用户名: 密码: 验证码:
燃气舵气—固两相绕流数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气舵是垂直发射先进拦截导弹经常采用的推力矢量控制技术之一,广泛应用于地地、地空、舰舰等战术固体导弹。由于燃气舵控制技术具有控制导弹的方位角定向范围大、响应时间快、弹道最高点低等优点,近年来,许多国家的空空导弹也开始采用这种推力矢量控制技术。但是,与其它类型燃气舵控制的导弹相比,空空导弹能够提供的安装燃气舵的空间非常狭小,安装燃气舵后,发动机喷口的流场更加复杂,又由于燃气流是高温高压且含有多种固体颗粒的气-固两相流,对燃气舵的烧蚀严重。因此,开展燃气舵气-固两相绕流及相应条件下的气动特性研究,就显得非常有意义。本文以某空空导弹燃气舵为研究对象,采用数值模拟与试验相结合的手段,对燃气舵纯气相绕流流场和气-固两相流绕流流场及燃气舵气动特性进行了研究。主要研究内容为:
     1.建立了燃气舵纯气相绕流流场的物理模型,采用含k-ε双方程模型的湍流时均方程组,给定方程组的边界条件,对燃气舵纯气相绕流流场进行了数值模拟。详细分析了舵偏角和舵间组合对燃气舵绕流流场结构的影响,给出了燃气舵力学性能随舵偏角的变化规律,为进一步研究气-固两相流中颗粒相对燃气舵气动特性和绕流流场结构的影响提供理论依据。
     2.建立了燃气舵气-固两相绕流流场的物理模型,提出了针对该模型的燃气舵绕流流场计算处理方法和定解条件。通过数值计算,得到燃气舵和耳片的气动特性,分析讨论了影响燃气舵绕流流场结构和固体颗粒在燃气舵表面沉积特性的主要因素及其影响规律,研究了燃气舵升力、燃气舵阻力和耳片阻力随舵偏角的变化关系。
     3.借助六分力试验系统,对某空空导弹燃气舵进行了台架试验,获得了部分舵偏角对应的升力和阻力等试验数据,通过与数值模拟结果的对比发现,二者吻合较好,验证了本文数值模拟结果的可靠性;通过进一步分析台架试验后的燃气舵烧蚀形貌、断口形貌、截面组织结构和不同位置的化学成分等,对燃气舵烧蚀机理进行了初探。
     通过本文研究,得到了燃气舵的气动力特性,以及舵偏角、固体颗粒分布及壁面属性等对燃气舵绕流流场的影响规律。本文研究成果已成功应用于某型号空空导弹研究中,效果良好。实践表明,本文研究工作对某型号类空空导弹燃气舵的设计和应用具有指导意义,同时为后续开展该类燃气舵的烧蚀机理研究提供了参考依据。
As one kind of thrust vector control (TVC)technologies, the jet vane is often used to defending missiles, especially in vertically launched tactical solid missiles, such as GGM(ground to ground missiles), GAM(ground to air missiles), SSM(ship to ship missiles) and so on. Because of its advantages, including the big missile directional scopes produced by jet vanes' azimuth, the short response times and the lower ballistic path highest points, this kind of TVC technology has been gradually used in AAM(air to air missiles) in many countries recently. However, after installing jet vanes in the narrow space near the AAM motor nozzle, the gas flow field changes extremely complex. In the meantime, the gas-flow with high temperature and high pressure contains some solid particles, and it will ablate and erode the jet vane badly. Therefore, it is very important and necessary to specially research the gas-solid two phase flow properties, the jet vane geometric structure design and its aerodynamic properties. Aiming at above problems, in this thesis, the pure gas phase flow and the gas-solid two phase flow around the jet vane and the aerodynamic properties of jet vane are studied by using the numerical simulation method and tests. The main researches are as follows:
     1. Based on k-s two equations, the physical model of pure gas phase flow fields around the jet vane is established and the relevant boundary conditions and numerical method are given. By the numerical simulation, the flow field structures around the jet vane and aerodynamic properties of the jet vane are obtained under the different rotation angles. These data is helpful for the researching on the gas-solid two phase flow properties.
