用户名: 密码: 验证码:
砷在棕壤中的吸附—解吸行为及赋存形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工业化进程的加速,加之含砷农药、化肥、杀虫剂等的大量使用,使得越来越多的砷进入土壤环境,土壤砷污染现象日益突出。与其它重金属污染相比,砷的相关研究较为薄弱,有关棕壤对砷吸附特性方面的系统研究目前鲜有报道。本文以辽宁地区代表性土壤—棕壤作为试验材料,采用室内模拟分析法、平衡吸附法、动力学批实验法以及X射线衍射(XRD)对砷(V)的吸附-解吸行为及其影响因素进行了研究。同时采用连续提取法对不同污染水平土壤中砷的各个形态含量进行了测定。旨在明确砷在棕壤中的环境行为、影响因素及其作用机制。主要研究结果如下:
     1.利用一次平衡法研究了东北地区四种主要类型棕壤(棕壤、潮棕壤、棕壤性土、白浆化棕壤)及其剖面对砷的吸附-解吸特性。结果表明:砷(V)在棕壤中的等温吸附可用Langrnuir、Freundlich方程进行拟合,相关系数均达到显著或极显著水平。四种类型棕壤中以潮棕壤对砷(V)的吸附容量最大。淀积层及母质层土壤对砷(V)吸附量远远超过淋溶层土壤。解吸实验表明,吸附态砷(V)不易解吸,且解吸量随吸附量的增加而增加,两者之间关系符合二次幂方程。
     2.运用多元线性逐步回归分析了砷(V)的最大吸附量与棕壤各项理化指标之间的关系.回归结果显示砷(V)在棕壤中的吸附能力与土壤有机质含量、铁锰含量、pH值和全磷含量等有关。
     3.pH2-10范围内,砷(V)吸附量随pH值变化的大致趋势是:随pH值的升高,吸附量逐渐降低;pH10-12范围内,砷吸附量随pH值的升高而急剧上升。强酸条件下,吸附量增加的主要原因是静电吸附机制,强碱条件下吸附量的增加是由于砷(V)与土壤中的离子生成了难溶性的砷酸盐沉淀。
     4.进行有机质去除处理后,两种肥力水平棕壤对砷的最大吸附量分别为原土的3.2和2.3倍,同时其可变负电荷数量分别降低了27.9%和20.3%,说明有机质中存在大量的负电荷可能是抑制砷吸附的重要原因。
     5.磷添加顺序及浓度影响砷在棕壤中的吸附及解吸。土壤中磷浓度越高,砷(V)的吸附量越小,吸附态砷(V)的解吸率越高。三种磷处理方式中(处理Ⅰ:砷先于磷24h添加;处理Ⅱ:砷与磷同时添加;处理Ⅲ:砷后于磷24h添加),以磷先加入土壤(处理Ⅲ)对砷吸附的抑制作用最明显。但是土壤中存在着专门针对砷的具有优先性的吸附位点,随着磷浓度的进一步加大,砷(V)的吸附量和解吸率变化不大,趋于平缓。
     6.砷在铁锰结核中的最大吸附量是土壤的10倍左右,说明铁锰结核是砷(V)在棕壤中吸附的主要载体之一.砷在铁锰结核中吸附量随pH值的增加而降低。吸附过程受离子强度的影响较小,吸附态砷(V)不易被解吸下来,说明砷(V)在铁锰结核上的吸附以专性吸附为主。动力学研究表明砷(V)在铁锰结核上的反应分为两部分,起初的快反应是表面反应,而后的慢反应受扩散作用的影响,以快反应为主。
     7.土壤外源添加不同浓度砷(V)后,制备不同浓度梯度的含砷土壤,研究砷(V)在棕壤中的吸附量和解吸量与砷污染负荷的关系。结果表明:污染负荷越重,吸附量越小,解吸量越大。动力学研究表明,反应速度不受污染负荷的影响,吸附与解吸动力学方程可由Elovice与双常数方程来描述,表明砷在棕壤中的吸附是由表面吸附和内部扩散所控制。
     8.砷(V)污染水平不同的棕壤中,各形态砷(V)随老化时间的变化经研究表明:时间及引入到土壤系统中的砷含量是形态分配的重要影响因素。外源砷在老化开始的30d内迅速被土壤固定.随土壤中砷浓度的增加,砷从不稳定形态向稳定形态转化的时间增加,各形态达成相对稳定的可能性减小,砷的活性增强,其对生态环境的威胁增大。
As a result of the accelerated process of industrialization, and the popular use of agricultural chemicals, fertilizers and pesticides, more and more arsenic enter to the soils, arsenic pollution has become increasingly prominent. Compared with other heavy-metal, research of arsenic contamination was relatively weak, especially the characteristics of arsenic adsorption on brown soil was still remained elusive. This paper chooses the arsenic(V) for typical representative pollutant, used brown soil which was a typical soil in Liaoning province, to study As adsorption behavior and its influencing factors. With the help of methods such as balanced adsorption, indoor culture and mathematical analysis, batch system dynamics as well as X-ray diffraction (XRD). Simultaneously, we determined the As form of different As burden soils with the methods of continuous extraction. The purpose of the study was to understand the behavior of As adsorption in the soils, and the impact factors and its mechanisms. The main results of this study were presented:
     1.Characteristic of As(V) sorption-desorption was studied on farm and natural forest soils and its soil profile with the method of one way balancing towards the brown soil、fluvo-aquic brown soil、brown earth soil and bajing brown soil. The result indicated: Isothermal adsorption of As(V) can be fitted by Langmuir and Freundlich equation, the correlation coefficient achieves remarkable or the extremely remarkable level. The maximum adsorption from the Langmuir equation indicated that the fluvo-aquic brown soil has the biggest amount of As sorption; Capacity of As(V) sorption on illuvial horizon and parent material horizon were far beyond eluvial horizon; As(V) adsorption capacity of high fertility level should be less than the level of low fertility. Desorption experiments show that desorption of adsorbed As(V) was not easy, and the amount of desorption increases with the adsorption, the amount of sorbed and desorbed As(V) could be described by twice power function equation.
