5-FU significantly decreased after Sorafenib effect(P=0.002).
     6.In Rho123 accumulation experiment,the Rho123 fluorescence was very strong in BEL-7402 cell,and the expression rate was 76.01%±3.47%;while which in BEL-7402/5-FU cell was weak,the expression rate was only 19.83%±1.44%. After 4μmol/L Sorafenib was added,the peak shifted to right,the intracellular fluorescence markedly increased,and the expression rate was 49.80%±1.35%.It indicated that Sorafenib could markedly increase the accumulation of drug-resistant cells to Rho123(P=0.000).
     7.The cell cycle detected with flow cytometry showed that Sorafenib could block cell cycle in G0/G1 phase.After 24 h effect of 4μmol/L Sorafenib,the cell ratio of BEL-7402 cell,BEL-7402/5-FU cell and BEL-7402/5-FU + sorafenib group in G0/G1 phase,were respectively:76.48%±1.23%,38.29%±1.40%and 56.45%±2.08%.While which in S phase were 15.69%±1.13%,48.15%±1.37%and 34.70%±2.79%.The cell ratio of BEL-7402/5-FU cell in G0/G1 phase after adding with Sorafenib was significantly higher than that before treatment(P=0.000),the cell ratio of S phase was significantly lower than that before treatment(P=0.000).
     8.With optical microscopy,the positive response of P-gp and MRP protein showed brown-yellow,mainly located in cytoplasm,showing uniform fine granular distribution.The expression of drug-resistant cell BEL-7402/5-FU group increased, the color deepened,widely distributed in the nucleus and cytoplasm;After the application of 4μmol/L Sorafenib,P-gp and MRP protein expression of drug-resistant cells decreased significantly,the color became shallow,the brown-yellow granules in cytoplasm reduced significantly.
     9.Semi-quantitative PCR results showed that:after 24 h effect of 4μmol/L Sorafenib on BEL-7402/5-FU cell,the MDR1/β-actin ratio of BEL-7402, BEL-7402/5-FU and BEL-7402/5-FU + sorafenib group were respectively 0.484±0.065,0.776±0.069 and 0.503±0.082.After Sorafenib treatment,MDR1 gene expression of BEL-7402/5-FU cell decreased 27.3%compared with that before the treatment(P=0.004).The MRP/β-actin ratio were:0.350±0.026,0.698±0.123 and 0.493±0.024,respectively.After the effect of Sorafenib on BEL-7402/5-FU cell, MRP gene expression decreased 20.5%compare with that before the treatment(P= 0.000).
     10.Real-time quantitative PCR results showed that:the CT value of MDR1 gene in BEL-7402 group was 23.65±0.21,and the CT value ofβ-actin was 20.87±0.16; The CT value of MDR1 gene in BEL-7402/5-FU group was 23.85±0.23,and the CT value ofβ-actin was 19.32±0.13;The CT value of MDR1 gene in BEL-7402/5-FU + sorafenib group was 23.33±0.22,and the CT value ofβ-actin was 19.43±0.15.2~(-△△CT) was calculated as 2~(-0.63) according to formula,so the content of MDR1 gene in BEL-7402/5-FU + sorafenib group was about 64.62%of which in BEL-7402/5-FU group,the reversal rate was about 35.38%.The CT value of MRP gene in BEL-7402 group was 26.83±0.21,and the CT value ofβ-actin was 20.87±0.16;The CT value of MRP gene in BEL-7402/5-FU group was 26.87±0.23,and the CT value ofβ-actin was 19.32±0.13;The CT value of MRP gene in BEL-7402/5-FU + sorafenib group was 26.51±0.22,and the CT value ofβ-actin was 19.43±0.15.2~(-△△CT) was calculated as 2~(-0.47) according to formula,so the content of MRP gene in BEL-7402/5-FU + sorafenib group was about 72.20%of which in BEL-7402/5-FU group,the reversal rate was about 27.80%.