     2. Establishing the physical model of the gas-solid two phase flow around the jet vane, the corresponding boundary conditions of the flow fields are proposed and the numerical simulation is carried out. The aerodynamic properties of jet vanes and bases are obtained. The main influence factors on the flow field structure and the particle deposition on jet vane surfaces and the relations between those factors are analyzed. The lift forces and resistance forces of jet vanes and bases at different rotational angles are given.
     3. With the aid of the six component force test equipment, the bench test of the jet vane controlled missile is carried on. For the concerned lift forces and resistance forces at different rotational angles, their test and calculated data are in better accordance. It is proved that the numerical simulation and mathematical model in this paper are accurate and credible, and they can be effectively used for the aerodynamics properties design of jet vane. Additionally, the ablation images, fracture images, cross section microstructures and EDS chemical constituents at different positions of the jet vane after the bench test are analyzed, and the ablation mechanism is primarily studied.
     This paper researches the aerodynamic properties of the jet vane and the influence laws of the jet vane rotation angles, the distribution of solid particles and the wall property on the flow fields around the jet vane. These results are significant to the design and application of AAM, and supply a fundament to the theory research of ablation mechanism of this kind of jet vanes.
引文
[1]叶庆虎,刘跃新译.垂直发射先进拦截导弹气动力设计[J].ALAA-82-1310.
    [2]侯清海.空空导弹燃气舵气动设计综述[J].航空兵器,2000,(6):37-40.
    [3]刘志行.燃气舵的气动设计[J].战术导弹技术,1988,(3):1-7.
    [4]中国航天工业总公司,世界导弹与航天发动机大全[M].北京:军事科学出版社,1999.
    [5]朱自强.应用计算流体动力学[M].北京:北京航空航天大学出版社,2001.
    [6]MacCormack,R.W.The Effect of Viscosity in Hypervelocity Impact Cratcring[J],AIAA-69-354.
    [7]马铁犹.计算流体动力学[M].北京:北京航空学院出版社,1986.
    [8]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [9]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京大学:科学出版社,1994.
    [10]C.T.Crowe.The State-of-the-art in the Development of Numerical Models for Dispersed Flows[J].Proc.Int.Conf.on Multiphase Flows,Tsukuba,1991:Ⅲ49-60.
    [11]郭印诚,林文漪,周力行.二维煤粉燃烧全双流体模型的数值模拟[J].工程热物理学报,1998.19(1):117-120.
    [12]胡泰来,姚斌,曾汉才.四角布置切向燃烧锅炉炉内结渣原因分析及防止对策[J].电站系统工程,1996,12(5):42-45.
    [13]候凌云,傅维标,张勇军.回转水泥窑燃烧段的整体冷态数值研究[J].能源技术,2000,(4):235-238.
    [14]周力行.NOx生成湍流反应率数值模拟的进展[J].力学进展,2000,30(1):77-82.
    [15]张成祥,王文荟.水泥回转窑用多通道煤粉燃器的发展[J].水泥工程,1998,(3):29-31.
    [16]候凌云,张拥军,傅维标.速差射流煤粉燃烧器燃烧过程理论分析(I):强化燃烧原理分析[J].燃烧科学与技术,2000,6(2):111-114.
    [17]Zhou L X,Y C Guo,W Y Lin.Two-Fluid Models for Simulating Coal Combustion and NOx Formation[J].Comb.Sci.Tech,2000.15(2):161-180.
    [18]ZHOU Lixing,LI Li,LI Pongxian,etc.Numerical Modeling of 3-D Gas-Particle Flows and Coal Combustion in a Tangentially-Fired Furnace Using a Two-Fluid-Trajectory Model[J].Journal of Engineering Thermophysics,2001.22(6):771-774.
    [19]羔玉群,徐旭常炉内喷钙脱硫过程数值模拟[C].中国动力工程学会锅炉燃烧技术学术会议.1996:125-14.
    [20]刘向军.四角切向燃烧煤粉锅炉炉内燃烧过程的数值模拟[D].清华大学:清华大学工学博士学位论文,1997:45-65.