     2. Relationship between maximum As(V) sorption and physical and chemical properties was conducted by establish model with the help of multiple linear stepwise regression. Regression equation was derived. Regression results showed that capacity of arsenic (V) adsorption in the brown soil was related to organic matter content, Fe and Mn content, pH value, phosphorus content ect.
     3. On the pH range 2-10, As(V) sorption mostly increase with pH fluctuate, as the further increase of pH (pH=11.59), As(V) sorption increase suddenly. The reason was that under the low pH values, electrostatic adsorption play a major role on adsorption; but under the high pH value, the increase in adsorption due to generated insoluble precipitation of arsenate.
     4. After remove of organic matter, amount of As(V) adsorption on high fertility and low fertility levels were 3.23 and 2.3 times than origin soil, variable charge decrease 27.9% and 20.3%, its may conclude that organic matter compete adsorption sites with arsenic to inhibit As(V) Adsorption in the brown soil.
     5. Adsorption and desorption process was affected by the order and the concentration of phosphorus. Adsorption of As(V) decline with the increased of P, while desorption rate of As(V) was step up .About the order of P added (Ⅰ:As>P;Ⅱ:As = P;Ⅲ:As     6. Isotherm adsorption experiments showed that capacity of iron-manganese nodules on As(V) adsorption was strong, its 10 times to the corresponding soil, indicating that the existence of iron-manganese nodules may be the main vector of As(V) adsorption in the brown soil . The amount of As(V) adsorption decline with the increase of pH value. Adsorption was less affected by ionic strength, adsorbed arsenic (V) can not easily be replaced, conclude that the mechanism of As(V) adsorption on iron-manganese mainly to specific adsorption. Kinetic study shows that reaction of As on iron-manganese nodules could be divided into two parts, the initial fast reaction was surface reaction, and the slow reaction response to the impact of diffusion.
     7. Different concentrations of As(V) was added to Soil, with the methods of indoor cultivation, preparation of different levels of polluted soils, to study the relationship between capacity of adsorption and desorption with different As pollution load. The results showed that: the more serious the pollution load was, the smaller the adsorption capacity, the greater the desorption volume. The reaction rate was not impact by pollution load. Kinetics of adsorption process can be divided into two parts; kinetic equation could be described by Elovice and two-constant equation, indicated that the sorption involved surface sorption and inner diffusion.
     8. In different metal burden soils, forms of As were changed with aging time, showed that: Time and As pollution load were the factor which influnced the distribution form. When aging time was 30d, added As can be quickly fitted by soil. With the increase of As content, transformation time from unstable to stable form increased, the possibility of every form to achieve the relative stabilization deduced. As activity and its threatment to environment inhanced.
