用户名: 密码: 验证码:
真菌对重金属的抗性机制和富集特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属及其化合物在工业中被广泛应用,导致大量含重金属废水、废渣产生,对环境造成严重污染。在重金属污染治理中,如何降低或消除重金属的毒性是减小重金属污染危害的关键。自然界中许多菌种具有重金属抗性和富集能力,因而用微生物法治理重金属污染具有较好的前景。本文选用几株不同形式的真菌用于重金属离子的富集和吸附,分别对生长中的菌体对重金属的抗性机制、富集特性,活性菌体和非活性菌体的吸附特征和机理进行了详细研究与探讨。
     从湖南省岳阳市临乡铜锌尾砂坝的尾砂中分离筛选出一株对Cu(II)和Zn(II)具有高抗性的富集菌CTB430-1,通过细胞形态观察、ITS基因序列测定和系统发育分析,被鉴定为黄曲霉(Aspergillus flavus)。菌株CTB430-1对Cu(II)和Zn(II)具有较强的抗性,Cu(II)和Zn(II)对其最低
     抑菌浓度分别为400和800mg/L。选择的对比菌株黑曲霉(Aspergillus niger)的最低抑菌浓度分别为200和300mg/L,其对两种重金属的抗性相对较弱。CTB430-1对Cu(II)和Zn(II)的富集量分别在浓度为200和250mg/L时达到最大,为30.82和40.37mg/g。A. niger分别在150和250mg/L时达到最大,为8.89和22.80mg/g。
     对菌体CTB430-1和A. niger富集Cu(II)和Zn(II)的影响因素如溶液初始pH值、重金属初始浓度、共存离子、孢子液接种量、温度进行了研究。结果表明,溶液初始pH值对两个菌株的生长和富集量均有重要影响,pH≤2.0时抑制菌体的生长;随pH值在2.0-5.0范围内增加,菌体生长量和富集量均增加;在pH值为5.0时均达到最大。在Cu(II)和Zn(II)为25-100mg/L范围内,重金属浓度增加对菌体CTB430-1和A. niger生长的有潜在抑制作用,导致菌体生长延滞期增加,两种菌体生长量均在5d时达到平衡;两种菌体对不同浓度Cu(II)和Zn(II)富集均分别在4d和5d时达到平衡。在Cu(II)和Zn(II)共存系统内,除在Cu(II)+Zn(II)浓度为(25+25)mg/L和(25+50)mg/L时对A. niger菌体生长有较小的促进作用外,对两种菌体生长抑制作用均大于单离子系统,金属单离子浓度较高时,其竞争能力较强,富集能力相对较大。菌体CTB430-1和A. niger在Cu(II)和Zn(II)溶液的生长量和富集能力随接入的孢子液体积增加而增加,在体积为1mL时达到平衡。两菌体的生长量均在25℃-30℃之间达到最大,富集量在30℃-35℃之间达到最大。
     电镜扫描和透射分析CTB430-1和A. niger菌丝体富集Cu(II)和Zn(II)前后的表面特征和内部结构变化,表明菌体生长受重金属毒害作用可能破坏了菌体表面结构,或菌丝体表面可能吸附了部分重金属而使表面模糊;富集过程主要由表面吸附和胞内富集两部分组成。红外光谱分析表明菌体CTB430-1对Cu(II)的富集并未破坏其本身的结构,羟基是CTB430-1吸附或络合或螯合Cu(II)的主要活性基团,而A. niger吸附是由菌体中多糖类基团上的P作为配位原子与Cu(II)配位络合所造成。
     对CTB430-1和A. niger对Cu(II)和Zn(II)抗性机制进行研究。结果表明,高浓度的Cu(II)和Zn(II)显著抑制了CTB430-1和A. niger生长,导致可溶性蛋白含量下降,还原型谷胱甘肽(GSH)含量显著增加,说明GSH缓解了重金属对细胞的氧化损伤作用;且超氧化物岐化酶(SOD)和过氧化氢酶(CAT)活性随重金属浓度增加显著增加,这是两种菌体抵抗过氧化的主要表征之一,CTB430-1的酶活增加较大,说明CTB430-1对Cu(II)和Zn(II)的抗性较A. niger强。Cu(II)和Zn(II)作用时,可诱导CTB430-1和A. niger菌体丙二醛(MDA)含量增加,Cu(II)作用时显著增加,说明活性氧自由基介导的膜质过氧化作用是Cu(II)导致CTB430-1和A. niger细胞损伤的主要原因。
     就外源NO对Cu(II)作用下菌株CTB430-1和A. niger抗氧化系统的影响进行研究。结果表明,低浓度NO处理(0.1mmol/L的硝普钠(SNP)溶液)时,能促进CTB430-1和A. niger生长。外源NO可能通过减缓可溶性蛋白质的降低,促成GSH的合成,诱导菌体内SOD和CAT活性增强来增加菌株CTB430-1和A. niger的抗氧化能力。低浓度的NO可有效降低两菌体内MDA的含量来减缓Cu(II)的毒性,但高浓度NO(0.3mmol/L的SNP)的缓解作用不明显。
     对活性黑曲霉(Aspergillus niger)对Cd(II)和Zn(II)的吸附特征进行研究。结果表明,A. niger对Cd(II)和Zn(II)吸附的最佳pH值分别为4.0和6.0;其最佳吸附温度和转速范围分别在25-30℃和100-150r/min。在最佳条件下,吸附量在Cd(II)和Zn(II)的初始浓度分别为75和150mg/L达到最大,分别为17.35和24.60mg/g;A. niger对两种重金属的吸附均在24h达到平衡;对Cd(II)和Zn(II)吸附均符合Langmuir等温模型,吸附过程可由二级速率动力学方程描述。
     本文还对非活性简青霉(Penicillium simplicissimum)吸附Cd(II)、Zn(II)和Pb(II)的吸附等温线、动力学和热力学进行了研究,同时就溶液初始pH值、重金属初始浓度、吸附剂用量、吸附时间、温度和共存离子对吸附的影响进行了研究。结果表明,P. simplicissimum对Cd(II)、Zn(II)和Pb(II)吸附均符合R-P等温模型,D-R方程的平均自由E值说明了吸附过程可能存在化学离子交换;不同温度条件下的吸附动力学可由准二级速率方程描述;吸附热力学常数ΔG o、ΔHo和ΔS o数值表明该吸附反应是自发过程,吸热反应。
