用户名: 密码: 验证码:
单粒子光散射法测量悬浮颗粒物质量浓度的理论模型及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单粒子光散射法因具有测量速度快、精度高、重复性好及适用于在线非接触测量等优点而在颗粒测量领域得到了广泛应用。本文结合实验,对单粒子光散射法测量悬浮颗粒物质量浓度的理论进行了深入研究,取得的主要成果如下:
     提出了与光散射信号计数通道对应的颗粒平均质量、等效球形颗粒数、单粒子光学等效直径概念,这些概念揭示了颗粒物散射光信号幅度分布与质量之间的内在规律,从而建立了悬浮颗粒物质量浓度的理论模型,为应用粒子计数器测量的颗粒物电压脉冲信号幅度分布反演质量浓度提供了理论基础。
     结合单粒子光散射法悬浮颗粒物质量浓度的理论模型,进一步深入研究颗粒物散射光信号幅度分布与颗粒物形貌之间的关系,并考虑颗粒物的分形特征,提出了光散射等效截面分形维数的概念,给出了光散射信号计数通道中的颗粒平均质量与对应通道的电压信号幅度之间的关系,发现单粒子光散射法测量悬浮颗粒物质量浓度算法有两个待标定的特征参数:灵敏度系数k和光散射等效截面分形维数α。
     本文从理论和实验两个方面对悬浮颗粒物质量浓度反演算法中特征参数的标定方法进行了深入研究。分析了颗粒物质量浓度反演精度与小样本颗粒物的光散射等效截面分形维数α_1之间的关系,发现与反演误差极小值对应的小样本颗粒物的α_1不能很好地反映整个颗粒物的光散射等效截面分形维数α特征。通过分析颗粒物的α与小样本的α_1之间内在联系,提出小样本的α_1交集点是颗粒物的α最佳值的观点,解决了特征参数的标定问题。实验结果表明,在0.001~5mg/m~3质量浓度范围内,粒子计数器测量的质量浓度值与标准参照仪器的测量值十分吻合。
     本文将信息熵用于评价粒子计数器计数通道的优化问题。提出了均匀和非均匀计数通道划分法,实验结果表明质量浓度反演精度稳定时非均匀划分法所需的计数通道较少。利用信息熵计算发现计数通道数相同时非均匀划分法提取的颗粒物电压脉冲信号幅度分布信息熵明显较大,表明信号幅度分布信息熵大小决定了颗粒物质量浓度反演精度的稳定速度。
     本文建立了一个较为全面的利用单粒子光散射法测量悬浮颗粒物质量浓度的理论,并将该理论应用于实际测量,实证了它的正确性,该研究成果为单粒子光散射法的深入发展提供了有价值的参考。本文的单粒子光散射法可用于实现工业在线测量悬浮颗粒物质量浓度。
The single particle scattering method is widely employed due to fast,high precision, nonintrusive and suitable for on-line measurement.In this paper,the theory for aerosol mass concentration by using the single particle scattering method is investigated combining with experiments.The innovation achievements are listed as following:
     The concepts of the average mass of particles in a voltage channel,the equivalent number of spherical particles and the optical equivalent diameter of a particle are presented, respectively,which reveal inherent law between the pulse height distribution of particles and mass.The theoretical model for inversion aerosol mass concentration is then established,which provides theoretical basis for inversion aerosol mass concentration using the pulse height distribution of particles measured by an optical particle counter.
     Combining the theoretical model for aerosol mass concentration by using the single particle scattering method and the relationship between the pulse height distribution of particles and particle shape,the conception of fractal dimension of scattering equivalent section is put forward by taking the fractal characteristic of particles into account,then the relationship between the average mass of particles in a voltage channel and the signal amplitude of corresponding voltage channel is given.It is found that inversion algorithm of aerosol mass concentration using the single particle scattering method has two characteristic parameters needed to be calibrated,that is,the sensitivity coefficient k and the fractal dimension of scattering equivalent sectionα.
     The calibration method of the two characteristic parameters in the inversion algorithm for aerosol mass concentration is further researched theoretically and experimentally.The relationship of inversion precision of aerosol mass concentration and fractal dimension of scattering equivalent sectionα_l of a small sample aerosol is analyzed,and it is found that fractal dimension of scattering equivalent sectionαof aerosol cannot be replaced byα_l obtained by the minimum method.Through analyzing the inherent relation betweenαandα_l,the conclusion that the intersection point ofα_l for different small samples is equal toαof aerosol is obtained,thus,the calibration problem of characteristic parameters are solved.The experimental results demonstrate that mass concentrations measured by an optical particle counter agree well with actual mass concentrations in the range from 0.001 to 5 mg/m~3.