     11.Western-blot results showed that after the application of 4μmol/L Sorafenib, P-gp protein(0.257±0.014) expression in BEL-7402/5-FU cell was decreased significantly compared with that before the treatment(0.400±0.014)(P=0.000); MRP protein(0.253±0.024) expression decreased significantly compared with that of before treatment(0.396±0.007)(P=0.000);ERK protein expression (0.913±0.006) showed no significant change compared with that before treatment (0.917±0.018)(P=0.683);pERK protein(0.663±0.009) expression decreased significantly compared with that before treatment(0.934±0.006)(P=0.000); pJNK protein(0.536±0.007) expression significantly increased compared with that before treatment(0.305±0.009)(P=0.000).
     Conclusion
     1.Sorafenib could markedly enhance the sensitivity of drug-resistant hepatocellular carcinoma cells to chemotherapeutic drug in vitro,and block cell cycle in G0/G1 phase,reduce the cell ratio of S phase,thus blocking the tumor cell proliferation.
     2.The results of immunocytochemistry,semi-quantitative and real-time fluorescence quantitative PCR and western blot showed that the possible mechanisms of Sorafenib reverse hepatoma MDR in vitro were the down-regulated MDR1 and MRP gene expression inhibited the function of the transmembrane transporter protein, decreased the chemotherapy drugs pump out of the cells,increased concentration of chemotherapeutic drugs in cells,thus enhancing the killing effect to drug-resistant cells.
     3.Sorafenib could also inhibit the ERK signal transduction pathway;activate the JNK signal transduction pathway,thus blocking the tumor cell proliferation.It indicated that the mechanism of Sorafenib reverse hepatoma MDR might also relate to the molecule which impacted the MAPK signal transduction pathway.
     4.It was proved in this experiment that Sorafenib showed strong effect of reversing hepatoma cell MDR in vitro,reversal of multidrug resistance of hepatocellular carcinoma cell function,providing an important clue for the further experimental and clinical MDR reversing in vivo of animal.
引文
[1]Zhao HT, Li N, Sang XT, et al.Research of targeting treatment for hepatocellular carcinoma[J].Oncology Progress.2008, 6(3):293-8
    [2]Qiu JW, Guo W, Shen LJ.Adances in research on p38MAPK-related hepatocellular carcinoma[J].World Chin J Digestol.2008, 16(5):503-9
    [3]Di Miao M, De Maio E, Perrone F, et al.Hepatocellular carcinoma: systemic treatments[J].J Clin Gastroenterol.2002, 35(5 suppl 2):S 109-14
    [4]Liovet JM, Bruix J, Gores GJ.Surgical resection versus transplantation for early hepatocellular carcinoma: Clues for the best strategy[J].Hepatology.2004, 31:1019
    [5]Stein WD, Bates SE, Fojo T.Intractable cancers: the many faces of multidrug resistance and the many targets it presents for therapeutic attack[J].Curr Drug Targets.2004, 5(4):333-46
    [6]Guan Xiaoxiang, Chen Longbang.Recent progress in the therapeutics of multi-drug resistance[J].Oncol Prog.2004, 2(2): 120-3
    [7]Haus-Cohen M, Assaraf YG, Binyamin L, et al.Disruption of P-glycoprotein anticancer drug efflux activity by a small recombinant single-chain Fv antibody fragment tragment targeted to an extracellular epitope[J].Int J Cancer.2004, 109(5):750-8
    [8]Hoffmann U, Kroemer HK.The ABC transporters mdrl and MRP2: multiple functions in disposition of xenobiotics and drug resistance [J].Drug Metab Rev.2004, 36(3-4):669
    [9]Mahadevan D, List AF.Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies [J].Blood.2004, 104(7): 1940