Heavy metal and its compounds are widely used in many industries and a large quantity of containing heavy metals wastes are released into environment. Heavy metal has posed great threat on environmental safety and human health. The reduction and removal of heavy metal is the key for the detoxification of heavy metal. Many tolerance strains have been found to be able to bioaccumulation of heavy metal and bioremediation has been regarded as a promising approach for the treatment of heavy matal pollution. In this paper, different fungal strains were applied to the biosorption and bioaccumulation of heavy metals. The resistence mechanisms, bioaccumulation characteristics of heavy metal by growing cells, and the biosorption characteristics and mechanisms by living and dead cells were studied in detail.
     A novel fungus CTB430-1 with resistance to copper and zinc was isolated from soil at a copper and zinc Tailing of Linxiang in Yueyang city, Hunan province. The fungus was identified as Aspergillus flavus by analyzing the morphology and measuring the ITS sequence.
     The minimal inhibitory concentration of the strain CTB430-1 for Cu(II)and Zn(II) were 400 and 800mg/L, respectively. Compared with CTB430-1, the minimal inhibitory concentration of Aspergillus niger which was contrastive stain in our study were only 200 and 300 mg/L. So the tolerance of CTB430-1 was high. The maximum bioaccumulation capacities of Cu(II)and Zn(II) by CTB430-1 were 30.82 and 40.37 mg/g at initial concentrations of 200 and 250 mg/L, and that of A.niger were 8.89 and 22.80 mg/g at initial concentrations of 150 and 250 mg/L, respectively.
     The factors that affected the bioaccumulation efficiency by isolated strain CTB430-1 and contrastive stain A. niger, were thoroughly investigated, such as initial pH value of liquid medium, initial Cu(II)and Zn(II) ions concentration, co-ions in the liquid medium, spores inoculum amount and temperature.The results showed that the initial pH value of liquid medium had important effect on growth and bioaccumulation of CTB430-1 and A. niger, at low pH value(≤2.0), the growth was inhibited when the initial. With the pH value increased, the growth and bioaccumulation capacity by the two strains increased with increasing pH value in the range of 2.0-5.0 for Cu(II)and Zn(II), and the maximum growth and bioaccumulation capacity were hold at pH 5.0. The potential inhibition on growth of CTB430-1 and A. niger were increase by increasing intial concentration of Cu(II) and Zn(II) in range of 25-100mg/L, and the growing period were delay,all the stains reached the growth balance in 5d. The bioaccumulation amount of Cu(II) and Zn(II) ions increases by CTB430-1 and A. niger with the increasing initial metal ion concentration and contact time. The bioaccumulation equilibriums of Cu(II) and Zn(II) by CTB430-1 reached in 4d, which of A.niger reached in 5d.