     In order to evaluate the optimization problem of voltage channels of an optical particle counter,the information theory is applied to analyze the reason for the difference of the stable velocities of inversion accuracy of mass concentration obtained using linear and non-linear division methods,respectively.The result indicates that in the case of same number of voltage channels,the information entropy of non-linear division method is obviously larger,leading to the number of voltage channels is fewer when the inversion accuracy of mass concentration is stable.This conclusion indicates that information entropy of the pulse height distribution of particles directly determines the stable velocity of inversion accuracy of mass concentration.
     In this paper,an overall theory for aerosol mass concentration by using the single particle scattering method is established,whose validity is justified by experiments,and the research of this paper provides a valuable reference for the further development of the single particle scattering method.The method in this paper can be applied to measure aerosol mass concentration in real time.
引文
1.Jensen P.A.and Dcnnis O.,Industrial hygiene aerosol measurement.New York:Van Nostrand Reinhold,1993:537-559.
    2.中华人民共和国国家标准.GB3095-1996,空气环境质量标准.
    3.Khlystov A.,Stanier C.and Pandis S.N.,An Algorithm for Combining Electrical Mobility and Aerodynamic size distributions data when measuring ambient aerosol.Aerosol Science and Technology,2004,38(S1):229-238.
    4.李红,曾凡刚,邵龙义,时宗波.可吸入颗粒物对人体健康危害的研究进展.环境与健康杂志,2002,19(1):85-89.
    5.Mar T.F.,Norris G.A.,Koenig J.Q.and Larson T.V.,Associations between air pollution and mortality in Phoenix,1995-1997.Environmental Health Perspectives,2000,108:347-353.
    6.Brauer M.,Avila-Casado C.,Fortoul T.I.,Vedal S.,Stevens B.and Churg A.,Air pollution and retained particles in the lung.Environmental Health Perspectives,2001,109:1039-1043.
    7.Burnett R.T.,Brook J.,Dann T.,Delocla C.,Philips O.,Cakmak S.,Vincent R.,Goldberg M.S.and Krewski D.,Association between particulate and gas-phase components of urban air pollution and daily mortality in eight Canadian cities,Inhalation Toxicology,2000,12(4):15-39.
    8.Dockery D.W.,Epidemiologic evidence of cardiovascular effects of particulate air pollution.Environmental Health Perspectives,2001,109:483-486.
    9.Samet J.M.,Dominici F.,Curriero F.C.,Coursac I.and Zeger S.L.,Fine particulate air pollution and mortality in 20 US Cities,1987-1994.New England Journal of Medicine,2000,343(24):1742-1749.
    10.Schwartz J.,Laden F.and Zanobetti A.,The concentration-response relation between PM2.5 and daily deaths.Environmental Health Perspectives,2002,110(10):1025-1029.
    11.V H Borja-Aburto,M Castillejos,D R Gold,S Bierzwinski and D Loomis.Mortality and Ambient fine particles in southwest Mexico city,1993-1995.Environmental Health Perspect,1998,106(12):849-854.
    12.Nedim V.and Enneth E.N.,Atmospheric PAH concentrations in fine and coarse particles.Environmental Monitoring and Assessment,2003,87:81-92.
    13.张大年.城市大气可吸入颗粒物的研究.上海环境科学,1999,18(4):154-157.
    14.阮素云,苏瑾.环境2.5μm以下颗粒物污染对哮喘及肺癌发病的影响.环境与职业医学,2002,19(6):58-59.
    15.Chan Y.C.,Simpson R.W.,Mctainsh G.H.,Vowles P.D.,Cohen D.D.and Bailey G.M.,Characterization of chemical species in PM_(2.5) and PM_(10) aerosols in Brisbane,Australia.Atmospheric Environment,1997,31:3773-3785.
    16.Christoforou C.S.,Salmon L.G.,Hannigan M.P.,Solomon P.A.and Cass G.R.,Trends in fine particle concentration and chemical composition in Southern California.J.Air Waste Manage Assoc.,2000,50(1):43-53.
    17.江燕如,高庆先.大气气溶胶对气候与生态系统影响的综合评述.环境科学研究,1998,11(5):17-21.
