用户名: 密码: 验证码:
西南岩溶区土壤养分保持能力和土壤退化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶生态系统是一种脆弱的生态系统,具有环境因子的利弊兼容性、生境的多样性和严酷性、水分亏缺的异质性和派生性、环境的脆弱性和改造的艰难性。因此岩溶区土壤退化和土壤的养分保持能力研究是一项非常重要和有意义的工作。
     本文系统分析了岩溶区不同石漠化程度下土壤的指纹电荷特征,及其所表征的土壤养分保持能力和土壤退化程度:选择三个岩溶区域进行对比,探讨岩溶区土壤在自然生态恢复、人为生态重建、人类无规划利用等方式下的养分保持能力,得出人为生态重建能有效恢复岩溶区土壤的养分保持能力;同时通过对人为生态重建区一年前后的土壤进行分析,提出运用土壤指纹电荷方法对某一研究区域的土壤养分保持能力进行研究,制作图谱,后期研究则只需取少量土壤测定pH值后查询前期土壤指纹电荷图谱即可得出某时段内土壤养分保持能力的变化趋势;最后对南平镇石庆村西南坡退耕樟树林坡地不同坡位处土壤的营养元素进行分析,进一步验证了岩溶区坡地土壤流失的双重性,即不仅存在地表流失,而且还有地下漏失。
     土壤pH值是土壤重要的基本性质之一,对土壤的理化性质、微生物活动以及植物生长发育都有很大的影响,因此在一定区域,根据土壤pH值的变异可以评估土壤的养分保持能力。土壤指纹电荷特征是通过土壤pH值获得的一系列特征值,由于任何区域、类型土壤所含可变电荷特征都不一样,如同人类指纹般具有唯一的特征性,因而被称为指纹电荷。它能表征岩溶区土壤退化中的养分保持能力,且与非岩溶区土壤对比,土壤指纹电荷特征对岩溶区土壤的养分保持能力和土壤退化能力有更明显的指示作用:
     通过对缙云山非岩溶区与南平岩溶区旱地、撂荒地的土壤指纹电荷特征进行对比分析,得出无论是旱地还是撂荒草地,非岩溶区土壤实际pH值所对应的指纹电荷都处于中等水平,这说明在非岩溶区,旱地由于一定量的施肥使土壤养分保持能力处于中等水平,撂荒草地由于少有人类活动干扰,土壤养分保持能力也处于中等水平。但岩溶区撂荒草地土壤B层实测pH值所对应的指纹电荷处于低值,表明岩溶区土壤退化后恢复较慢,指纹电荷特征更能表征岩溶区土壤的养分保持能力。
     岩溶区土壤剖面中,碱性界面处与远离基岩处土壤pH值变异较大,因此,岩溶区土壤样品的采集不同于非岩溶区土壤样品的常规采集,应具有岩溶的特殊性:
     本研究在岩溶区这一特定地域,通过对碱性界面处与远离基岩处土壤pH值进行变异分析,发现在同一土壤剖面中,土壤pH值变异系数竟然>2%,由此可见岩溶区碱性基岩对界面附近土壤pH值的影响较大。尤其在碱性基岩面上20cm范围内,土壤pH值变化最大,如在退耕樟树林土壤地质剖面中,碱性基岩面上20cm范围内土壤pH值比20cm范围外土壤高出0.14个pH值单位,比土壤表层土壤高出0.24个pH值单位。在马尾松土壤地质剖面中,基岩表面20cm范围内土壤pH值与土壤表层pH值的差值更大,达到0.5个pH值单位,变异系数为5.11%。金银花种植地土壤地质剖面中,碱性基岩表明20cm范围内土壤pH值为7.15,基岩表面20cm~40cm土壤的pH值为7.05,差值为0.1个pH值单位。因此,在对岩溶区域范围内土壤的环境质量、肥力质量、健康质量进行整体性、综合性分析和评价时,其土壤样品的采集应避免碱性基岩界面对土壤理化等一系列性质的影响。而在对岩溶区小范围内土壤的异质性进行分析和评价时,要注意基岩、岩石裂隙对土壤发生、发育的影响。
     在研究方法上,根据岩溶区土壤pH值特征,对土壤指纹电荷的测定进行了参数修正,将pH值梯度范围修正为(8.0、7.2、6.4、5.6、4.8、4.0),使之更适合岩溶区土壤特征:
     土壤pH值与土壤发生密切相关,岩溶区发育于碱性母岩上的土壤,由于Ca~(2+)的大量存在常使土壤呈碱性反应,一般石灰土的pH值为中性到微碱性,如安徽省石灰岩风化物发育土壤的pH值在6.15~8.06之间,重庆北碚鸡公山石灰土的pH值在5.98~8.00之间,重庆巫山地区石灰土pH值在5.68~8.51之间,重庆黔江地区石灰土pH值在5.18~7.69之间,广东阳山黑色石灰土pH值在7.00~8.06之间,重庆金佛山岩溶石灰土pH值在4.25~6.95之间。因此,在对研究区岩溶土壤样品进行分析时,对pH值的上限做了扩展,pH值设定区域为4.0~8.0,具体的梯度值分别为(8.0、7.2、6.4、5.6、4.8、4.0)。
     得出不同石漠化程度下土壤指纹电荷特征,把金佛山土壤样品根据分析划分为无石漠化阶段、轻度石漠化阶段、中度石漠化、强度石漠化阶段,并对不同石漠化程度下土壤样品进行土壤指纹电荷特征和土壤有机质及其组分关系分析,得出在不同石漠化程度下,土壤指纹电荷有明显变化,且呈衔接式——阶梯状发展,即:在无石漠化的山顶,土壤A、B层土壤保持养分能力最强的pH值范围与土壤实测pH值较为吻合;轻度石漠化条件下,土壤B层养分保持能力与无石漠化的土壤A层较为一致,土壤A层养分保持能力受到明显扰动;中、强度石漠化条件下,土壤A、B保持养分能力的相对平衡点的pH值明显偏酸,这在A层表现尤为明显,主要是人为施肥的结果。土壤有机质对土壤指纹电荷即土壤保持能力有重要作用,其中富里酸的正相关作用较大,而胡敏酸的负相关作用较大。
     通过区域对比分析,得出三种生态恢复与重建模式下土壤的养分保持能力,并通过土壤指纹电荷特征予以验证:选择重庆北碚鸡公山槽上,重庆南川区南平镇,重庆南川区东胜镇分别作为三种生态恢复与重建模式(自然生态恢复、人为生态重建、人类无规划利用区)的研究区作对比分析,从土壤结构退化、土壤水分退化、土壤微生物退化、土壤养分退化四个方面得出鸡公山自然生态恢复区基本无退化;南平镇人为生态恢复区主要处于轻度退化阶段;而东胜镇人类无规划利用区则处于退化中度阶段。这与基于土壤指纹电荷特征得到的三区域土壤退化趋势是相一致的。
     通过时间对比分析,得出不同土壤利用方式下土壤养分保持能力和土壤退化的变化趋势,提出运用土壤指纹电荷方法对某一研究区域的土壤养分保持能力进行研究,可以减少研究区土壤的破坏程度,只要前期充分展开相关指纹电荷工作研究,制作图谱,后期研究则只需取少量土壤测定土壤pH值后查询前期土壤指纹电荷图谱即可得出某时段内土壤养分保持能力的变化趋势:
     通过对重庆南平镇石庆村人为生态恢复区不同土壤利用方式下前后一年土壤样品的分析,得出退耕后撂荒草地土壤的各项养分保持指标含量增长最快,对恢复土壤退化程度最为有利,其次是杉树林和樟树林;而从人为生态恢复的各种利用方式来看,花椒林土壤的养分保持能力最好,土壤退化恢复的程度最快,其次是金银花和桃林。结合岩溶区的环境效益、生态效益和社会经济效益,岩溶贫困山区栽种花椒、金银花的措施,能够在短时期内有效改善土壤养分保持能力,有利于土壤的稳定培肥,同时有效改善石漠化状况,阻止水土流失。