    [21]樊建人,梁晓宏,岑可法.W型火焰煤粉锅炉炉内燃烧过程及污染物生成的数值模拟[J].动力工程,1998,18(2):39-45.
    [22]江旭昌.皮拉得多风道煤粉燃烧器的应用[J].水泥技术,1999,(5):27-29.
    [23]刘贵苏,徐辉,吴宏伟等.气固两相流动的动力模型[J].燃烧科学与技术,1997.3(2):143-149.
    [24]任安禄,谢定国.切圆燃烧锅炉内煤粉燃烧过程的数值模拟一等密度模型和等直径模型[J].力学学报,1994,26(3):356-367.
    [25]J.K.D ukowicz.A Particle-Fluid Numerical Model for Liquid Sprays[J]..Computational Physics.1980,(35):229-253.
    [26]C.F.M.Combra,J.L.T.Azevedo,M.G.Carvalho.3-D Numerical Model for Predic ting NOx Emissions from an Industril Pulverized Coal Combustor[J].Fuel,1994,73(7):1128-1134.
    [27]M.Sommerfeld,etc.Characterization of Particle-Laden,Confined Swirling Flows By Phase-Doppler Anemometry and Numerical Calculation.Int.J.Multiphase Flow.1993,19(6):1093-1127.
    [28]M.Costa,etc.Detailed Measurements in and Modelling of an Industry-Type Pulverized-Coal Flame.23rd Symposium(International)on Combustion/The Combustion Institute,1990:973-980
    [29]周向阳,郑楚光,马毓义.大型炉膛燃烧过程的数值模拟[J].华中理工大学学报,1994,22(3):11-15.
    [30]候凌云,张拥军,傅维标.回转水泥窑燃烧段混煤燃烧数值研究[J].燃烧科学与技术,2001,7(1):77-80.
    [31]孙保民,徐旭常.颗粒随机轨道模型在应用上的改进[C].工程热物理学会燃烧学术会议,1995:35-40
    [32]姜洪舟,李娟.回转窑烧低挥发份煤技术的研究[J].武汉工业大学学报,1999,19(1):31-33.
    [33]刘向军,徐旭常.四角切向燃烧煤粉锅炉炉膛内空气动力场的数值研究[J].工程热物理学报,1998,19(5):657-660.
    [34]周向阳,郑楚光,何秀光,马毓义.煤粉燃烧过程中NO生成的实验和数值研究[J].燃烧科学与技术,1996,2(3):249-255.
    [35]柳朝晖,郑楚光,周力行.DSM-LPDF两相湍流模型及旋流两相流动的模拟[J].工程热物理学报,2001.22(5):541-644.
    [36]刘林华.炉内传热过程的数值模拟及过热器超温问题的研究[D].哈尔滨工业大学工学博士学位论文,1996:65-90.
    [37]张健,S.Nieh.强旋湍流气—固两相流动的颗粒随机轨道法模拟[J].力学学报,1994,26(6):657-663.
    [38]姚文达,刘彤,陈金明.沉降炉试验和模拟数值计算[J].动力工程,1996,16(2):5-8
    [39]张志国,孙学信煤粉锅炉燃用不同煤种及不同运行方式燃烧过程的优化[C].锅炉燃烧技术学术会议,哈尔滨:1996:1-7.
    [40]张健,周力行.大速差射流予燃室煤粉燃烧的颗粒轨道法数值模拟[J].工程热物理学报,1989,10(1):109-113.
    [41]张健,周力行.大速差射流燃烧室中烟煤与贫煤燃烧的数值模拟[J].力学学报,1990,22(3):276-283.
    [42]张槛,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟[J].工程热物理学报,1998,19(2):256-260.
    [43]盛昌栋.煤粉浓度连续可调组合叶片式燃烧器气固两相流动的数值模拟[C].全国高等学校工程热物理研究会第六届学术会议论文集,武汉,全国高等学校工程热物理研究会编,1996:448-451.
    [44]孙昭星,王雅勤,李文彦.锅炉燃烧过程三维数值计算方法的研究和应用[J].动力工程,1997,17(6):36-42.