    18.Hattori T.Contamination control and defect reduction in semiconductor manufacturing Ⅲ,Pennin- gton,NJ:The electrochemical society 1994:3.
    19.Constantionos S.,Seongheon K.,Mingchih C.,Lester L.T.and Henry G.Jr.,Field evalution of a modified DataRAM MIE scattering monitor for real-time PM2.5 mass concentration measurements.Atmospheric Environment,2000,34:4829-4838.
    20.田贻丽.粉尘浓度测量方法的研究,重庆大学硕士学位论文,2003.
    21.李丰果.大气颗粒物自动监测系统关键技术及PM2.5分析研究,华南师范大学博士学位论文,2005.
    22.Salkowski M.,Prototype fly ash monitor for Iincineration stacks,Final report,1964,IIT Research Inst.,Chicago,IL.
    23.Dresia H.and Spohr F.,Experience with the radiometric dust measuring unit “Beta Staubmeter,” Staub.1971,31:12-27.
    24.Lilienfeld P.and Dulchinos J.,Portable instantaneous mass monitor for coal mines dust,Am.Ind.Hyg.Assoc.J.1972,33:136-143.
    25.Chueinta W.and Hopke P.K.,Beta gauge for aerosol mass measurement.Aerosol Science and Technology,2001,35(4):840-843.
    26.Husar R.B.,Atmospheric particulate mass monitoring with a radiation detector,Atmos.Environ.1974,8:183-188.
    27.Stevens R.K.,Dzubay T.G.,Shaw R.W.,McClenny W.A.,Lewis C.W.and Wilson W.E.,Characterization of the aerosol in the great smoky mountains,Environ.Sci.Technol.,1980,14:1491-1498.
    28.Gotoh T.,Application of digital image-processing to a Beta Gauge for determining mass concentration of suspending particulate matter in atmosphere.Applied Radiation and Isotopes,1992,43:659-662.
    29.Jaklevic J.M.,Gatti R.C.,Golding F.S.and Loo B.W.,A β-Gauge method applied to aerosol samples,Environ.Sci.Technol.,1980,15:680-686.
    30.Olin J.G.and Sem G.J.,Piezoelectric microbalance for monitoring the mass concentration of suspended particles.Atmospheric Environment,1971,5:653-668.
    31.Allen G.,Sioutas C.and Koutrakis P.,Evaluation of the TEOM registered method for measurement of ambient particulate mass in urban areas.Journal of the Air and Waste Management Association,1997,47:682-689.
    32.Soutar A.,Watt M.,J.W.Cherrie et al.,Comparison between a personal PM10sampling head and the tapered element oscillating microbalance(TEOM) system.Atmospheric Environment,1999,33(27):4373-4377.
    33.Meyer M.B.and Rupprecht E.G.,Particulate matter sampling methods:the importance of standardization.Journal of Aerosol Science,1996,27:S349-S350.
    34.屈文军,张小曳,王丹,赵元茂,王亚强,曹国良,严立文.湿度变化对TEOM 1400a系列环境颗粒物监测仪PM10质量浓度观测的影响.中国粉体技术,2006,12(2):1-3.
    35.王乃宁.颗粒粒径的光学测量技术及应用.第一版,北京:原子能出版社.2000.
    36.Gmiterko A.,Slosarcik S.and Dovica M,.Algorithm of nonrespirable dust fraction suppression using an optical transducer of dust mass concentration.IEEE Transactions on Instrumentation and Measurement,1998,47(5):1228-1233.
    37.Milik D.E.and Folger H.S.,Turbidimetsy determination of particle size distribution of colloidal system.J.Colloidal Interface Science,1982,92(3):233-243.
    38.Edward E.U.,Particle size evaluation using multi-wavelength extinction measurements.Appl.Opt.1982,21(3):454-464.
    39.Kourti T.,Minimum number of turbidity measurements required for the determination of particle size distribution.J.Colloid Interface Science,1987,120(1):56-68.
    40.郑刚,孙浩,黄廷磊,虞先煌.颗粒浓度在线监测的双波长消光法.仪器仪表学报,2000,21(5):533-535.
    41.姚启钧.光学教程.第二版,北京:高等教育出版社,2000:408-410.
    42.叶茂.两相流颗粒粒径分布及浓度的光散射在线测量方法研究.东南大学博士学位论文,2000.
    43.WS/T206-2001公共场所空气中可吸入颗粒物(PM10)测定方法——光散射法,2002.