    [10]Jamroziak K, Robak T.Pharmacogenomics of mdr1/ABCBl gene: the influence on risk and clinical outcome of haematological malignancies [J].Hematology.2004, 9(2):91
    [11]Sparreboom A, Danesi R, Ando Y, et al.Pharmacogenomics of ABC transporters and its role in cancer chemotherapy [J].Drug Resist Updat.2003,6(2):71
    [12]Marzolini C, Paus 1:, Buclin T, et al.Polymophisms in human MDR1 (P-glycoprotein) : recent advances and clinical relevance[J].Clin Phamacol Ther.2004, 75(1):13-33
    [13]Wang XP, Yan LN, Pan GD, et al.Construction of mrpl expression vector and biological characteristics in HepG2 cells[J], Chin J Bases Clin General Surg.2006, 13(2):163-6
    [14]Godinot N, Lversen PW, Tabas L, et al.Cloning and functional characterization of the multidrug resistance-associated protein (MRP1/ABCC1) from the cynomolgus monkey[.l].Mol Cancer Ther.2003, 2(3):307
    [15]Mavel S, Dikic B, Palakas S, et al.Synthesis and biological evalutation of a series of flavone derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1) [J].Bioorg Med Chem.2005,28(4):521
    [16]Linenberger ML, Hong T, Flowers D, et al.Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin[J].Blood.2001, 98(4):988-94
    [17]Strumberg D, Richly H, Hilger RA, et al.Phase I clinical and pharm acokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors [J].J Clin Oncol.2005, 23(5):965-72
    [18]Wilhelm SM, Carter C.Tang L, et al.BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J].Cancer Res.2004,64(19):7099-109
    [19]Wilhelm SM, Chien DS.BAY 43-9006: preclininal data[J].Curr Pham Des.2002,8:2255
    [20]Lyons JF, Wilhelm S, Hibner B, et al.Discovery of a nonel Raf kinase ingibitor[J].Endocr Relat Cancer.2001, 8:219-25
    [21]Wilhelm S, Housley T, Rong H, et al.The novel Raf inhibitor BAY 43-9006 blocks signaling and proliferation in BRAF mutant and wildtype melanoma and colorectal tumor cell lines (abstract 106609) [J].Proc Am Soc Clin Oncol.2003,22:203
    [22]Lang L.FDA approves sorafenib for patients with inoperable liver cancer[J].Gastroenterology.2008, 134(2):379
    [23]Abou-Alfa GK, Schwartz L, Ricci S, et al.Phase Ⅱ study of sorafenib in patients with advanced hepatocellular carcinoma[J].J Clin Oncol.2006, 2(26):4293-300
    [24]Llovet J, Ricci S, Mazzaferro V, et al.Sorafenib improves survival in advanced Hepatocellular Carcinama(HCC): Results of a Phase Ⅲ randomized placebo-controlled trial (SHARP trail).J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I .Vol 25, No.18S(June 20 Supplement), 2007:LBA1
    [25]Yau T, Chan P, Epstein R, et al.Management of advanced hepatocellular carcinoma in the era of targeted therapy.Liver Int.2009, 29(1): 10-7
    [26]Johnson GL, Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinase[J].Science.2002, 298(5600): 1911-2
    [27]Bardwell L.Mechanisms of MAPK signalling specificity.Biochem Soc Trans.2006, 34:837
    [28]Egan SE, Weiberg RA.The pathway to signal achievement[J].Nature.1993, 365:781-3
    [29]Hoshino R,Tanimura S,Watanbe K,et al.Blockade of the extracellular sigal-regulated kinase pathway induces marked G1 cell cycle arrest and apptosis in tumor cells in which the pathway is constitutively activated:up-regulation of p27(Kip1)[J].J Bio Chem.2001,276(4):2686-92
    [30]Zhuang L,Lee CS,Scolyer RA,et al.Activation of the extracellular signal regulated kinase(ERK)pathway in human melanoma[J].J Clin Pathol.2005,58(11):1163-9
    [31]Weston CR,Davis RJ.The JNK signal transduction pathway[J].Curr Opin Cell Biol.2007,19(2):142-9
    [32]Shyu KG,Lin S,Lee CC,et al.Evodiamine inhibits in vitro angiogenesis implication for antitumor genicity[J].Life Sci.2006,78:2234-43