    [45]赵建福,林建忠,沈天耀.二维旋转湍流边界层内气固两相流动的数值模拟[J].空气动力学报,1995,13(1):40-47.
    [46]徐进,葛满初.气固向相流动的数值计算[J].工程热物理学报,1998,19(2):233-236.
    [47]P.J.Smith,W.A.Sowa,P.O.Hedman.Furnace Design Using Comprehensive Combustion Models[J].Combustion and Flame.1990,79:111-121.
    [48]范贤振,郭烈锦,高晖等.2200MW四角切向燃烧煤粉炉炉内过程的数值模拟[J].西安交通大学学报,2002.36(3):241-245.
    [49]徐江荣.周志军,刘建忠等.煤粉浓淡旋流燃烧器喷口气固两相流动的数值模拟[J].锅炉技术,2002.22(5):1928-1931.
    [50]金颖周伟国等.烟气扩散的CFD数值模拟[J].安全与环境学报.2002.2(1):21-23.
    [51]张会强,王希麟,郭印诚等.湍流燃烧的简化的联合PDF模拟[J].清华大学学报(自然科学版),2001.41(8):75-78.
    [52]Golafshani,MEHDI.,Loh and HAI.TIEN.Computation of Two-Phase Viscous Flow in Solid Rocket Motors Using A Flux-Split Eulerian-lagrangian Technique[R].AIAA-89-2785
    [53]Madabhushi.R,Sabnis.J,Jong.F.Calculation of the Two-Phase after-dome Flow field in Solid Rocket Motor[J].Journal of Propulsion,1991,7(2):178-184.
    [54]Sabnis.J.S,Jong.F,Gibeling.H.A Two-Phase Restricted Equilibrium Model for combustion of Metalized Solid Propellants[R].AIAA-92-3509.
    [55]Liaw.P,Chen.Y.S Shang.H.M.Multi-Phase Flow Field Analysis for Advanced Solid Rocked Motor[R].AIAA-93-2848.
    [56]Liaw.P,Chen.Y.S Shang.H.M.Particulate Multi_Phase Flow Field Calculation with Cusbustion/Breakup Models for Solid Rocked Motor[R].AIAA-94-2780.
    [57]Alessandro Ciucci,Gianluca Iaccarino,Marcello Amato.Numerical Investigation of 3D Two-phase Turbulent in solid Rocket Motors[R].AIAA-98-3966.
    [58]Smith-Kent.R,Perkins.F,Abel.R.A Potential Two-Phase Model for Predicting Solid Rocket Motor Slag[R].AIAA-93-2307.
    [59]Bill L.Miles and Jon L.Rackham.The Effect of Aluminum Particle Size Distribution on TP-H1148 Propellant slag[R].AIAA 96-3271.
    [60]C.J.Hwang,G.C.Chang.Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle[J].AIAA Journal 26(6):682-689.
    [61]G.Carrier,F.Fendell,D.Brent,C.Kimbrough.Simple Modeling of Particle Trajectories in Solid Rocket Motors[J].J.Propulsion,1992,7(2):185-195.
    [62]A.V.Rodionov,Yu.A.Plastinin,etc.Modeling of Multiphase Alumina-Loaded Jet Flow Fields[R].AIAA-98-3462.
    [63]Yu.A.Plastinin,N.A.Anfimov,etc.Modeling of Aluminum Oxide Particle Radiation in a Solid Propellant Motor Exhaust[R].AIAA-96-1879.
    [64]Weidong Cai,Vigor Yang.Two-phase Turbulent Flow Interactions in a Simulation Rocket Motor with Acoustic Waves[R].AIAA,N00014-95-1-1338.
    [65]Love.E.S,Grigsby.C.E,Lee L.P,etc.Experimental and theoretical studies of axisym_metric free jets[J].NACA TR-R6,1959.
    [66]Corrsion.S and Urberoi.M.Further experiments on the flow and heat transfer in heated turbulent jet[R].NACA-R-998,1950
    [67]Pope A and Goin.K.L.High speed wind tunnel tes(?)ng[J].Witey J and Sons,New,1965.