    44.曲建翘.公共场所卫生监测仪器使用指南.第一版,北京:中国计量出版社,1997:97-110.
    45.崔九思.室内空气污染监测方法.第一版,北京:化学工业出版社,2002:448-452.
    46.Thomas A.and Gebhart J., Correlations between gravimetry and light scattering photometry for atmospheric aerosols.Atmospheric Environment, 1994, 28(5):935-938.
    47.Gorner P., Bemer D.and Fabries F., Photometer measurement of polydisperse aerosols.Journal of Aerosol Science, 1995, 26: 1281-1302.
    48.Gorner P., Bemer D.and Fabries J.F., Theoretical and methodological approach of photometer calibration.J.Aerosol Sci., 1990, 21: S517-S520.
    49.Gorner P., Bemer D.and Fabries J.F., Simulation of photometer response to various polydisperse aerosols.Proc.7th ICSCS Congress, Compiegne, 1991, 2:168.
    50.Waggoner, A.P., Weiss, R.E., Comparisons of fine particle mass concentration and light scattering extinction in ambient aerosols.Atmospheric Environment, 1980,14:623-626.
    51.Patricia B.K., Getting data you need with particle measurements, http://www.tsi.com/documents /iti_075.pdf.
    52.TSI公司SIDEPAK AM510型个人智能防爆粉尘测试仪用户指南,2003.
    53.SIDEPAK? AM510 personal aerosol monitor theory of operation, http://www.tsi.com/documents /iti_085.pdf.
    54.Determining Custom Calibration Factors For Photometers, http://www.tsi.com /documents/DeterminingCustomCalibrationF actorsForPhotometers-ITI-099.pdf.
    55.Measuring Total Suspended Particulates (TSP) with Aerosol Photometers,http://www.tsi.com/docu- ments/ITI-058.pdf.
    56.Specifications SIDEPAK AM510 Personal Aerosol Monitor, http://www.tsi.com/ documents/Side-PakAM510_2980194RevI_07_06.pdf.
    57.Day D.E., Malm W.C.and Kreidenweis S.M., Aerosol light scattering measurements as a function of relative humidity.J.Air Waste Manage.Assoc.2000, 50: 710-716.
    58.Gurumurthy R., John L.A., Gregory C.P.and Ken S., Characterizing Indoor and Outdoor 15 Minute Average PM2.5 Concentrations in Urban Neighborhoods.Aerosol Science and Technology, 2003, 37: 33-45.
    59.Gottfried H.and Michael L., Equilibrium size of aerosol particles and relative humidity: new experimental data from various aerosol types and their treatment for cloud physics application.Contributions to Atmospheric Physics, 1981, 54(1): 57-71.
    60.Mcmurry P.H., Zhang X.and Lee Q.T., Issues in aerosol measurement for optical assessments.J.Geophys.Res., 1996, 101: 188-197.
    61.Sinclair D., CountesS R.J., Hoopes G.S., Effect of relative humidity on the size of atmospheric aerosol particles, Atmospheric Environment, 1974, 8(11): 11-17.
    62.Saxena P.and Hildemann L.M., Water soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds.Journal of Atmospheric Chemistry, 1996, 24: 57-109.
    63.McMurry P.H., Zhang X.and Lee Q.T., Issues in Aerosol Measurement for Optical Assessments.Journal of Geophysical Research, 1996, 101(19): 188-197.
    64.Sloane C.S., Optical properties of aerosols of mixed composition.Atmospheric Environment, 1984, 18: 871-878.
    65.Lowenthal H.D., Rogers F.C, Saxena P., Watson J.G.and Chow J.C, Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors.Atmospheric Environment, 1995, 29: 751-766.
    66.Gurumurthy R., John L.A., Gregory C.P.and Ken S., Characterizing Indoor and Outdoor 15 Minute Average PM2.5 Concentrations in Urban Neighborhoods.Aerosol Science and Technology, 2003, 37: 33-45.
    67.Laulainen N.S., Summary of conclusions and recommendations from a visibility science workshop; technical basis and issues for a national assessment for visibility impairment, Prepared for US DOE, Pacific Northwest Laboratory, PNL.8606.1993.
    68.Constantionos S., Seongheon K., Mingchih C, Lester L.T.and Henry G Jr., Field evalution of a modified DataRAM MIE scattering monitor for real-time PM2.5 mass concentration measurements.Atmospheric Environment, 2000, 34: 4829-4838.