引文
1.安冬,李达圣.2005.贵州省地方性砷中毒防治现状及对策[J].中国地方病学杂志,24(2):214-216.
    2.陈怀满著.2002.土壤中化学物质的行为与环境质量[M].北京:科学出版社.
    3.陈同斌,郑袁明,陈煌,等.2004.北京市土壤重金属背景值的系统研究[J].环境科学,25:117-122.
    4.陈同斌,韦朝阳,黄泽春,等.2002.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,47:207-210.
    5.陈同斌.1991.土壤中砷的吸附特点及其机理.中国博士后文集(第四集).北京:北京大学出版社,564-570.
    6.陈同斌.1996.土壤溶液中的砷及其与水稻生长效应的关系[J].生态学报,2(16):147-152.
    7.陈同斌,2004.http://www.ce.cn/cysc/nlmy/gdxw/200412/15/t20041215_2585173.shtml.
    8.陈同斌,郑袁明,陈煌,等.2005.北京市不同土地利用类型的土壤砷含量特征[J].地理研究,24(2):229-235.
    9.陈敬军,蒋柏泉,王伟.2004.除砷技术现状与进展[J].江西化工,6(2):1-4.
    10.曹志洪,李庆逵.1988.黄土性土壤对磷的吸附与解吸土壤学报,25(3):218-226.
    11.戴树桂,刘小琴,徐鹤.1998.污染土壤的植物修复技术进展.上海环境科学,7(9),25-27.
    12.冯跃华,胡瑞芝,张杨珠,等.2005.几种粉煤灰对磷素吸附与解吸特性的研究[J].应用生态学报,16(9):1756-1760.
    13.范秀山,彭国胜.2002.分子、离子对及离子状态在固液吸附中的作用浅析[J].土壤,34(1):36-41.
    14.傅平.1999.砷的地球化学屏障作用初探[J].重庆环境科学,21(6):47-48.
    15.何公理,曹守仁.1989.砷在大气可吸入颗粒物中的分布[J].环境与健康杂志,6:5-8.
    16.何振立.1998.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社.
    17.黄昌勇.2002.土壤学(21世纪教材)[M].北京:中国农业出版社.
    18.简放陵。1995.土壤中砷污染的研究现状[J].广州环境科学,10(1):39-41.
    19.简放陵.1988.四川紫色土砷的化学行为及其临界值研究[D].西南农业大学硕士论文.
    20.姜永清.1983.几种土壤对砷酸盐的吸附[J].土壤学报,20(4):394-405.
    21.姜永清.1985.土壤吸附砷酸盐动力学初步研究[J].土壤学报,22(1):75-82.
    22.蒋成爱,吴启堂,陈杖榴.2004.土壤中砷污染研究进展[J].土壤,36(3):264-270.
    23.李道林,程磊.2000.砷在土壤中的形态分布与青菜的生物学效应[J].安徽农业大学学报,27(2):131-134.
    24.李勋光,李小平.1996.土壤砷吸附及砷对水稻的毒性[J].土壤,(2):98-100.
    25.刘文菊,朱永官.2005.湿地植物根表的铁锰氧化膜[J].生态学报,25(2):358-363.
    26.刘良梧,张民.1995.变性土铁锰氧化物结核与钙质结核的元素富集及其环境意义[J].土壤,27(5):262-268.
    27.罗艳丽.2006.新疆奎屯123团土壤-植物系统砷污染研究[D].新疆农业大学硕士论文.
    28.李英伦,蒲富永.1992.铜铅福砷在紫色丘陵农田中的径流迁移[J].农业环境保护,11(2):66-71.
    29.李启权,王昌全,李冰,等.2007.成都平原土壤中砷的空间分布及污染评价[J].土壤通报,38(2):357-360.
    30.李强,莫大伦.1997.土壤环境中砷污染的危害及其研究进展[J].热带亚热带土壤科学,6(4):291-295.
    31.李廷强,杨肖娥.2004.砷从农业土壤向人类食物链的迁移[J].广东微量元素科学,11(1):1-8.
    32.李典友.1996.土壤中砷的含量、迁移转化及其生物效应[J].六安师专学报,1:68-73.
    33.林陶,张金洋,石孝均,等.2007.三峡水库消落区土壤汞吸附解吸动力学特征[J].环境化学,26(3):302-306.