    [33]Claire RW,Roger JD.The JNK signal transduction pathway[J].Cell Biology.2007,19:142-49
    [34]Chuderland D,Seger R.Protein-protein interactions in the regulation of the extracellular signal-regulated kinase[J].Mol Biotechnol.2005,29:57-74
    [35]Tannapfel A,Sommerer F,Benicke M,et al.Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma[J].Gut.2003,52(5):706-12
    [36]Jin S,Zhou Y,Guo W,et al.P21-activated Kinase 1(Pak 1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization,phosphorylation of BAD,and Bcl-2 association[J].J Biol Chem.2005,280(26):24698-705
    [37]Salomoni P,Wasik MA,Riedel RF,et al.Expression ofconsitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant[J].J Exp Med.1998,187(12):1995-2007
    [38]Chen J, Fujii K, Zhang L, et al.R.af-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism[J].Proc Natl Acad Sci USA.2001, 98(14):7783-8
    [39]Baumann B, Weber CK, Troppmair J, et al.Raf induces NF-kappa B by membrance shuttle kinase MEKK1, a signaling pathway critical for transformation [J].Proc Natl Acad Sci USA.2000, 97(9):4615-20
    [40]Le MV, Troppmair J, Benz R, et al.Negative regulation of mitochondrial VDAC channels by C-Raf kinase[J].BMC Cell Biol.2002, 3:14
    [41]Panka DJ, Wang W, Atkins MB, et al.The Raf inhibitor BAY 43-9006 (sorafenib) induces caspase-independent apoptosis in melanoma cells[J].Cancer Res.2006, 66:1611-19
    [42]Li MS, Ma QL, chen Q, et al.Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/Fasl and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cell[J].Would J Gastroenterol.2005,11:2564-69
    [43]Yamaguchi R, Yano H, Iemura A, et al.Expression of vascular endothelial growth factor in human hepatocellular cacinoma[J].Hepatology.1998, 28:68-77
    [44]Downward J, Targeting RAS signalling pathways in cancer therapy [J].Nat Rev Cancer.2003, 3:11-22
    [45]Hwang YH, Choi JY, Kim S, et al.Over-expression of c-raf-1 protooncogene in liver cirrhosis and hepatocellular carcinoma[J].Hepatol Res.2004, 29:113-21
    [46]Huynh H, Nguyen TT, Chow KH, et al.Over expression of the mitogen-activated protein kinase (MAPK) kinase (MEK) - MAPK in hepatocellular carcinoma Its role in rumor progression and apoptosis[J].BMC Gastroenterol.2003,3:19
    [47]Schmidt CM, Mckillop IH, Cahill PA, et al.Increased MAPK expression and activity in primary human hepatocellular carcinoma[J].Biochem Biophys Res Commun.1997,236:54-58
    [48]Avila MA, Berasain C, Sangro B, et al.New therapies for hepatocellular carcinoma[J].Oncogene.2006, 25:2866-84
    [49]Garnett MJ, Marais R.Guilty as charged: B-RAF is a human oncogene[J].Cancer Cell.2004, 6(4):313-9
    [50]Seger R, Krebse G.The MAPK signaling cascade[J].Faseb J.1995, 9(9):726-35
    [51]O'Neill E, Rushworth L, Baccarini M, et al.Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1 [J].Science.2004,306(5705):2267-70
    [52]Biedler JL, Riehm Ⅱ.Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic, and cytogenetic studies[J].Cancer Res, 1970, 30(4): 1174-84
    [53]Perez-Tomas R.Multidrug resistance: retrospect and prospects in anti-ceancer drug treatment.Curr Med Chem, 2006, 13:1859
    [54]Lasagna N, Fantappie O, Solazzo M, et al.Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance induced angiogenesis in hepatocellular carcinoma cell lines.Cancer Res, 2006, 66:2673
    [55]Lin-xi Shi, Rui Ma, Rong Lu, et al.Reversal effect of tyroservatide (YSV) tripeptide on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU[J].Cancer Letters.2008, 269(1):101-10