     通过对南平镇石庆村西南坡退耕樟树林坡地采样分析,以坡地土壤中营养元素为媒介,对岩溶区坡体的地表流失和地下漏失有了更深一步的了解:
     从Ca、Mg、Cu、zn、Mn、Mo、Si、Fe八个营养元素在岩溶区坡体中的含量分析得出,从坡顶到坡底都有不同程度的流失过程,然而在坡底却没有明显的堆积过程,这说明岩溶区坡体中由于地上和地下的双层结构,使坡体土壤的流失形式异于其他红黄壤区,不仅存在着地表土壤流失,还有地下岩溶裂缝、落水洞的土壤漏失,其中Cu、Mn、Zn、Mg、Mo五个营养元素在坡体的坡腰部位开始出现拐点,因而可以看做是地表流失和地下漏失双重作用的结果,Fe、Ca、Si则是在坡麓处就出现转折点,地表土壤流失与地下土壤漏失在此处得到明显表现。
The ecosystem of karst is vulnerable.She is of compatibility of advantages and disadvantages of environmental factors,diversity and rigor of habitat,inhomogeneity and accompanying attributes of water's deficit,vulnerability of environment and hard to improve.So,it would be an important and significative work to study soil degradation and capability of nutrient's holding in karst area.
     This paper analyzed characteristics of the soil fingerprint charge and soil nutrient retention capacity in different karst rocky desertification;and chose three karst regions(that is natural ecologic rehabilitation region,man-made ecologic rehabilitation region and region had not project) to compare soil nutrient retention capacity;at the same time,analyzed soil physical and chemical properties which sampled in man-made ecologic rehabilitation region one year later,put forward that if we work out atlases of soil fingerprint charge in prior period,we can query soil nutrient retention capacity just through soil pH;finally,this paper sampled soil in a camphor slope,through analyzed on soil nutritive elements,like that Ca,Mg,Cu,Zn,Mn,Mo,Si,Fe,we had a deeper understanding with soil ground erosion and underground soil leaks.
     pH is the main soil variable,and it also is the main impact factor to symbol and quantity of soil varying charge.At the same time,pH is a crucial property of soil,and soil physical and chemical properties,activity of microbe,growth of plants would be change when pH varied.So,we can evaluate soil capability of nutrient's holding.
     Soil fingerprint Charge(SFC) is a method to measure charge characteristics of soil surface which is determined by ion strength of soil.i.e.measure maximum capability of keeping ion in different pH and ion concentration.SFC has its special characters in different area,or soil types,like as people's fingerprint,so we called it soil fingerprint charge.Compared to non-karst area,SFC was more efficiency in illustrated soil capability of nutrient's holding:
     We had many dates about SFC in different land use in karst area and non-karst area, like that dry land,wasteland,and woodland.And found that in all of land use in both area,the SFC which corresponded by its intrinsic pH was in moderate standard.The reason was fertilization in dry land.In wasteland,compared with non-karst area,B soil layer had a low SFC corresponded by its intrinsic pH,and indicated in karst area,after soil degradation,the speed of soil renew was slowly.To sum up,SFC was more efficiency in illustrated soil capability of nutrient' s holding.