     In the binary Cu(II)+Zn(II) system, the presence Cu(II)/Zn(II) ions induced to the inhibition in the growth of CTB430-1 and A. niger except that the concentration of (25+25) and (25+50)mg/L could promote little the growth of A. niger. When the concentration of Cu(II)/Zn(II) ions was high, the competition and bioaccumulation ability of Cu(II)/Zn(II) ions were strong. With the spores inoculum amount increased, the growth and bioaccumulation of CTB430-1 and A. niger were increase, and reached balance at 1mL of the inoculum amount. Maximum growth and bioaccumulation capacities were obtained at different temperatures in the range of 25-30℃and 30-35℃, respectively.
     The changes of micrographs obtained from scanning electron micrograph and transmission electron microscope of CTB430-1 and A. niger before and after Cu(II) and Zn (II) accumulation showed that all the stain suffered the heavy metal toxicity in the growing process, which could destroy the surface structure possibly or some heavy metal ions maybe were uptaked on the surface of mycelium that made the surface become blurry. The bioaccumulation included mostly extracellular and intracellular biosorption. The results of FTIR spectrum showed that the Cu(II) ions counld not destroy the structure of CTB430-1 in the process of bioaccumulation, hydroxyl was the primary activity groups in the biosorption or complexing/chelated Cu(II) ions. However, the biosorption of Cu(II) ions by A.niger were made metal-ligand complexes by the phosphorus as donor atoms which in polyoses groups.
     The resistant mechanism of Cu(II) and Zn(II) by CTB430-1 and A. niger were studied. It was observed that high concentration of Cu(II) and Zn(II) could restrict the growth of CTB430-1 and A. niger obviously, cause decrease the soluble protein content and increase in GSH levels, which could alleviate the oxidation stress of Cu(II) and Zn(II). The activities of SOD and CAT in cells of CTB430-1 and A. niger increased obviously with the concentration of Cu(II) and Zn(II) increasing, which was one of the attributes of two stains’resisting peroxidation. The enzyme activities of CTB430-1 increased highly, so the resistance to Cu(II) and Zn(II) of CTB430-1 were stronger than A.niger. The MDA levels enhanced in the cells of CTB430-1 and A. niger under the stress of Cu(II) and Zn(II), but the chang were prominent of all the stains under the stress of Cu(II). It showed that the mechanisms for Cu(II) to damage CTB430-1 and A. niger by in ducing ROS and lipid peroxidation.
     The effects of exogenous nitric oxide (NO) on antioxidation system of CTB430-1 and A. niger under the stress of Cu(II) were explored, the result indicated that the pretreatment of sodium nitroprusside (SNP), a NO donor, at 0.1nmol/L could increase the growth of two stains, and alleviate the reduction of soluble protein, induce the creation of GSH, and enhance the activities of SOD and CAT, all of that could enhance the capacity of antioxidation for CTB430-1 and A. niger. At the same time, the NO (0.1mmol/L SNP) reduced the toxicy of Cu(II) by decreasing the MDA amount in cells of CTB430-1 and A. niger. However, the alleviations of high NO concentration (0.3mmol/L SNP) were not obvious.
     The biosorption characteristics of Cd(II) and Zn(II) by living A. niger were investigated. The optimum adsorption pH value for Cd(II) and Zn(II) were 4.0 and 6.0. The best temperature and agitation rate were in the range of 25-30℃and 120r/min for all metal ions. Under the optimal conditions, the maximum uptake capacities of Cd(II) and Zn(II) ionsare 15.50 and 23.70 mg/g at initial concentrations of 75 and 150 mg/L, respectively. Biosorption equilibrium isestablished within 24h for Cd(II) and Zn(II) ions. The adsorption data provide an excellent fit to Langmuir isotherm model. The results of the kinetic studies show that the rate of adsorption follows the pseudo-second order kinetics.