    [56]Rosell R, Lord RV, Taron M, et al.DNA repairand cisplatin resistance in non-small-cell lung cancer[J].Lung Cancer.2002, 38(3):217-27
    [57]Findling-Kagan S, Sivan H, Ostrovsky O, et al.Establishment and characterization of new cellular lymphoma model expressing transgenic human MDR1[J].Leuk Res.2005, 9(4):407-14
    [58]Tang H, Liang P, Li RP.Establishment of a 5-DFUR-resistant human hepatocellular carcinoma cell model and preliminary study of the mechanisms of the drug resistance [J].Nan Fang Yi Ke Da Xue Xue Bao.2008, 28(11): 2006-8
    [59]Maeno Y, Nakazawa S, Yamamoto N, et al.Osteopontin participates in Thl-mediated host resistance against nonlethal malaria parasite Plasmodium chabaudi chabaudi infection in mice[J].Infect Immun.2006, 74(4):2423-27
    [60]Tada Y, Wada M, Kuroiwa K, et al.MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotheraperutic treatment[J].Clin Cancer Res.2000, 6(12) :4618-27
    [61]Mistry P, Stewart AJ, Dangerfield W, et al.In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator,XR9576[J].Cancer Res.2001, 61(2):749-58
    [62]Granzotto M, Drigo I, Candussio L, et al.Rifampicin and verapamil induce the expression of P-glycoprotein in vivo in Ehrlich ascites tumor cells[J].Cancer lett.2004, 205(1): 107-15
    [63]Chen XP, Wang Q, Guan J, et al.Reversing multidrug resistance by RNA interference through the suppression of MDR1 gene in human hepatoma cells[J].World J Gastroenterol, 2006, 12:3332
    [64]Pegram MD, Pietras R, Bajamonde A, et al.Targeted therapy: wave of the future[J].J Clin Oncol.2005, 23:1776-81
    [65]Vincent P, Zhang X, Chen C, et al.Preclinical chemotherapy with the Raf kinase inhibitor BAY 43-9006 in combination with gefetinib, vinorelbine, gemcitabine or doxorubicin.Proc Am Assoc Cancer Res[J].44:264
    [66]Vincent P, Bernando V, Chen C, et al.Chemotherapy with BAY 43-9006 in combination with Irinotecan or administered as repeated cycles of therapy against the DLD-1 human tumor xenograft[J].Clin Cancer Res.2003,44:4469
    [67]Flaherty KT, Brose M, Schuchter LM, et al.Sorafenib combined with carboplatin and paclitaxel for metastatic melanoma: PFS and response versus B-Raf status[J].Ann Oncol.2006, 17:33
    [68]McDermott DF, Sosman JA, Hodi FS, et al.Randomized phase Ⅱ study of dacarazine with or without sorafenib in patients with advanced melanoma[J].Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part Ⅰ .vol 25, NO.18s, 2007:8511
    [69]Flaherty KT, Brose M, Schuchter L, et al.Phase Ⅰ /Ⅱ Trial of demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma[C].J Clin Oncol.2004, 23:7507
    [70]Amaravadi RK, Schuchter LM, Kramer A, et al.Preliminary results of a randomized phase [I study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma[C].J ClinOncol.2006, 24(18s):8009
    [71]Schiler JH, Flaherty KT, Redlinger M, et al.Sorafenib combined with carboplatin / pacitaxel for advanced non-small cell lung cancer A phase I subset analysis[C].J Clin Oncol.2006, 24(18s):7194
    [72]Welch S, Hirte H, Schilder RJ, et al.Phase Ⅱ study of sorafenib (BAY 43-9006) in combination with gemcitabine in recurrent epithelial ovarian cancer APMH phase Ⅱ consortium trial[C].J Clin Oncol.2006, 24(18s):5084
    [73]Siu LL, Awada A, Takimoto CH, et al.Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer[J|.Clin Cancer Res.2006, 12(1): 144-51
    [74]Richly H, Henning BF, Kupsch P, et al.Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors[J].Ann Oncol, 2006, 17(5):866-73
    [75]Abou-Alfa G, Johnson P, Knox J, et al.Preliminary results from a Phase Ⅱ, randomized, double-blind study of sorafenib plus doxorubicin versus placebo plus doxorubicin in patients with advanced hepatocellular carcinoma[J].J European Journal of Cancer.2007, 5(Suppl):3500