    34.鲁如坤主编.2000.土壤农业化学分析方法(第一版)[M].北京:化学工业出版社.
    35.梁美娜,朱义年,刘海玲,等.2006.氢氧化铁对砷的吸附研究[J].水处理技术,36(6):32-36.
    36.雷梅,陈同斌,范稚连,等.2003.磷对土壤中砷吸附的影响[J].应用生态学报,14(11):1989-1992.
    37.潘根兴.1989.淮北土壤铁锰结核中过渡金属元素的富集及其环境地球化学意义[J].科学通报.19:1505-1507.
    38.邱立萍.1999.砷污染危害及其治理技术[J].新疆环境保护,21(3):15-19.
    39.孙铁珩.2008.http://business.sohu.eom/20080618/n257577152.shtml.
    40.陶玉强,姜威,苑春刚,等.2005.草酸盐影响污染土壤中砷释放的研究[J].环境科学学报,25(9):1232-1235.
    41.谭文峰,刘凡,李永华,等.2000.我国几种土壤铁锰结核中的氧化锰矿物类型[J].土壤学报,37(2):192-202.
    42.王学军,邓宝山,张泽浦,等.1997.北京东郊污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报,17:412-416.
    43.韦东甫,华珞,白玲玉,等.1996.土壤对砷的缓冲性与砷的生物效应及形态分布[J].土壤,(2):94-97.
    44.韦璐阳.2005.钙、镁、铁对土壤砷污染的治理研究[D].广西农业大学硕士论文.
    45.吴攀,刘丛强,杨元根,等.2001.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报,21(2):213-218.
    46.吴攀,裴廷权,冯丽娟,等.2006.贵州兴仁煤矿区土壤表土与沉积物中砷的环境调查研究[J].地球与环境,34(4):31-36.
    47.吴顺华.2002.砷对健康影响的研究进展[J].国外医学地理分册,23(4):145-147.
    48.王真辉,林位夫.2002.农田土壤重金属污染及其生物修复技术[J].海南大学学报(自然科学版),20(4):386-393.
    49.宋书巧,周永章,周兴,等.2004.土壤砷污染特点与植物修复探讨[J].热带地理,24(1):6-9.
    50.徐明岗.1998.土壤离子吸附.离子吸附的动力学[J].土壤肥料,(1):3-6.
    51.谢正苗,黄昌勇,何振立.1998.土壤中砷的化学平衡[J].环境科学进展,6:22-37.
    52.谢正苗.1987.土壤中砷的吸附和转化及其与水稻生长的关系[D].浙江农大博士论文.
    53.谢正苗.砷的土壤化学[J].1989.农业环境保护,8(1):36-38.
    54.夏家淇.1993.土壤砷的环境基准研究[J].农业生态环境,(4):1-4.
    55.夏增禄等著.1992.中国土壤环境容量[M].地震出版社.
    56.徐红宁,许嘉琳.1996.我国砷异常区的成因和分析[J].土壤,2:80-82.
    57.刘铮.土壤与植物中锰的研究进展[J].土壤学进展.1991,1 9(6):1-10.
    58.熊毅主编.1985.土壤胶体(第二册):土壤胶体研究法[M].北京:科学出版社.245-260.
    59.熊毅,陈家坊等编著.1990.土壤胶体(第三册)[M].北京:科学出版社.
    60.叶瑛,季姗姗,邬黛黛,等.2006.几种吸附剂吸附亚砷酸根离子中pH值的动态变[J].高校地质学报,12(2):228-233.
    61.于天仁.1987.土壤化学原理(第1版)[M].北京:科学出版社.
    62.易秀,李佩成.2005.黄土性土壤对砷的净化作用及迁移规律研究[J].生态环境,14(3):336-340.
    63.姚敏,梁成华,杜立宇,等.2008.沈阳某冶炼厂污染土壤中砷的稳定化研究[J].环境科学与技术,31(6):8-11.
    64.张民,龚子同.1989.钙质变性土形成的某些地球化学特征.土壤,21(5):226-233.
    65.张军营,郑楚光,刘晶,,等.2002.砷污染和抑制研究进展[J].煤炭转化,25(2):23-28.
    66.张理科.2002.砷的致癌性研究进展[J].医学理论与实践,15(2):163-164.