    69.Holve D.and Self S.A., Optical particle sizing for in-situ measurement: Part 1.Appl.Optics, 1979,18: 1632-1645.
    70.Holve D.and Self S.A., Optical particle sizing for in-situ measurement: Part 2.Appl.Optics, 1979,18: 1646-1652.
    71.Holve D., Tichenor D., Wang J.C.F.and Hardesty D., Design criteria and recent developments of optical single particle counters for fossil fuel systems.Opt.Eng., 1981,20: 529-539.
    72.Hirleman E.D., Laser-based single particle counters for in-situ particulate diagnostics.Opt.Eng., 1980, 19:854-869.
    73.Virgil A.M.and Kenneth L.R., A portable optical particle counter system for measuring dust aerosols.American Industrial Hygiene Association Journal, 1978, 39:210-218.
    74.Robert G K., The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range.J.Aerosol Sci., 1989, 20(3): 331-345.
    75.卞保民.空气尘埃粒子计数器及光电传感器研究.南京:南京理工大学硕士学位论文,1996.
    76.卞保民,贺安之,阎大鹏.0.1μm尘埃粒子计数器光学传感器.仪器技术与传感器,1997.11:1-4.
    77.贺安之,卞保民,阎大鹏.便携式半导体尘埃粒子计数器的研制.量子电子学,1996.13:187.
    78.卞保民,贺安之,吴东楼.O.1μm激光尘埃粒子计数器中光源大立体角反射成像弥散斑及其处理,光电子·激光,1997,8(4):246-250.
    79.阎逢旗,胡欢陵,虞统.用光学粒子计数器测颗粒物质量浓度和能见度.量子电子学报,2004,21(1):98-102.
    80.Osamu A.,Kenji K.,Takeshi S.,Shigeto M.,Junrong X.,Mingzhe L.,Satoru Y.and Wenshou W.,Aeolian dust transportation on fine days over the slopes in mountainous areas around the taklimakan desert,China.Journal of the Meteorological Society of Japan,2005,83A,19-30.
    81.朱震,王式民,叶茂.用光学计数方法检测排烟粉尘尺寸分布及浓度.能源研究与利用,1998,4:24-26.
    82.Thomas P.,Darrin O.,Vijay G and Patrick O.,Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles.Annals of Occupational Hygiene,2006,50:843-850.
    83.Brett D.G.,Norman L.E.,Delbert J.E.,Judith C.C.,John G.W.,Jeffrey L.A.,Michael B.M.,Philip K.H.,Rida A.,Douglas W.L.and William E.W.,Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno,CA.Aerosol Science and Technology,2006,40:811-826.
    84.Portable Aerosol Spectrometer Model 1.109,http://www.dustmonitor.corn/Research/1109.htm.
    85.阎逢旗,胡欢陵,虞统.北京市冬季大气气溶胶粒子数密度及数密度谱演变的分析.过程工程学报,2002,2(Suppl.):310-313.
    86.Rawle A.Basic principles of particle size analysis.2003,http://www.pmthungary.hu/basic,pdf.
    87.Schmidt-Ott A.and W(u|")stenberg J.,Equivalent diameters of non-spherical particles.Journal of Aerosol Science,1995,26,Suppl 1,S923-S924.
    88.T.艾伦.颗粒大小测定.第三版,北京:中国建筑工业出版社,1984:108-112.
    89.Jaenicke R.,The optical particle counter:cross-sensitivity and coincidence.Aerosol Science,1972,30:95-111.
    90.Van de Hulst H C.Light scattering by small particles.New York:Wiley,1957.
    91.Jones A.R.,Light scattering for particle characterization.Prog.Energy Combust.Sci.,1999,25:1-54.
    92.Kerker M.The scattering of light and other electromagnetic radiation.New York:Acadmic Press,1969.
    93.Bohren C.F.and Huffman D.R.,Absorption and scattering of light by small particles.New York:John Wiley & Sons,1983.
    94.Latimer P.J.and Barber P.J.,Scattering by ellipsoids of revolution:A comparision of theoretical methods.J.Coll.Interf.Sci.,1978,63:310-316.
    95.Al-Chalabi S.A.M.,Jones A.R.,Light scattering by irregular particles in the Rayleigh-Gans-Debye approximation.J.Phys.D,1995,28:1304-1308.
    96.Hodkinson J.R.,Particle sizing by means of the forward scattering lobe.Appl.Optics,1966,5:839-844.