    [68]夏智勋,丁英仁,方丁酉等.固体火箭发动机内轴对称面两相流流场的一体化数值模拟[J].1996,17(5):23-27.
    [69]林鹏,张振鹏,赵永忠等.长尾喷管中粒子运动轨迹的数值模拟[J].航空动力学报,2003,18(2):258-263.
    [70]淡林鹏,张振鹏,何大军等.长尾喷管两相流流场计算[J].推进技术,2002,23(5):425-427.
    [71]李江.固体火箭发动机凝相颗粒运动规律研究[D].西北工业大学:博士论文,1998.
    [72]何洪庆,周旭.固体火箭发动机燃烧室中的颗粒轨迹[J].推进技术,1999,20(5):25-29.
    [73]刘佩进,李强.非壅塞固冲发动机补燃室内凝相颗粒运动规律研究[J].固体火箭技术,2007,30(1):17-20.
    [74]傅德彬,姜毅.燃气射流气固两相数值模拟与颗粒冲刷分析[J].弹箭与制导学,2004,24(1):63-66
    [75]王松柏.固体火箭喷管排气中的粒子分布[J].航空学报,1990,11(12):606-609
    [76]高铁瑜,章利特,夏庆锋,徐廷相.超音速气固两相分离试验研究[J].西安交通大学学报,2007,41(1):1310-1313.
    [77]侯晓.固体火箭喷管两相湍流的数值研究[D].西北工业大学:博士论文,1990.
    [78]刘君,黄琳,夏智勋.潜入式摆动喷管两相内流场数值模拟[J].固体火箭技术,2003,26(4):18-21.
    [79]周旭.锥柱形装药燃烧室流场分析及并行算法探索[D].西北工业大学:博士论文,1994.
    [80]高波.旋转固体发动机燃烧室气—固两相湍流数值模拟[D].航天科技集团一院:博士论文,1999.
    [81]曾卓雄,姜培正.可压稀相两相流场的数值模拟[J].推进技术,2002,23(2):154-157.
    [82]向红军.固体发动机熔渣沉积数值模拟与实验研究[D].北京航空航天大学:博士论文,2000.
    [83]张小英,朱定强,蔡国飙.固体火箭羽流中Al_2O_3粒子的辐射特性[J].固体火箭技术,2006,29(4):247-250.
    [84]李东霞,徐旭,蔡国飙等.火箭发动机气体—颗粒两相流双流体模型研究[J].固体火箭技术,2005,28(4):238-243.
    [85]乐发仁,冯喜平,武渊,姜正乾.高过载条件下固体火箭发动机绝热层失效研究[J].固体火箭技术,2005,28(1):33-35.
    [86]张如洲,李葆江,方继明,李疏芬.在加速场中含铝复合推进剂燃烧中粒子动力学研 究[J].推进技术,1995,(2):82-85.
    [87]何国强等.高过载条件下固体发动机内流场及绝热层冲蚀研究[J].固体火箭技术,2001,24(4):4-(?).
    [88]何国强等.高过载对发动机内流场计算分析[J].推进技术,2002,23(3):182-185.
    [89]何国强,阮崇智,王国辉等.过载条件下固体发动机内流场数值模拟[J].推进技术,2002,23(3):182-185.
    [90]李江,何国强,秦飞,等.高过载条件下绝热层烧蚀实验方法研究方案论证及数值模拟[J].推进技术,2003,24(14):315-318.
    [91]王国辉,何国强,刘佩进等.过载状态下固体火箭发动机燃烧室内两相流动数值模拟[J].固体火箭技术,2001,(2):315-318.
    [92]李江,蔡体敏,何国强等.SRM喷管凝相粒子分布规律的实验研究[J].推进技术,1999,20(6):84-86.
    [93]张福祥.多管火箭发射装置装置承受射流冲击流场[C],中国兵工学会学术年会,1986.
    [94]张福祥.火箭燃气射流动力学[M].哈尔滨:哈尔滨工业大学出片社,2004,12.