     In karst area,it was different to obtain soil samples between karst area and non-karst area.In karst area,because of the influences from the alkali rocks,we must avoid when sampling:
     We analyzed coefficient of variation(CV) of soil pH where soil was in round of or away from alkali rocks.It was indicated that in a one soil vertical section,the CV of pH was greater than 2%,and alkali rocks had big influence to soil pH,especially in 20 centimeters to alkali rocks.For example,in soil geologic section of camphor woods, surface soil pH of alkali rocks was higher about 0.14 pH units to 20 centimeters offscale of alkali rocks,and compared to topsoil,was higher about 0.24 pH units.In pinus massoniana soil vertical section,there were more differences,like that o.5 pH units,and the CV was 5.11%.In honeysuckle soil vertical section,soil pH of in 20 centimeters of alkali rocks was 7.15,and 7.05 in 20 to 40 centimeters,so there were a difference about 0.1 pH units.
     Due to the method of SFC mainly applied to non-karst area,and had different characters about pH to karst area,so we must modify the pH grads.Analyzed by dates, and founded that:In China karst area,soil pH mainly focused between 5.0 and 8.0.So, we amended soil pH grads to(8.0,7.2,6.4,5.6,4.8,and 4.0),the reasons as follows:
     Soil pH and soil growth were on speaking terms.In karst area,due to abound of Ca~(2+),and soil pH show to neutral or tiny alkalescence,like that:in Anhui karst area,the pH was 6.15 to 8.06;in Chongqing,in Beibei Jigong Mountain,the pH was 5.98 to 8.00; in Wushan,the pH was 5.68 to 8.51;in Qianjiang,was 5.18 to 7.69;in Jifo mountain, was 4.25 to 6.95;in Yangshang in Guangdong,the pH was between 7.0 and 8.06,and so on.So,I expanded the upper limit of soil pH.
     In Jinfo Mountain,according to soil features,the soil section can be divided into no karste rocky desertification,week karst rocky desertification,middle karst rocky desertification,and strong karst rocky desertification.It was found that under different degree of karst rocky desertification(KRD),it shows clear change about SFC,i.e., under no KRD,the range of soil pH,which keeps nutrient,is consistent with real pH. Under week KRD,the capacity of keeping nutrient in layer B is similar to layer A under no KRD,and the capacity of layer A was disturbed.Under middle and strong KRD,pH of layers A and B is decreased to be acid,which is possibly due to fertilization by land use.The fulvic acid contained more active functions groups compared with humic acid, and therefore had more positive correlation on SFC,and humic acid had more negative correlation.So,it is significant which used SFC to evaluate soil capability of nutrient's holding and forecast soil degradation.
     This paper analyzed soil fingerprint charge and the degradation of soil structure, moisture,micro-carbon and fertility,then obtained conclusions in three different research areas,that is Jigong Mountain—natural ecologic rehabilitation 15 years region, Nanping Town -- ecologic rehabilitation by changing land-use region 1 year ago, Dongsheng Town - region had not project.Finally,we can find that:there were no soil degradation in Jigong Mountain;Nanping Town had light soil degradation,and the optimal land-use was vivacious Huajiao Forest.And after period of time by ecologic rehabilitation,soil quality may improve;and Dongsheng Town had medium soil degradation,if it was still in no rule in land-use,all of indexes wound become serious. Base on soil fingerprint charge,the ranking of soil degradation in three areas was: Dongsheng Town>Nan ping Town>Jigong Mountain and it held on the line with conclusion one.
     Exampled on Shiqing village in Nan ping town,relative analyzed soil physical and chemical properties in one year in different land use,then,draw a conclusion:after restoring the reclaimed land,uncultivated wild grassland had an advantage over fir or camphor woods,and in favor of improve soil degradation,because there were a relatively rapid growth of nutrient.In man-made ecological restoration,prickly ash peel woods was the best land use,and had a good capability to hold nutrient.Secondly was honeysuckle and peach tree wood.So,in poor karst area,in order to link environmental benefits,eco-efficiency and social and economic efficiency,it were best measures to plant prickly ash peel or honeysuckle.It can improve capability of holding nutrient in short phase.,also it were beneficial to soil fertility,and hold back soil erosion.
     Sampled soil in a camphor slope,through analyzed on soil nutritive elements,like that Ca,Mg,Cu,Zn,Mn,Mo,Si,Fe,we had a deeper understanding with soil ground erosion and underground soil leaks.It indicated that:from peak to bottom of slope,there was a varying degrees process about soil erosion.But it was strange that in the bottom of slope,there were not deposit obviously in ground,so it must be existed underground soil leaks.This was different to other red or yellow soil area,because of double deck structure(ground and underground:like as cracks,sinkholes,and so on) in karst area.
     In studied area,the content of Mg,Cu,Zn,Mn and Mo changed at middle slope, turned up to inflection point,so,we can think that from middle to bottom of slope,there was a function about ground soil erosion and underground soil leaks.And the content of Si,Fe and Ca had an inflection point in foot slope.
引文
Aber,JD,Jorddan W.Restoration ecology:An environmental middle ground[J].Bioscience,1985,35(7):399.
    Beckwith P R,Ellis J B,Revitt D M etal.Indentification of pollution sources in urban drainage system using magnetic methods[A].Proceedings of Gothenberg symposium in urban drainage[C].Gothenberg.1986:1313~1321.
    Baldock J A,J O Skjemstad.Soil organic carbon/ soil organic matter[M].Soil Analysis:an Interpretation Manual.(Eds K.I.PeverilLL.A.Sparrow,and D.J.Reuter.).Collingwood:CSIRO Publishing,1999:35~40.
    Chen Y,T Aviad.“Effects of humic substances in plant growth,“in P.Mac—Carthy,C.E.Clapp,R.L.Malcolm,and P.R.Bloom(eds.),Humic Substances in Soil and Crop Sciences:Selected Readings[M].(Madison,Wis.:ASA Special Publications) 1990.