    [76]Qin LL, Liao WJ, Mei MH.The anti-cancer drug sensitivity of liver cancer with MTT colormetric assay [J].Acta Medicinae Sinica.2007, 20(1):39-40
    [77]Mueller H, Kassack MU, Wiese M.Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines[J].J Biomol Screen.2004, 9(6):506-15
    [78]Ugurel S, Schadendorf D, Pfohler C, et al.In vitro sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma: a multicenter phase Ⅱ trial of the Dermatologic Cooperative Oncology Group[J].Clin Cancer Res.2006, 12(18):5454-63
    [79]Oselin K, GerloffT, Mrozikiewicz PM, et al.MDRl polymorphisms G2677T in exon 21 and C3435T in exon 26 fail to affect rhodamine 123 efflux in peripheral blood lymphocytes[J].Fundam Clin Pharmacol.2003, 17(4):463-9
    [80]Liu L, Cao Y, Chen C, et al.Sorafenib blocks the RAF/MEK/ERK pathway,inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular cacinoma model PLC/PRF/5[J].Cancer Res.2006, 66:11851-58
    [81]Sparreboom A, Marsh S, Mathijssen RH, et al.Pharmacogenetics of tipifarnib (Rl 15777) transport and metabolism in cancer patients[J].Invest New Drugs, 2004, 22(3):285-9
    [82]Ramachandran C, Wellham LL.Effect of MDRl phosphorothioate antisense oligodeoxynucleotides in multidrugresistant human tumor cell lines and xenografts[J].Anticancer Res.2003, 23:2681-90
    [83]Nagata J, Kijima H, Hatanaka H, et al.Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated protein and multidrug resistance 1 gene[J].Int Oncol, 2002, 21:1021-6
    [84]Li WH, Cui Y, Zhu JR.Methylated oligonucleotide inhibitng expression of human MRP2 and reversing multidrug resistance in hepatocellular carcinoma cell HepG2[J].Chinese Journal of Cancer.2004, 23(8):900-4
    [85]He L, Liu GQ.Interaction of multidrug resistance reversal agents with P-glycoprotein ATPase activity on blood-brain barrier[J].Acta Pharmacol Sin.2002, 23(5):423-9
    [86]Cole SP, Bhardwaj G, Gerlach JH, et al.Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line[J].Science.1992, 258 (5088): 1650-54
    [87]Livak KJ, Scmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Delta CT Method[J].Methods.2001,25(4):402-408
    [88]Bextine B, Child B.Xyllella fastidiosa genotype differentiation by SYBR Green-based QRT-PCR[J].FEMS Microbiol Lett.2007, 276(1):48-54
    [89]Galindo J, Jones N, Powell GL, et al.Advanced qRT-PCR technology allows detection of the cholecystokinin 1 receptor (CCK1R) expression in human pancreas[J].Pancreas.2005, 31(4):325-31
    [90]Gillet JP, Efferth T, Steinbach D, et al.Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes[J].Cancer Res.2004, 64(24):8987-93
    [91]Brock I, Hiptner DR, Nielsen BS, et al.Sequential coexpression of the multidrug resistance gene MRP and MDR1 and their products in VP-16(etoposide) - selected H6g small lung cancer cells.Cancer Res.1995, 55:459-62
    [92]Kisucka J, Barancik M, Bohacova V, et al.Reversal effect of specific inhibitors of extracellular-signal regulated protein kinase pathway on P-glycoprotein mediated vincristine resistance of L1210 cells[J].Gen Physiol Biophys.2001,20(4):439-44
    [93]Chen B, Jin F, Lu P, et al.Effect of mitogen-activated protein kinase signal transduction pathway on multidrug resistance induced by vincristine in gastric cancer cell line MGC803[J].World J Gastroenterol.2004, 10(6):795-9
    [94]Sinicrope FA, Gill S.Role of cyclooxygenase-2 in colorectal cancer[J].Cancer etastasis Rev.2004, 23(l-2):63-75