    67.赵其国.2003.发展与创新现代土壤科学[J].土壤学报,40(3):321-327.
    68.赵安珍,徐仁扣.2006.二氧化锰对As(Ⅲ)的氧化及其对针铁矿去除水体中As(Ⅲ)的影响[J].环境污染与防治理,28(4):252-274.
    69.曾希柏,李莲芳,白玲玉,等.2007.山东寿光农业利用方式对土壤砷累积的影响[J].应用生态学报,18(2):310-316.
    70.郑喜坤,鲁安怀,高翔,等.2002.土壤中重金属污染现状与防治方法[J].土壤与环境,11(1):79-84.
    71.朱祖祥.1983.土壤学[M].北京:农业出版社.
    72.张广莉,宋光煜,赵红霞.2002.磷影响下根际无机砷的形态分布及其对水稻生长的影响[J].土壤学报,39(1):23-28.
    73.Alexander M.2000.Aging,bioavailability,and overestimation of risk from environmental pollutants.Environmental Science Technology,34(20):4259-4265.
    74.Alves,M.E.,Lavorenti,A.2004.Sulfate adsorption and its ralationships with properties of representative soils of the Sao Paulo State,Brazil.Geoderma,118:89-99.
    75.Alvarez-Puebla,R.A.,C.Aisa,J.Blaseo,J.C.Eeheverria,B.Movsquera,and JJ.Garrido,2004.Copper heterogeneous nucleation on a palygorskitic clay:an XRD,EXAFS and molecular modeling study.Applied Clay Science,25:103-110.
    76.Axe,L.,and P.Trivedi,2002.Intraparfiele surface diffusion of metal contaminants and their attenuation in microporous amorphous A1,Fe,and Mn oxides.Journal of Colloid and Interface Science,247:259-265.
    77.Ana C.Q.Ladeira,Viriginia S.T.2004.Ciminelli.Adsorption and desorption of arsenic on an oxisol and its constituents. Water Research,38:2087-2094.
    78.Antonio Violante,Massimo Pigma.2002.Competitive of Arsenate and Phosphate on different clay minerals and soils.Soil sci.Soc.Am,J,66:1788-1796.
    79.Ben Jamind.Kocar,Mitch Hell J,Herbel.2006. Contrasting Effects of Dissimilatory Iron(Ⅲ) and Arsenic(V) Reduction on Arsenic Retention and Transport.Environ.Sci.Technol,40:6715-6721.
    80.Beyrouty, C.A. et al.l984.Evidence supporting specific adsorption of boron on synthetic aluminum hydroxide. J. Soil Sci.Soc.Amer,48:284-287.
    81.Bhatti J. S., Comerford N. B., Johnston C. T.1998. Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a spodic horizon. Soil Sci. Soc. Am. J,62:1089-1095.
    82.Bhatti J. S., Comerford N. B., Johnston C. T.1998. Influence of soil organic matter removal and pH on oxalate sorption onto a spodic horizon. Soil Sci. Soc. Am. J,62:152-158.
    83.Brennan R F,Bolland M D A,Jeffery R C,Alfen D G.1994.Phosphorus adsorption by a range of Western Australian soils related to soil properties.Commun Soil Sci Plant Anal, 25:(15-16):2785-2795.
    84.Burns R G.,and Buns V M.1975.Mechanisms for nucleation and growth of manganese nodule.Nature, 255: 130-131.
    85.Cescas M P, Tyner E H, and Harmer R S III.1970.Ferromanganiferous soil concretions: A scanning electron microscope study of their micropore structures. Soil Science Society of America Proceedings,34:641-644.
    86.Chien,S.H.and Clayton,W.R.1980.Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci.Soc.Am.J., 44:265-268.
    87.Cornu S., Breeze D., Saada A., Baranger, P.2003. The influence of pH, electrolyte type, and surface coating on arsenate (V) adsorption onto kaolinites. Soil Sci. Soc.Am. J., 67:1127-1132.
    88.Chen M,Ma L Q and Harris W G2002. Arsenic concentrations in Florida surface soils:Influence of soil type and properties. Soil Sci. Soc. Am. J.,66:620-640.
    
    89.Chen TB.1994. Arsenate adsorption in soil and its mechanism. Chin Environ Sci,5(1):85-91.
    90.D.Mohapatra,p.Singh,W.Zhang, et al.2005.The effect of citrate, acetate, silicate, and phosphate on stability of synthetic arsenic-loaded ferrihydrite and al-ferrihydrite.Journal of Hazardous Materials B, 124:95-100.