    [95]张福祥,李开明,方毅.真实火箭燃气羽流密度场的定量显示.宇航学报,1994,15(2):58-63.
    [96]H.H.Cho,B.G.Kim,M.S.Yu.ANALYSIS OF PARTICLE LADEN FLOWS AROUND A JET VANE IN A SOLID ROCKET MOTOR[R].AIAA-2001-3591.
    [97]R.P.Roger,S.C.Cha.CFD Anlysis For The Lift and Drag On A Fin/Mount used As A jet Vane TVC For boost Control[R].AIAA-2002-4280.
    [98]Christopher P.Rahaim.Jet Vane Thrust Vector Control:A Design Effort[J].AIAA 96-2904.
    [99]P-A.rainville,A.Dechamplain.CFD VALIDATION WITH MEASURED EMPERATURES AND FORCES FOR THRUST VECTOR CONTROL[R].AIAA-2002-4192
    [100]M.S.Yu,J.W.Lee H.H.Cho.NUMERIAL STUDY ON A THERMAL RESPONSE OF THE JET VANE SYSTEM IN A ROCKET NOZZLE[R].AIAA-2004-997.
    [101]M.S.Yu,H.H.Cho.A STUDY ON A SURFACE ABLATION OF THE JET VANE SYSTEM IN A ROCKET NOZZLE[J].AIAA-2004-2276.
    [102]N.Hamel,A.Dechamplain.D.Kretschmer.PIV Measurements Around a Thrust Vector Control Vane[R].AIAA-2002-4191.
    [103]李军,刘献伟.燃气舵气动特性试验和数值分析[J].弹道学报,2005,17(4):55-60.
    [104]李军,刘献伟.推力矢量发动机射流流场的数值分析[J].弹箭与制导学报,2005,25(4):80-82.
    [105]李军.燃气舵气动特性分析[R].项目报告,2006,6.
    [106]董晓芳.固体火箭发动机燃气舵热分析研究[D].北工业大学:硕士学位论文,2005.
    [107]刘志珩.固体火箭燃气舵气动设计研究[J].导弹与航天运载技术,1995,(4):9-17.
    [108]侯清海.空空导弹燃气舵气动设计综述[J].航空兵器,2000,(6):37-40.
    [109]马丽滨,何洪庆.燃气舵外围流场计算[J].推进技术,1993,(1):28-33.
    [110]杜长宝,赵菲.推力矢量燃气舵性能实验研究[J].弹箭与制导学报,2003,24(2):125-128.
    [111]汪学江.燃气舵的舵间气动干扰分析[J].宇航学报,1994,(3):50-54.
    [112]俞志高.固体火箭燃气舵的结构分析[J].战术导弹技术,1988,(4):28-30.
    [113]潘育松,徐永东,陈照峰.碳/碳化硅燃气舵的烧蚀及抗热震性[J].中国有色金属学报,2006,16(6):976-981.
    [114]V.Harrission,A.de.Champlain,D.Kretschmer.Optical Techniqu to Quantify Erosion on Jet Vanes for Thrust Vector Control[R].AIAA-2002-4190
    [115]koo.J.H.A review of particle sizing methods in rocket propulsion[R].AD-A190163.
    [116]何国强,王国辉,阮崇智等.高过载条件下固体发动机内流场及绝热层冲蚀研究[J].固体火箭技术,2001,24(4).
    [117]Sabnis.J.S,Frederik J,Howard,etc.Calculation of particle trajectories in solid-rocket Motors with arbitrary acceleration[J].Journal of Propulsion and Power,1992,8(5).
    [118]Jay.K,Sam.bamurthi,etc.A1203 collection and sizing from solid rocket motor plumes[J].Journal of Propulsion and Power,1996,12(3).
    [119]Brennan.W.D,Hovland.D.L,Netzer D W,etc.Measured particulate behavior in subscale solid propulsion rocket Motor[J].Journal of Propulsion and Power,1992,8(5).
    [120]张宏安,叶定友,侯晓,高波.固体发动机喷管出口凝相微粒粒度分布研究[J].固体火箭技术,2001,24(3):14-18.