    [95]Sun Y, Sinicrope FA.Selective inhibitors of MEK1/ERK44/42 and p38 mitogen-activated protein kinases potentiate apoptosis induction by sulindac sulfide in human colon carcinoma cells[J].Mol Cancer Ther.2005, 4(1):51-9
    [96]Weldon CB, Scandurro AB, Rolfe KW, et al.Identification of mitogen-activated protein kinase kinase as a chemoresistant pathway in MCF-7 cells by using gene expression microarray[J].Surgery.2002, 132(2):293-301
    [97]Hsu YL, Kuo PL.Lin LT, et al.Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells[J].J Pharmacol Exp Ther.2005, 313(1):333-44
    [98]Kiyokawa E, Takai S, Tanaka M, et al.Overespression of ERK, an EPH family receptor protein tyrosine kinase, in various human tumors[J].Cancer Res.1994,54:3645-50
    [99]Kim SC, Hahn JS, Min YH, et al.Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase PAC1 [J].Blood.1999, 93:3893-9
    [100]Fan Y, Chen H, Qiao B, et al.Opposing effects of ERK and p38 MAP kinases on Hela cell apoptosis induced by dipyrithione[J].Mol Cells.2007, 23(1):30-8
    [101]Sebolt-Leopold JS, Dudeley DT, Herrera R, et al.Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo[J].Nat Med.1999, 5(7):736-7
    [102]Neuwirt H, Muller H, Cavarretta IT, et al.Akacid-medical-formulation, a novel biocidal oligoguanidine with antitumor activity reduces S-phase in prostate cancer cell lines through the Erk 1/2 mitogen-activated protein kinase pathway.Int J Oncol.2006, 29(2):503-12
    [103]Shukla S, Gupta S.Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma depliosphorylation in human prostate cancer cells.Cell Cycle.2007, 6(9): 1102-14
    [104]Peng J, Mao XO.Stevenson FF, et al.The herbicide paraquat induces dopaminergic nigral apoptosis through sustanined activation of the JNK pathway[J].J Biol C'hem.2004, 279(31):32626-32
    [105]Zhang R, He X, Liu W, et al.AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3[J].J Clin Ivest.2003,111:1933-43
    [106]Kutuk O, Poli G, Basaga H.Resveratrol protects against 4- hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling[J].Toxicol Sci.2006, 90(1): 120-32
    [107]Chang L, Kamata H, Solinas G, et al.The E3 ubiquitin ligase itch couples JNK activation to TNF-a-induced cell death by inducing c-FLIP (L) turn over[J].Cell.2006,124:601-13
    [108]Ventura JJ, Hubner A, Zhang C, et al.Chemical genetic analysis of the time course of signal transduction by JNK[J].Mol Cell.2006,21:701-710
    [109]Mansouri A, Ridgway LD, Korapati AL.et al.Sustanned activation or JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinora cells[J].J Biol Chem.2003, 278(21):19245-56
    [110]Cripe LD, Gelfanov VM, Smith EA, et al.Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML) :signaling to multidrug-efflux and hyperprolife ration [J].Leukemia.2002, 16(5):799-812
    [111]Wada T, Penninger JM.Mitogen-activated protein kinases in apoptosis regulation.Oncogene.2004, 23(16):2838-49
    [112]Dent P, Yacoub A, Fisher PB, et al.MAPK pathways in radiation responses [J].Oncogene.2003, 22(37):5885-96
    [113]Satyan KS, Swamy N, Dizon DS, et al.Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation[J].Gyneco Oncol.2006,103(1):261-270
    [114]Shi CJ, Fu LW.Advances in the study of expression and regulation of P-glycoprotein[J].Acta Pharm aceutica Sinica.2007, 42(9):911-6
    [115]Kohno M, Pouyssegur J.Pharmacological inhibitors of the ERK signaling pathway : application as anticancer drugs[J].Prog Cell Cycle Res.2003, 5:219-24
    [1]Perea-Tomas R.Multidrug resistance:retrospect and prospects in anti-cancer drug treatment[J].Curr Med Chem,2006,13:1859