    Christensen BT.Physical fractionation of soil and organic matter in primary particle size and density separates[J].AdvSoilSci,1992,20:2~90.
    Centre for Development and Environment and Geographical Bernensia.Precious Earth From Soil and Water Conservation to Sustainable Land Management[R],1996,ISCO.
    Chen F H,Bloemendal J,Wang J M,el al.High resolution multiproxy climate records from Chinese loess:evidence for rapid climatic changes over the last 75ykr[M].Palaeoclimatology,Palaeoecology,1997,130:325~335.
    C Anecksamphant,C Charoenchamratcheep,T Vearasilp,et al.Conference Report of 2~(nd ) International Conference on Land Degradation [R].Bangkok:DLD,1999:15~33.
    Dixit V K,N Kishore.Efeitos dos dcidos humicos e fulvicos nafracao da materia organica do solo e nagerminacaodesemente[J].Indian J.sci Ind.,Sec.A 1967.
    Darusman,Stone,L.R.,Whitney,K.A.,Soil properties after twenty years of fertilization with different nitrogen sources[J].Soil Science Society of America Journal,1991,55(4):1097~1100.
    Doss DS,Bartlett RJ.Charge Fingerprint of Forest Organic Horizons from North eastern USA[J].Aust.J.Soil Res.,1997,35:553~564.
    Doran J W,M Safley.Defining and assessing soil health and sustainable productivity [M].Biological Indicators of Soil Heath.(Eds C.E.Pankhurst,B.M.Doube,and V.V.S.R.Gupta.).New York:CAB International,1997:22~31.
    Ford D C,Paul Williams.Karst geomorphology andhydrology[M].Unwin Hyman LTD,1989: 15~22.
    Fortin M,Drapean P,Legendre P.Spatial autocorrelation and sampling design in plant cology[J].Vegetation,1989,83:209~222.
    Finlayson F,Sauro U.International co-operation in research on Karst environments [J].In:Sauro U,Bondesan A.Meneghel M (eds.).Proceedings of the International Conference on Environmental Changes in Karst Areas.Italy,Universita di Padova,1991.
    Gillman G P,Using Variable Charge Characteristic to Understand the Exchangeable Cation Status of OxicSoils[J].Aust.J.Soil Res.,1984,22:71~80.
    Gillman G P,Sunpter E A.Surface Change Characteristic and Lime Requirements of Soils Derived from Basaltic Granitic ,and Metamorphic Rock in High rainfall Tropical Queenland[J].Aust.J.Soil Res.,1986,24:173~192.
    GLASOD.Global assessment of soil degradation [Z].World maps.Wageningen (Netherlands):ISRIC and PUNE,1990:24~26.
    Hunt A .The application of mineral magnetic methods to atmospheric aerosol discrimination[J].Physics of the Earth and Planetary Interiors,1986,42:10~21.
    Julie EK,Nancy CJ,Covington WW.Slash pile burning effects on soil biotic and chemical properties and plant establishment:Recommendations for amelioration [J].Restoration Ecology,2004,12(1):52~62.
    JI H B,WANG S J,OUYANG Z Y,et al.Geochemistry of red residua underlying dolomites in karst terrains of Yunnan——Guizhou Plateau Ⅱ.The mobility of rare earth elements during weathering [J].Chemical Geology,2004,203:29~50.
    Jiang Y,Yuan D,Zhang C,et al.Impact of land-use change on soil properties in a typical karst agricultural region of Southwest Chinara case study of Xiaojiang watershed ,Yunnan[J].Environmental Geology,2006,50(6):911~918.
    Kononova MM .Soil organic matter ,its nature ,its role in soil formation and in fertility[J].2~(nd)ed.London:Pergamon Press.1964:5~20.
    Kukla G J.Loess stratigraphy in center China[J].Quaternary Science Review,1987,6:191~219.
    Kukla G ,Heller F,Liu X M,el al.Pleistocene climate in China dated by magnetic susceptibility.Geology,1988,16:811~814.
    Lal,S.,Mathur,B.S,Effect of long term application of manure and fertilizers on the DTP A extractable micronutrients in acid soil[J].Journal Indian Society Soil Science,1989,37:588~590.
    Lu J-L,Zhou Y—C,Zhou Y—X.Environmental geochemical characteristics of some microelements in the black soil of Jilin Province[J].Chinese Journal of Soil Science,2002, 33(5):365-368.
    Mullins C E.Magnetic susceptibility of the soil and its significance in soil science-A review[J].J Soil Sci,1977,28:223-246.
    Maher B A.Magnetic properties of some synthetic sub-micron magnetites[J].Geophys R Astron Soc,1988,94:83-96.
    Nicholson R A,Haic.Growth and survival of Japanese brome on limestone soils in western kamsas prairie[J].Naturalist,1993,25(2):185-195.
    Noble AD,Moody P,Liu GD,Ruaysoongnem S,Qi ZP,Berthelsen S.Quantification and Remediation of Soil Chemical Degredation in Tropical Australia,China and Thailand[J].Pedosphere,2003.13(1):31-39.
    Oldeman L R,Engelen,V W P Van,et al.The extent of human induced soil degradation[Z].Annex 5"World Map of the status of human induced soil degradation,An explanatory note."Wageningen,Netherlands:ISRIC.1990:13-15.
    Oldeman L R,Hakkeling R T A,Sombroek W G.World map of the status of human induced soil degradation[Z].An explanatory note,Wageningen,Netherlands:ISRIC and PUNE,1991:12-15.
    Oldeman L R.The global extent of soil degradation[A].In:D J Greenland,I Szabolcs.Soil Resilience and Sustainable Land Use[C].CAB International,Wallingford,UK,1994:99-118.
    Porter S C,An Z S.Correlation between climate events in the North Atlantic and China during the last glaciation.Nature,1999,375:305-308.