    [121]张宏安,叶定友,侯晓,高波.含铝复合推进剂燃烧场凝相微粒分布实验研究[J].固体火箭技术,2001,24(1):24-27.
    [122]张宏安,叶定友,侯晓.固体火箭发动机凝聚相微粒分布研究现状[J].固体火箭技术,2000,23(3):25-28.
    [123]王宁飞,陈龙等.固体火箭燃烧室内微粒分布的实验研究[J].推进技 术,1995,(4):24-26.
    [124]张明信,魏建维,王晓霞.固体推进剂燃烧中凝相粒子的激光全息测试[J].固体火箭技术,2000,23(1):70-73.
    [125]张明信,王国志等.影响Al_2O_3凝相尺寸分布的因素[J].推进技术,2001,22(3):250-257.
    [126]Sambamurthi J K,etc.Plume particle collection and sizing from static firing solid rocket motor[R].AIAA-95-2590.
    [127]刘洋,何国强,李江,陈剑,娄永春.聚集状态下凝相颗粒的收集与测量[J].推进技术,2005,26(6):477-480.
    [128]Youndborg E D,Pruitt T E,SmithM J,et al.Light-diffraction particle size measurements in small solid propellant rockets[J].Journal of Propulsion and Power,1990,6(3).
    [129]BrennanW D,Hovland D L,Netzer D W,etc.Measured particulate behavior in subscale solid propellant rocket motor[J].Journal of Propulsion and Power,1992,8(5).
    [130]李疏芬,金荣超.固体推进剂燃烧残渣的粒度分析[J].固体火箭技术,1995,18(4):23-28.
    [131]李茹,王国志,张耀明.含铝推进剂燃烧场全息粒子图象处理系统的研究[J].光子学报,1999,28(12):1107-1112.
    [132]李江,娄永春,刘洋,王希亮,陈剑.聚集状态对固体火箭发动机颗粒粒度分布的影响[J].固体火箭技术,2005,28(4):265-267.
    [133]Girata P T Jr.McGreor W K.Partile Sampling of solid Rocket Motor(SRM)Exhausts in High Altitude Test Cells[R].AIAA-83-0245.
    [134]Edwards T D,etc.Measurements of Particulates in Solid Motor[R].AD-A187777.
    [135]George D.Recent advances in solid rocket motor performance prediction capacity[R].AIAA 81-0033.
    [136]Sang Chu Yoon.Holography investigation of solid propellant combustion in a three-dimensional motor[R].AD-AI64217.
    [137]Thomas.R G.Holographic investigation of solid propellant particulate [J].AD-AI2748.
    [138]J.K Sambamurthi.Plume Particle Collection and Sizing From Static Firing of Solid Rocket Motors[R].AIAA-95-2590
    [139]王莹.双炉膛炉炉内气固两相流动数值模拟[D].哈尔滨工业大学:博士学位论文,1999.
    [140]Fluent6.3使用说明书.
    [141]P.J.Coelho and M.G.Carvalho.Modelling of Soot Formation and Oxidation in Turbulent Diffusion Flames[J].J.of Thermophysics and Heat Transfer,1995,9(4):644-652.
    [142]M..P.Halstead,L.J.Kirsch,and C.P.Quinn.Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures-Fitting of a Mathematical Model[J].Combustion and Flame,1977,(30):45-60.
    [143]P.C.Melte and D.T.Pratt.Measurement of Atomic Oxygen and Nitrogen Oxides in Jet Stirred Combustion.In 15th Symposium(Int'l)on Combustion,The Combustion Institute,1974,1061-1070.
    [144]王福军.计算流体动力学分析[M].北京:清华大学出版,2004,9.
    [145]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,992.
    [146]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [147]欧俭平,高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化分析[D].中南大学:博士学位论文,2004.
    [148]帕坦卡S V.传热与流体流动的数值模拟[M].北京:科学出版社,1980.
    [149]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [150]陈林泉,王书贤,张胜勇,侯晓.石墨渗铜喉衬材料烧蚀机理分析[J].固体火箭技术,2004,27(1):57-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700