    91.Elkhatib E A,Bennett O L and Wright R J.1984.Arsenate sorption and desorption in soils. Soil Sci. Soc. Am. J.,48:1025-1030.
    92.Elkhatib, E.A. and Hern, J.L. 1988 .Kinetics of phosphorus desorption from appalachian soils.Soil Sci.,145:222-229.
    93.Fendorf S,Eick MJ.1997.Grossl Sparks DL.Arsenate and chromate retention mechanisms on goethite 1.Surface structure.Environmental Science and Technology,31:315-320.
    94.Fordham,A.W. and Norrish,K.1983.The nature of soil particularly those reacting with arsenate in a series of chemically treated samples. Australian Journal of Soil Research, 21:455-477.
    95.Frost R R et al.l977.Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay mineral.Soil Sci.Soc.Am.J.,41:53-57.
    96.Liu,F.,J.Z.He,C.Colombo,and A Violante.1999.Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate.Soil Sci,164:180-189.
    97.Gao Y,Mucci A.2001.Acid base reactions,phosphate and arsenate complexation,and their competitive adsorption at the surface of goethite in 0.TM NaC1 solution.Geochimica et Cosmochimica Acta,65:2361-2378.
    98.Galba J et al.1973.Sorption of arsenates under kinetic conditions in selected soil types.Acta Fytotech,28:187-197.
    99.Grafe M,Eick MJ,Grossl PR,Saunders AM.2002.Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon..Journal of Environmental Quality,31:1115-1123.
    100.Goldberg.S.,and C.T.Johnston.2001.Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements,vibrational spectroscopy,and surface complexation modeling.Colloid Interface Sci,234:204-216.
    101.Goldberg S.2002.Competitive adsorption of arsenate and arsenite on oxides and clay minerals.Soil Sci.Sot.Am.J.,66:413-421.
    102.Goldberg S.1986.Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals.Soil Sci.Sot.Am.J.,50:1154-1157.
    103.Goldberg S.,Glaubig R.A.1988.Anion sorption on a calcareous,montmorillonitie soil-arsenic.Soil Sci.Soc.Am.J.50:1154-1157.
    104.Grafe M,Nachtegaal M,Sparks DL.2004.Formation of metal-arsenate precipitates at the goethite-water interface.Environmental Science and Technology,38:6561-6570.
    105.Grafe M.,Eick M.J.,Grossl P.R.2001.Adorption of arsenate(V) and arsenite(lll)on goethite in the presence and absence of dissolved organic carbon.Soil Sci.Soc.Am.J,65:1680-1687.
    106.Grafe M.,Eick MJ.,Grossl P.R.2002.Saunders AM.Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon..Joumal of Environmental Quality,31:1115-1123.
    107.Hua Zhang,H.M.Selim.2005.Kinetics of arsenate adsorption-desorption in soils.Envrion sci.Technol,39:6101-6108.
    108.Holford R D.1975.The high and low energy phosphate adsorbing surface in calcareous soils.Soil sci,26:407-417.
    109.Hingston,F.J.1981.A review of anion adsorption.In Anderson,M.A.(eds),Adsorption of Inorganics at Soild-Liquid Surface.Ann Arbor:Ann,Arbor Sci.,51-90.
    110.Hingston,F.J.A.M.Posner,and J.P.Quirk.1971.Competitive adsorption of negatively charged ligands on oxide surfaces.Discuss.Faraday Soe,52:334-342.
    111.Ilwon Ko,Ju-Yong Kim,Kyoung-Woong Kim.2004.Arsenic speciation and sorption kinetics in the As-hematite-humic acid system.Colloids and Surface A:Physicochem.Eng.Aspects,234:43-50.
    112.Ilwon Ko,Allen P.DAVIS,Ju-Yong KIM,et al.2007.Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid.Journal of hazardous materials, 141:53-60.
    113.Johanna Bushman_n,Alexandra Kappeler,Ursula Lindauer,et al.2006.Arsenite and Arsenate Binding to Dissolved Humic Acid:Influence ofpH,Type of Humie Acid,and Aluminum.Environ.Sci.Technol,40:6015-6020.
    114.Jain A,Raven KP,Loeppert RH.1999.Arsenite and arsenate adsorption on ferrihydrite:Surface charge reduction and net OH release stoichiometry.Environmental Science and Technology,33:1179-1184.