    Qi L-H,Zhang X-D,Sun Q-X,et al.Soil vegetation system and its influences on the soil health[J].Forestry Research,2007,20(3):1-8.
    R.Lal and B.A.Steward,Soil Degradation[M],Springer-Verlag,NewYorklnc.1990.
    Rusch G.Spatial pattern of seedling recruitment at two different scales in a limestone grassland[J].Oikes,1992,65(3):433-442.
    Sladky Z.The effect of extracted humus substances on growth of tomato plants:Biol[J].Plant,1959,(1):142-150.
    SchnitzerM.Soil organic matter--the next 75 years[J].SoilSci,1991,(151):41-58.
    Smith RS,Shiel RS,Bardgett RD,et al.Soil microbial community,fertility,vegetation and diversity as targets in the restoration management of a meadow grassland[J].Journal of Applied Ecology,2003,40(1):51-64.
    Thompson R.Magnetic susceptibility of lake sediments[J].Limnology and Oceanograpy,1975,20(5):687-698.
    Thompson R.Environmental applications of magnetic measurements[J].Science,1980,207(4430):481-486.
    TURCOTTE D L.Fractals and Fragmentation[J].Journal of Geo-physical Research,1986,91(B2):1921-1926.
    Tonlmin C.Combating Desertification:setting the Agenda for global convention ILED,1993,42.
    Tao S,Cao J,Li B-G,et al.Distribution pattern of trace elements in soil from Shenzhen area[J].ActaPedologicaSinica,2001,38(2):248-255.
    UNEP.Status of desertification and implementation of the United Nations plan of action to combat desertification[D]1992.
    UNEP,World Map on Status of Human induced Soil degradation[R],Printed by Brown Ruy grok,Harlem,the Netherlands.1990.
    Vadyunina A F,Babanin F.Magnetic susceptibility of some soils in the U.S.S.R[J].Soviet Soil Sci,1972,4:588-599.
    Yu L,Oldfield F,Wu Y,Zhuang Set al.Palaeoenvironmental implications of magnetic measurements on a sediment core from Kunming Basin,southwest China[J].J Paleolimnol,1990,3:95-111.
    Yuan Daoxian.Karst of China[M].Beijing:Geological Publishing House,1991:1-5.
    Yuan Daoxian.Rock desertification in the subtropical karst of South China[J].Z Geomorph,N F,1997,108:81-90.
    Yang Z,Liu Y,Bao G,et al.Rehabilitation and sustainable use pattern of rocky desertified land in Southwest China's poverty stricken karst mountainous areas[J].Journal of Mountain Science,2006,3(3):237-246.
    安芷生,吴锡浩,汪品先,等.最近130ka中国古季风--Ⅰ.古季风记录[J].中国科学,1991,(10):1076-1084.
    曹家欣,李培英,石宁.山东庙岛群岛的黄土[J].中国科学B辑,1987,2(10):1116-1124.
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    陈从喜.我国西南岩溶石山地区地质生态环境与治理[J].中国地质,1999,26(4):11-13.
    陈敏安,万国江.云南洱海沉积物粒度组成及其环境意义辨识[J].矿物学报,1999,19(2):175-182.
    陈佑启,杨鹏.国际上土地利用/土地覆盖变化研究新进展[J].经济地理,2001,21(1):95-100.
    陈志辉,徐旌,张卓亚.文山州石漠化状况及成因分析[J].林业调查规划,2008,33(1):70-73.
    程少敏,林桂凤,张漫龄,等.土壤有机质对土壤肥力的影响与调节[J].辽宁农业科学,2006, (1):13-15.
    蔡运龙.中国西南岩溶石山贫困地区的生态重建[J].地球科学进展,1996,11(6):602-603.
    蔡运龙.中国西南喀斯特山区的生态重建与农林牧业发展、研究现状与趋势[J].资源科学.1999,21(5):37-41.
    丁峰,苏建平,邹忠,等.江苏省如皋市土壤微量元素含量动态变化分析及有效性评价[J].上海农业学报,2005,21(3):88-93.
    董瑞斌,张卫国,卢升高,等.土壤和沉积物的磁参数及其在环境科学中的应用[J].科技通报,2000,11:479-480.
    邓万刚,张甘霖,吴蔚东.海南岛五指山土壤指纹铝与交换性酸关系的研究[J].中国农学通报,2006,22(2):375-376.
    邓万刚,张甘霖,唐树梅,等.海南岛五指山土壤指纹电荷特征及影响因素研究[J].土壤,2006,38(2):171-173.
    葛全胜,何凡能,郑景云,等.21世纪中国历史地理学发展思考[J].地理研究,2004,23(3):374-384.
    龚子同.防治土壤退化是我国农业现代化建设中的重大问题[J].农业现代化研究,1982,2.
    龚子周,等.人为作用对土壤环境质量的影响及对策[M].土壤与环境,2000,9(1):7-10
    顾也萍,冯学钢,巩劼.安徽省石灰岩风化物发育土壤的特性和系统分类[J].土壤学报,1998,35(3):303-312.
    顾志忙,王晓蓉,顾雪元,等.富里酸对小麦植株积累稀土元素的影响[J].环境科学学报,2001,21(3):333-337.
    胡守云.呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J].中国科学D辑,1998,4(28):334-339.
    胡守云,邓成龙,Appel E,等.湖泊沉积物磁学性质的环境意义[J].科学通报,2001,46(17):1491-1494.
    黄冠华,詹卫华.土壤颗粒的分形特征及应用[J].土壤学报,2002,39(4):490-497.
    韩行瑞,等.岩溶单元流域综合开发与治理[M].南宁:广西师大出版社,1997.18.