    97.Sharma S.K.,On the validity of the anomalous diffraction approximation,J.Mod.Optics,1992,39:2355-2361.
    98.Sharma S.K.,Modified anomalous diffraction approximation for intermediate size soft particles.Opt.Commun.,1993,100:13-18.
    99.高永锋,邹丽新,黄惠杰,梁春雷,凌卫锋,张耀明.尘埃粒子计数器中光源对传感器光通量的影响分析.应用光学,2005,26(3):45-49.
    100.许德毓,蔡小舒.激光散射法测量TSP和PM10的最佳采光角及立体角的研究.上海理工大学学报,2001,23(1):57-60.
    101.Cooke D.D.and Kerker M.,Response calculation for light-scattering aerosol particle counters.Appl.Opt.1975,14(3):734-739.
    102.梁春雷,黄惠杰,任冰强,赵永凯,杜龙龙.激光尘埃粒子计数器微型光学传感器的研究.光学学报,2005,25(9):1260-1264.
    103.Taguas F J,Martin M A and Perfect E,Simulation and testing of self-similar structures for soil particle-size distributions using iterated function systems.Geoderma,1999,88:191-203.
    104.刘晓明,赵明华,苏永华.沉积岩土粒度分布分形模型改进及应用.岩石力学与工程学报,2006,25(8):1691-1697.
    105.Fabrizio S,Andrea B and Francesco S,Particle size distributions in natural carbonate fault rocks:insights for non-self-similar cataclasis.Earth and Planetary Science Letters,2003,206:173-186.
    106.Capinteri A,Pugno N,A multifractal comminution approach for drilling scaling laws. Powder Technology,2003,131(1):93-98.
    107.姚磊华.遗传算法和高斯牛顿法联合反演地下水渗流模型参数.岩土工程学报,2005,27(8):885-890.
    108.毛剑飞,诸静.工业机器人视觉定位系统高精度标定研究.机器人,2004,26(2):139-144.
    109.Bakushinski A.B.,The problem of the convergence of the iteratively regularized Gauss-Newton method.Computational mathematics and mathematical physics,1992,32(9):1353-1359.
    110.Marquardt D.An algorithm for least-squares estimation of nonlinear parameters.Journal of the Society for Industrial and Applied Mathematics,1963,11(2):431-441.
    111.李庆扬,关治,白峰彬.数值计算原理.第一版,北京:清华大学出版社,2000:259-267.
    112.孙亮,李君利,程建平.一种基于遗传算法和高斯-牛顿法的合成算法在放射性药物生物动力学数据分析中的应用.核技术,2006,29(12):927-931.
    113.Shannon C.E.,Weaver W.The mathematical theory of communication.University of Illinois Press,1963.
    114.姜丹.信息论与编码.第二版,安徽:中国科技大学出版社,2004:1-20.
    115.Fiorentino M.,Calps P.and Singh V.P.,An entropy-based morphological analysis of river basin networks.Water Resources Research,1993,29(4):1215-1224.
    116.Jianhua B.,Yinmei L.,Liren L.,Zan G.and Zhou W.,Information entropy method for measuring the axial displacement of a bead and its application to analyzing the trapping force of optical trap.Proceedings of SPIE,2005,5637:305-312.
    117.Strait B.J.and Dewey T.G.,The Shannon information entropy of protein sequences.Biophysical Journal,1996,71:148-155.
    118.Akio H.,Thomas B.and Masaaki M.,Information Entropy in Cosmology,Phys.Rev.Lett.,2004,92(14):1301-1304.
    119.冯国章,宋松柏,李佩成.水文系统复杂性的统计测度.水利学报,1998,12(3):247-268.
    120.魏民祥,闫桂荣,郭万林.基于信息熵原理的结构振动传感器的布局.仪器仪表学报,2004,25(6):802-804.
    121.Preining O.Information theory applied to the acquisition of size distributions.Aerosol Science,1972,3:289-296.
    122.McAfee R.J.and Nettleship I.,The application of information entropy to the estimation of three-dimensional grain or particle size distributions from materialographic sections.Scripta Materialia,2005,52:1281-1285.
    123.成晓北,黄荣华,朱梅林.信息熵在喷雾液滴尺寸分布计算中的应用.华中科技大学学报,2002,30(7):30-32.
    124.Xianguo L.Richard S.T.,Bernard S.and Jean-Michel M.,Derivation of droplet size distribution in sprays by using information theory.Combustion Science and Technology,1988,60:345-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700