    115.Kaiser J.1998.Toxicologists shed new light on old poisons.Science,279:1850-1851.
    116.Kaiser,K.,Guggenberger G.2003.Mineral surface and soil organic matter.European Journal of Soil Science,54:219-236.
    117.Koretsky C.2000.The significance of surface complexation reactions in hydrologic systems:a geochemist's perspective.J.Hydrology,230:127-171.
    118.Lei Luo,Shuzhen Zhang,Xiao-Quan Shan,Yong-Guan Zhu.2006.Effects of oxalate and humic acid on arsenate sorption by and desorption from Chinese red soil.Water,air and soil pollution,176:269-283.
    119.Leonard A.1991.Arsenic:In Merian E,in corporation with Clarkson,et al.eds.Metals and their compounds in the environment.Occurrence,Analysis and Biological Relevance.Weinheim,VCH:751-773
    120.Livesey NT,Huang PM.1981.Adsorption of arsenate by soils and its relation to selected chemical properties and anions.Soil Science,131:88-94.
    121.Ladeira ACQ,Ciminelli VST.2004.Adsorption and desorption of arsenic on an oxisol and its constituents.Water Research,38:2087-2094.
    122.Liu F.,De Cristofaro A.,Violante A.2001.Effect on pH,phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite.Soil Sci,166:197-208.
    123.Liu F,Colombo C,Adamo P,He J Z,and Violante A.2002.Trace Elements in Manganese-Iron nodules from a Chinese alfisol.Soil Science Society of America Journal,66:661-670.
    124.Mart'nez C.E.,Jaeobson A.R.,MeBride M.B.2003.Aging and temperature effeets on DOC and elemental release from a metal contaminated soil.Environmental Pollution,122(1):135-143.
    125.Ma.YB.,E.Lombi,A.L.Nolan,and M.J.McLanghlin.2006.Short-term natural attenuation of copper in soil:effects of time,temperature and soil characteristics.Environmental Toxicology and Chemistry,25:652-658.
    126.Mabtab,S.K.et al..1971.Phosphorus diffusion in soils.1.The effect of applied phosphorus,clay content and watent content.Soil Sci.Soc.Amer.Proe.,35-393.
    127.Manning B A,Fendorf S,Bostick B,and Suarez D L.2002.Arsenic(Ⅲ)oxidation and arsenic(Ⅴ)adsorption reactions on synthetic bimessite.Environmental Science and Technology,36:976-981.
    128.Manning,B.A.,Goldberg,S..1997.Arsenic(III) and arsenic(V) adsorption on three California soils.Soil Science,162:886-895.
    129.Manning B.A.,Goldberg S.1997.Adsorption and stability of arsenic(III) at the clay mineral-water interface.Environ.Sci.Technol.,31:2005-2011.
    130.Marc A,Anderson;Alan J.Rubin,1981.Adsorption of inorganics at solid-liquid interfaces,Ann Arbor Science Publishers,Inc.
    131.McLaughlin M J.2001.Ageing of metals in soils changes bioavailability.Fact Sheet on Environmental Risk Assessment,(4):1-6.
    132.Muhammad S.1997.Arsenic chemistry in soils:an overview of thermo dynamic predictions and field observations.Water,Air,and Soil Pollution,93:117-136.
    133.Otte M L,Rozema J,Koster L,et al..1989.Iron plaque on roots of Aster tripolium L,interaction with zinc uptake.New Phytol.,111:309-317.
    134.Oscarson,D.W.et al.1981.Clay and Clay Minerals,(8):219-225.
    135.Parfitt,R.L..1978.Anion adsorption by soils and soil materials.Adv.Agron.,30:1-50.
    136.Palumbo B;Bellanca A,Neri R,and Roe M.J.2001.Trace metal partitioning in Fe-Mn nodules from Sicilian soils,Italy.Chemical Geology,173:257-269.
    137.Peryea,F.J.1991.Phosphate induced release of arsenic from soils contaminated with lead arsenate.Soil Sci.Soc.Am.J,55:1301-1306.
    138.Peryea FJ.1998.Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions.Hortscience,33(5):826-829.
    139.PhillippeW R,Banrhisel R I,and Bailey H H.1972.Distribution of concretions from selected soils of the Inner Bluegrass Region of Kentucky.Soil Science Society of America Porceedings,36:171-173.