    何腾兵.贵州喀斯特山区水土流失状况及农业建设途径[J].水土保持学报,2000,14(8):28-34.
    何毓蓉.我国南方山区土壤退化及其防治[J].山地研究,1996,14(2):111-114.
    何毓蓉,张丹,等.金沙江干热河谷区云南土壤退化过程研究[J].土壤侵蚀与水土保持学报,1999,4:1-3.
    何子平,蒋忠诚,吕维莉,等.岩溶动力系统对典型石灰岩土肥力特征的影响[J].中国岩溶,2001,20(3):231-235.
    洪业汤.岩溶(喀斯特)环境与西部开发[J].第四纪研究,2000,20(6):532-536.
    红黄壤地区农业持续发展战略研究专题协作组.红黄壤地区农业持续发展研究(第一集)[C].北京:中国农业科技出版社,1993:8-12.
    姜月华,殷鸿福,王润华.环境磁学理论、方法和研究进展[J].地球学报,2004,25(3):358
    蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移[J].中国岩溶,1997,16(4):304-312.
    蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999,54(5):438-444.
    蒋忠诚,袁道先.西南岩溶区的石漠化及其综合治理综述[C].中国地质调查局.中国岩溶地下水与石漠化究.南宁:广西科学技术出版社,2003:13-19.
    金翔龙,郑开云.庙岛群岛地质的初步观察[J].海洋与湖沼,1964,6(4):364-370.
    李秉成,孙建中.黄土高原晚更新世的植被与气候环境[J].地理研究,2004,23(5):641-648.
    李大通.中国可溶岩类型图说明书[M].北京:地图出版社,1985:14-17.
    李德文,崔之久,刘耕年,等.岩溶风化壳形成演化及其循环意义[J].中国岩溶,2001,20(3):184-188.
    李培英.庙岛群岛的晚新生界与环境变迁[J].海洋地质与第四纪地质,1987,7(4):111-122.
    李培英,程振波,吕厚远,等.辽东海岸带黄土[J].地质学报,1992,66(1):82-94.
    李吉均,朱俊杰,康建成,等.末次冰期旋回兰州黄土剖面与南极东方站冰岩芯的对比.中国科学(B)辑[J],1990,10:1086-1094.
    李森,董玉祥,王金华.土地石漠化概念与分级问题再探讨[J].中国岩溶,2007,26(4):279-282.
    李天杰,郑应顺,王云.土壤地理学[M].高等教育出版社,1983:16-21.
    李映强.有机物质与土壤结构[J].热带亚热带土壤科学,1997,6(1):45-50.
    李阳兵.重庆岩溶山地生态问题的初步探讨[J].西南农业大学学报,2001,(18).
    李阳兵,侯建筠,谢德体.中国西南岩溶生态研究进展[J].地理科学,2002,22(3):366-367.
    李阳兵,谢德体,魏朝富.岩溶生态系统土壤及表生植被某些特性变异与石漠化的相关性[J].土壤学报,2004,41(2):196-202.
    李阳兵,王世杰,容丽.关于喀斯特石漠和石漠化的讨论[J].中国沙漠,2004,24(6):689-695.
    李阳兵,王世杰,魏朝富,等.贵州省碳酸盐岩地区土壤允许流失量的空间分布[J].地球与环境,2006,34(4):36-40.
    李阳兵.重庆市典型岩溶山地生态退化机理研究[D].西南大学博士学位论文,2006:25-28.
    李先琨,吕仕洪,蒋忠诚,等.喀斯特峰丛区复合农林系统优化与植被恢复试验[J].自然资源学报,2005,20(1):92-98.
    李先琨,何成新,唐建生,等.广西岩溶山地生态系统特征与恢复重建[J].广西科学,2008,15(1):80-86.
    李雪铭.辽东半岛南部滨海黄土的沉积特征[J].海洋学报,2001,25(1):32-35.
    李雪铭,等.辽南滨海黄土粒度环境信息高分辨率研究[J].地理研究,2002,2l(2):201-206.
    李维福,解宏图,郑立臣.土壤有机质分组方法研究进展[J].农业系统科学与综合研究,2008,24(3):338-343.
    梁成华,杨春璐,陈新之,等.胡敏酸对钾素耗竭土壤固定外源钾的影响[J].土壤通报,2005,36(3):345-348.
    刘东生.黄土与环境[M].北京:科学出版社,1985:35-36.
    刘皇风.环境磁学[J].地球物理学进展,1993,8(2):85-87.
    刘嘉麒,陈铁梅,聂高众,等.渭南黄土剖面的年龄测定及十五万年来高分辨率时间序列的建立.第四纪研究[J],1994,(3):193-202.
    刘良梧.龚子同.全球土壤退化评价[J].自然资源,1995:30-35.
    刘晓冰,邢宝山.土壤质量及其评价指标[J].农业系统科学与综合研究,2002.5(2):109-111.
    刘杏兰,高宗,刘存寿,等.有机-无机肥配施的增产效应及对土壤肥力的影响的定位研究[J].土壤学报,1996,33(2):138-14.
    刘秀铭,刘东生,Shaw J.中国黄土磁性矿物特征及其占气候变化[J].第四纪研究,1993,(3):281-287.
    刘铮,朱其清,唐丽华,等.我国缺乏微量元素的土壤及其区域分布[J].土壤学报,1982,19(3):209-223.
    刘铮,唐丽华,朱其清,等.我国主要土壤中微量元素的含量与分布初步总结[J].土壤学报,1978,15(2):138-149.
    龙健,江新荣,邓启琼,等.贵州喀斯特地区土壤石质荒漠化的本质特征研究[J].土壤学报,2005,42(3):417-427.
    陇光国.喀斯特山区生态建设与金银花(黄褐毛忍冬)产业发展[J].贵州农业科学,2005,33(2):103-104.