    [2]Bergman AM,Pinedo HM,Talianidis 1,et al.Increased sensitivity to gemcitabine of P-glycoprotein and multi-drug resistance-associated protein-overexpressing human cancer cell lines[J].Br J Cancer,2003,88(12):1963
    [3]Chen XP,Wang Q,Guan J,et al.Reversing multidrug resistance by RNA interference through the suppression of MDR1 gene in human hepatoma cells[J].World J Gastroentcrol,2006,12:3332
    [4]Yang F,Chen Y,Duan W,et al.SH-7,a new synthesized shikonin derivative,exerting its potent antitumor activities as a topoisomerase inhibitor[J].Int J Cancer,2006,119:1184
    [5]Johnson GL,Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK,JNK,and p38 protein kinases[J].Science,2002,298:1911
    [6]Fujita T,Washio K,Takabatake D,et al.Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated mutidrug resistance[J].Int J Cancer,2005,117:670
    [7]Wada T,Penninger JM.Mitogen-activated protein kinases in apoptpsis regulation[J].Oncogene,2004,23(16):2838-2849
    [8]沈松杰,郭俊超,廖泉.MAPK信号转导通路在肿瘤化疗耐药中的作用[J].国外医学肿瘤学分册,2005,32(8):579-582
    [9]Kohno M,Pouyssegur J.Targeting the ERK signaling pathway in cancer therapy[J].Ann Med,2006,38:200
    [10]熊茂明,区庆嘉,孟翔凌,等.环孢霉素A逆转肝癌多药耐药的实验研究[J].中华实验外科杂志,2004,21(5):544-546
    [11]Liu X,Wang X,Wei D,et al.Internalization of antibody-targeted immunonanoparticles into human hepatoma cells and its reversal effect on MDR[J].Sichuan Da Xue Bao Yi Xue Ban,2003,34:431
    [12]Luc Barraud,Philippe Merle,Emilienne Soma,et al.Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo[J].Journal of Hepatology,2005,42(5):736-743
    [13]陈永兵,刘立新,严律南.逆转肝癌MDR的研究[J].中华肝胆外科杂志,2005,11(5):356-358
    [14]Hannon GJ.RNA interference[J].Nature,2002,418(6894):244
    [15]胡礼仪,张有顺,周新,等.MDR1短发夹RNA表达质粒的构建及其功能的初步研究[J].肿瘤,2004,24(6):542-525
    [16]Wu H,Hait WN,Yang JM.Small interfering RNA-induced suppression of MDR1 P-glycoprotein restores sensitivity to multidrug-resistant cancer cells.Cancer Res,2003,63(7):1515-1519
    [17]Li B,Ye T,Zhao L,et al.Effects of multidrug resistance,antisense RNA on the chemosensitivity of hepatocellular carcinoma cells[J].Hepatobiliary Pancreat Dis Int,2006,5:552
    [18]罗华友,杨家印,刘自明,等.多药耐药基因反义寡核苷酸逆转肝癌细胞耐药的研究[J].中华肝脏病杂志,2004,12(2):85-87
    [19]刘景丰,陈孝平.反义寡脱氧核苷酸逆转人肝癌多药耐药性的实验研究[J].中华外科杂志,2001,39(2):147-150
    [20]李文欢,崔屹,朱菊人.甲基化寡核苷酸抑制MRP_2表达逆转人肝癌细胞HepG2多药耐药的研究[J].癌症,2004,23(8):900-904
    [21]Wang H,Chen XP,Qiu FZ.Overcoming multi-drug resistance by anti-MDR1ribozyme[J].World J Gastroenterol,2003,9(7):1444-1449
    [22]Huesker M,Folmer Y,Schneider M,et al.Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes [J].Hepatology,2002,36(4):874-884
    [23]王海,陈孝平,裘法祖.核酶对人肝癌细胞多药耐药性的逆转[J].中华外科杂志,2004,42(7):424-427
    [24]丁磊,陈孝平,张志伟.人肿瘤坏死因子α逆转原发性肝癌耐药性体内外实验研究[J].中华肿瘤防治杂志,2006,13(4):257-262
    [25]Kigawa J,Sato S,Shimada M,et al.p53 gene status and chemosensitivity in ovarian cancer[J].Hum Cell,2001,14(3):165-171
    [26]司维柯,李鹏,姚婕.苦参碱对HepG2细胞代谢水平和基因水平的影响[J].第三军医大学学报,2002,24(11):1346-1349
    [27]Florio T,Morini M,Villa V,et al.Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities[J].Endocrinology,2003,144(4):1574
    [28]李文欢,崔屹,乔惠梅,等.奥曲肽逆转肝癌细胞多药耐药机制的初步研[J].山东大学学报(医学版),2004,42(3):290-293
    [29]Boumendjel A,Baubchon-cortay D.Anticancer multidrug resistance mediated by MRP1:recent advances in the discovery of reversal agents[J].Med Res Rev,2005,25(4):453-472
    [30]Chi-Keung Wana,Guo-Yuan Zhu,Xiao-Ling Shen,et al.Gomisin A alters substrate interaction and reverses P-glycoprotein-mediated multidrug resistance in HepG2-DR cells[J].Biochemical Pharmacology,2006,72(7):824-837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700