    140.Pierce ML,Moore CB.1982.Adsorption of arsenite and arsenate on amorphous iron hydroxide.Water Research,16:1247-1253.
    141.Qnaghebeurm,Rate A.2005.Desorption kinetics of arsenate from kaolinite as influenced by pH.Environ.Qual,34:479-486.
    142.Raven K,lain A,and Loeppert R..1998.Arsenite and Arsenate Adsorption on Ferrihydrite:Kinetics,Equilibrium,and Adsorption Envelopes.Environmental Science and Technology,32:344-349.
    143.Redman AD,Macalady DL,Ahmann D.2002.Natural organic matter affects arsenic speciation and sorption on hematite.Environmental Science and Technology,36:2889-2896.
    144.Saada A,Breeze D,Crouzet C,Comu S,Baranger P.2003.Adsorption of arsenate(V) on kaolinite and on kaolinite-humic acid complexes:Role of humic acid nitrogen groups.Chemosphere,51:757-763.
    145.Sadiq M.1997.Arsenic chemistry in soils:An overview of thermodynamic predictions and field observations.Water,Air and Soil Pollution,93:117-136.
    146.Sadler R,Olszowy H,Shaw G Biltoft R et a1.1994.Soil and water contamination by Arsenic from tannery waste.Water,Air,Soil Pollution,78:189-198.
    147.Scheidegger A M,and Sparks D L.1996.A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface,Soil Sci.,161(12),8 12-831.
    148.Smith E,Naidu R,Alston A.M.1998.Arsenic in the soil environment:A review.Advance in Agronomy,64:149-195.
    149.Sibanda HM,Young SD.1986.Competitive adsorption of humic acids and phosphate on goethite,gibbsite and two tropical soils.Journal of Soil Science,37:197-204.
    150.St-CyrL,Crowder A A.1990.Manganese and copper in the root plaque of phragmites australis(Cav.)Trin.ex Steudel.Soil Sci.,149:191-198.
    151.Shuzo Tokunaga,Toshikatsu Hakuta,et al.2002.Acid washing and stabilization of an artificial arsenic-contaminated soil.Chemosphere,46:31-38.
    152.Sharma,H.C.,Pasricha,N.S.and Bajwa,M.S.1989.Comparison of mathematical models to describe boron desorption from salt affected soils.Soil Sci.,147:79-84.
    153.Sparks D L,and Grundl T J.1998.In "Mineral-water interfactal reactions Kinetics and mechanisms".ACS Symposium,pp14.
    154.Sparks,D.L.2003.Environmental soil chemistry,2nd Ed.Academic Press:San Diego,CA.
    155.Shi J B,Tang Z Y,Jin ZX,et al.2003,Determination of As(Ⅲ) and As(Ⅴ) in soils using sequential extraction combined with flow injection hydride generation atomic fluorescence detection.Analytia Chinica Acta,477:139-147.
    156.Tournassat C,Charlet L,Bosbach D,Manceau A.2002.Arsenic(Ⅲ) oxidation by Bimessite and Precipitation of manganese(Ⅱ) arsenate.Environmental Science and Technology,36:493-500.
    157.Tang Y L,Wang R C,Huang J F.2004.Relations between red edge Characteristics and agronomic parameters of crops.Pedosphere,14(4):467-474.
    158.Zhang,P.C.and Sparks,D.L.1990.Kinetics and mechanisms of fulfate adsorption/desorption on goethite using pressure jump relaxation.Soil Sci.Soc.Am.J.,54:1266-1273.
    159.Wanchope R.D.1985.Fixation of arsenical herbicides phosphate and arsenate in alluvial soils.J Environ Quality,4(3):355-358.
    160.Woolson,E.A.,J.H.Axely,and P.C.1973.The chemistry and phytotoxicity of arsenic in soils:Effect of time and phosphorus.Soils Sci.Soc.Am.Proc,37:254-259.
    161.Violante,A.,Pigna,M.2002.Competitive sorption of arsenate and phosphate on different clay minerals and soils.Soil Science Society of America Journal,66,1788-1796.
    162.Huang PM.1991.Kinetics of redox reactions on manganese oxides and its impact on environmental quality.In:Sparks D L,Suarez DL,Eds.Rate of soil Chemical processes.SSSA Apec Pub,191-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700