    卢演俦.黄土地层中CaCO_3含量变化与更新世气候旋回[J].地质科学,1981,(2):122-131.
    罗海波.喀斯特石漠化过程中土壤质量变化研究[D].西南大学博士学位论文,2006:12-23.
    赖兴会.云南的石漠化土地及其治理策略[J].林业调查规划,2002,27(4):49-51.
    牛文元.生态环境脆弱带(ECO-TONE)的基础判定[J].生态学报,1989,9(2):97-101.
    潘文灿.21世纪我国国土资源可持续利用的形势及战略措施[J].中国人口、资源与环境,2001,11(1):8-12.
    彭珂珊.退耕还林还草工程实施后的生态经济系统良性循环的分析[J].淮阴师范学院学报(自然科学版),2004,3(1):71-76.
    彭琴,林昌虎,何滕兵.贵州省喀斯特山区不同石漠化等级土壤粒级特征研究[J].水土保持通报.2007,27(2):29-30.
    彭少麟.退化生态系统恢复与恢复生态学[J].中国基础科学,2001,(3):18-24.
    彭少麟,陆宏芳.恢复生态学焦点问题[J].生态学报,2003,23(7):1249-1257.
    彭少麟.恢复生态学研究进展及在中国热带亚热带的实践[J].四川师范学院学报(自然科学版),2000,21(3):221-227.
    彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报,2004,41(4):618-623.
    任明达,王乃梁.现代沉积环境概[M].北京:科学出版社,1981:10-13.
    任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001:22-28.
    任海,彭少麟.退化生态系统的恢复与重建[J].青年地理,1998,3(3):7-11.
    施立新.CuBr-poa和CuCl-poa磁化率的比较研究[J].榆林学院学报.2006,16(4):27.
    史德明,韦启潘,梁音等.中国南方侵蚀土壤退化指标体系研究[J].水土保持学报,2000,14(3):1-9.
    司彬,何炳辉,姚小华,等.喀斯特石漠化形成原因及植被回复途径探讨[J].江西农业大学学报,2006,28(3):392-395.
    宋春雨,张兴义,刘晓冰,等.土壤有机质对土壤肥力与作物生产力的影响[J].农业系统科学与综合研究,2008,24(3):357-360.
    孙承兴,王世杰,刘秀明,等.碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程--以贵州花溪灰岩风化壳剖面为例[J].矿物学报,2002,22(2):126-132.
    孙波,张桃林,赵其国.我国东南丘陵区土壤肥力的综合评价[J].土壤学报,1995,32(4):364-365.
    苏金明.统计软件SPSS系列应用实战篇[M].北京:电子工业出版社,2002:291-302.
    谭红兵,马海州,张西营.碳酸盐研究与其记录的环境变化[J].盐湖研究,2003,11(4):20-27.
    谭明.中国高分辨率气候记录与全球变化[J].第四纪研究,2004,24(4):455-462.
    田超,王米道,王家嘉.土壤有机质与水土流失相关性研究[J].安徽农学通报,2008,14(19):54-55.
    童立强,丁富海.西南岩溶石山地区遥感调查研究[M].中国地质调查局.中国岩溶地下水与石漠化研究.南宁:广西科学技术出版社,2003:36-45.
    涂成龙,何腾兵,林昌虎.贵州西部喀斯特石漠地区草地土壤有机质和氮素变异特征初步研究[J].水土保持学报,2006,20(2):51-53.
    屠玉麟.贵州喀斯特灌丛群落类型研究[J].贵州师范大学学报.1995,13(5):8-9.
    屠玉麟.贵州土地石漠化现状及成因分析[C].李箐:石灰岩地区开发治理.贵阳:贵州人民出版社,1996,58-70.
    王德炉,朱守谦,黄宝龙.石漠化的概念及其内涵[J].南京林业大学学报,2004,28(6):87- 90.
    王德宣,富德义.吉林省西部地区土壤微量元素有效性评价[J].土壤,2002(2):86-89.
    王建,刘泽纯,姜文英,等.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996,51(2):155-163.
    王建立,魏虹.对西部大开发中西南地区生态环境重建的几点认识[J].经济地理,2001,21(1):15-18.
    王玲,李阳兵,谢德体,等.重庆岩溶地区生态退化的研究[J].重庆环境科学,2003,25(10):60-63.
    王世杰,季宏军,欧阳自远,等.碳酸盐岩风化成土的初步研究[J].中国科学:D辑,1999,29(5):441-449.
    王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨[J].中国岩溶,2002,21(2):101-105.
    王世杰,李阳兵,李瑞玲.喀斯特石漠化的形成背景、演化与治理[J].第四纪研究,2003,23(6):657-666.
    文安邦,张信宝,王玉宽,等.长江上游云贵高原区泥沙来源的137Cs法研究[J].水土保持学报,2000,14(2):25-28.
    文启中.中国黄土地球化学[M].北京:科学出版社,1989.143-145.
    吴孔运,孙海龙,汪进良等.重庆金佛山岩溶作用驱动因素初探[J].中国岩溶,2004,23(3):247-253.
    吴微.中国南方山地的土地荒漠化初探[J].中国沙漠,1989,9(4):36-43.
    吴玥,何炳辉,姚小华,等.滇东喀斯特石漠化不同植被恢复模式下土壤水分空间变异特征研究[J].西南师范大学学报(自然科学版),2008,33(1):67.
    武天云,Jeff J.Schoenau,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-712.
    韦茂繁.广西石漠化及其对策[J].广西大学学报(哲学社会科学版),2002,24(2):42-47.
    万国江.碳酸盐岩与环境[M].北京:地震出版社,1995:34-40.
    谢德体主编.土壤地理学[M].成都:成都科技大学出版社,1995:119-120,153-155.
    谢家雍.西南石漠化与生态重建[M].贵州:贵州民族出版社,2001:5-8.
    肖天贵,金琳琅.重建生态环境体系的系统思考[J].系统辩证学学报,2001,9(1):47-49.
    熊康宁,黎平等.喀斯特石漠化的遥感-GIS典型研究--以贵州省为例[M].北京:地质出版社,2002:25-28.
    杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    杨明德.贵州喀斯特环境与经济发展的初步探讨[M].贵州人民出版社,1988:22-28.
    杨清云,曾锋.森林土壤空间变异性及其样本容量的确定[J].水土保持研究,2004,11(3): 54-56.
    杨胜天,朱启疆.论喀斯特环境中土壤退化的研究[J].中国岩溶,1999,18(2):170-174.
    杨胜天,朱启疆.贵州典型岩溶环境退化与自然恢复速率[J].地理学报,2000,55(4):459-465.
    杨艳生.土壤退化指标体系研究[J].土壤侵蚀与水土保持学报,1998,4(4):44-46.
    依艳丽,武丽艳,刘孝义.土壤磁学理论应用新途径--磁性犁[J].土壤学报,1993,30(1):79-87.
    殷细宽.广东阳山石坳乡黑色石灰土命名商榷[J].华南农业大学学报,1997,18(4):83-88.
    俞立中,张卫国,许羽.潮滩沉积物磁性测量及其对重金属污染的指示意义[A].中国地质学会古地磁专业委员会.97'全国古地磁学、环境磁学与岩石磁学学术会议论文摘要汇编[C].上海:华东师范大学出版社,1997.
    余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社,1996:35-42.
    喻理飞,朱守谦,魏鲁明.等.退化喀斯特群落自然恢复过程研究--自然恢复演替系列[J].山地农业生物学报,1998.17(2):71-77.
    袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆科学技术出版社,1988:22-25.
    袁红,袁道先,傅瓦利,等.内陆高山峡谷区石灰土pH异常现象及成因初探[J].中国岩溶,2008,27(1):38-42.
    郑度,姚檀栋.青藏高原隆升与环境效应[M].北京:科学出版社,2004:22-28.
    郑平,王兴滨,王天立,等.黄腐酸类物质在农业与医药业中的应用[M].北京:化学工业出版社,1993:10-15.
    郑祥民.长江三角洲及海域风尘沉积与环境[M].上海:华东师范大学出版社,1999:18-20.
    郑祥民,赵健,周立曼,等.东海嵊山岛风尘黄土中的植物硅酸体与环境研究[J].海洋地质与第四纪地质,2002,22(1):25-30.
    郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):131-134.
    赵其国.土壤退化及其防治[J].土壤,1991,23(2):57-60.
    赵其国.我国红壤的退化问题[J].土壤,1995,27(6):281-285.
    赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ:土壤质量的定义及评价方法[J].土壤,1997,(3):113-120.
    赵其国,张桃林,鲁如坤,等.我国东部红壤地区土壤退化的时空变化、机理及调控对策的研究[R].南京:中国科学院南京土壤研究所,2000:15-22.
    赵晓英,孙成权.恢复生态学及其发展[J].地球科学进展,1998,17(5):474-480.
    赵晓英.恢复生态学--生态恢复的原理与方法[M].北京:中国环境科学出版社,2001:35-53.
    章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报.1999.10(1):109-113.
    张恩楼,沈吉,王苏民,等.青海湖近900年来气候环境演化的湖泊沉积记录[J].湖泊科学,2002,14(1):32-38.
    张普纲,樊行昭,霍俊杰.磁性参数的环境指示意义[J].太原理工大学学报,2003,34(3):301-308.
    张桃林.中国红壤退化机制与防治[M].北京:中国农业出版社,1999:1-10.
    张桃林,王必祥.土壤退化研究的进展与趋向[J].自然资源学报,2000,15(3):280-282.
    张文晖,傅瓦利,张洪,等.岩溶山区不同土地利用方式对石灰土基本特性的影响[J].应用与生态学报,2007,23(3):16-21.
    张永娥,王瑞良,靳绍菊.土壤微量元素含量及其影响因素的研究[J].土壤肥料,2005(5):35-37.
    张信宝,王世杰,贺秀斌,等.碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J].地球与环境,2007,35(3):202-206.
    张振克,吴瑞金,王苏民.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映[J].地理研究,1998,17(3):297-300.
    张治伟,袁道先,傅瓦利,等.重庆金佛山地区土壤酸度分布特点及影响因素研究[J].中国岩溶,2006,25(1):67-69.
    钟祥浩.云南金沙江干热河谷生态系统退化及其防治途径[J].长江流域资源与环境,2000,2:157-159.
    中华人民共和国农业部.中华人民共和国农业行业标准:全国耕地类型区耕地地力等级划分[S],1996.1-25.
    中华人民共和国国务院.中国21世纪议程[Z].北京:中国环境科学院出版社,1997:68.
    朱鹤键,何宜庚主编.土壤地理学[M].北京:高等教育出版社,1992:232-234,22.
    朱学稳,朱德浩.中国南方石山区概况及其治理与开发[J].地理学与国土研究,1989,5(2):19-21.
    朱震达,崔书红.中国南方的土地荒漠化问题[J].中国沙漠,1996,16(4):331-337.
    展争艳,李小刚,张德罡,等.利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响[J].土壤学报,2005,42(5):777-782.
    周蓓,李艳娜.金佛山岩溶生态环境特征及可持续发展策略研究[J].重庆环境科学.2003,25(2):12-17.
    周德全,王世杰,张殿发.关于喀斯特石漠化研究问题的探讨[J].矿物岩石地球化学通报,2003,22(2):127-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700