     The isotherms, kinetics and thermodynamics of Cd(II), Zn(II) and Pb(II) biosorption by non-living Penicillium simplicissimum were also investigated in a batch system. The effects of pH, initial metal ions concentration, biomass dose, contact time, temperature and co-ions on the biosorption were studied. Adsorption data were well described by the Redlich-Peterson model. Chemical ion-exchange was found to be an important process based on free energy value from Dubini-Radushkevich isotherm for all metal ions. The results of the kinetic studies of all metal ions at different temperature showed that the rate of adsorption followed the pseudo second-order kinetics well. The thermodynamics constantsΔG o,ΔH oandΔS oof the adsorption process showed that biosorption of Cd(II), Zn(II) and Pb(II) ions on Penicillium simplicissimum were endothermic and spontaneous.
引文
[1]国家环境保护部. http://www.zhb.gov.cn/plan/hjtj/nb/2006tjnb.2008
    [2]朱贤英.论有毒重金属污染对人体健康的危害及饮水安全.湖北教育学院学报, 2006, 23(2): 72-74
    [3]郑姗,邱栋梁.植物重金属污染的分子生物学研究进展.农业环境科学学报, 2006, 25(9): 792-798
    [4]王绍文.重金属废水治理技术.北京:冶金工业出版社, 1993: 110-114
    [5] Fiol N, Villaescusa I, Martinez M, et al. Biosorption of chromium(VI) using low cost sorbents. Environmental Chemistry Letters, 2003, 1: 135-139
    [6] Magyarosy A, Laidlaw R D, Kilaas R, et al. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 2002, 59: 388-392
    [7] Sag Y, Atacoglu I, Kutsal T. Simultaneous biosorption of chromium(VI) and copper(II) on Rhizopus arrhizus in packed bed reactor: application of the competitive Freundlich model. Separation Science and Technology, 1999, 34: 3155-3171
    [8]国家环保局.中国环境状况公报.环境保护, 1987, 3: 3-9
    [9]马小隆,刘晓东,周广柱.电镀废水处理存在的问题及解决方案.山东科技大学学报(自然科学版), 2005, 24 (1): 107-111
    [10]冀天宝.环保知识与工作问答.北京:化学工业出版社, 1987: 54-55
    [11]张连忠,路克国,王宏伟,等.重金属镉、铜在苹果幼树体内的分布特性及生物有机肥对减少重金属效应的研究.水土保持学报, 2004, 18(3): 123-129
    [12]贾广宁.重金属污染的危害与防治.有色矿冶, 2004, 20(1): 39-42
    [13]梅光泉.重金属废水的危害及治理.微量元素与健康研究, 2004, 21(4): 54-56
    [14]汪晋三,黄新华,程国佩.水化学与水污染.广州:中山大学出版社, 1989: 274-361
    [15]何燧源.环境化学.上海:华东理工大学出版社, 2004: 88-116
    [16]毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测.北京:化学工业出版社, 2004: 100-115
    [17]戴树桂.环境化学.北京:高等教育出版社, 1997: 37-39
    [18]常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学, 2000, 19(1): 59-60
    [19]张建梅.重金属废水处理技术研究进展.西安联合大学学报, 2003, 6(2): 55-59
    [20]朱一民,沈岩柏,魏德洲.海藻酸钠吸附铜离子的研究.东北大学学报(自然科学版), 2003, 24(6): 80-83
    [21]张殿印.环保知识400问.第二版.北京:冶金工业出版社, 1988: 88-89
    [22]黄盛郎.镀锌及锌合金发展综述.电镀与环保, 1996, 16 (2): 3-4
    [23]拓晶,黄云,龙刚,等.用中和剂CY-1配加助凝剂处理化纤含锌废水.环境与开发, 1999, 14(4): 14-15
    [24]廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社, 1992: 4-7
    [25]孟样和,胡国飞.重金属废水处理.北京:化学工业出版社, 2000: 14-15
    [26]戴世明,吕锡武.镉污染的水处理技术研究进展.安全与环境工程, 2006, 13(3): 63-65
    [27]许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社, 1995: 14-17
    [28]赵由才.环境工程化学.北京:化学工业出版社, 2003: 142-300
    [29]李娜,靳晓洁.含重金属废水处理技术的研究进展概述.电力科学与工程, 2008, 24(4): 42-44
    [30]徐灵,王成端,姚岚.重金属废水处理技术分析与优选.广州化工, 2006, 34(6): 44-46
    [31]贾燕,汪洋.重金属废水处理技术的概况及前景展望.中国西部科技(学术版), 2007, (4): 10-13
    [32]杜军.石灰中和法处理含重金属离子废水.工业水处理, 1987, 7(4): 23-24
    [33]姜玉兰.含铜锌重金属废水处理.工业水处理, 1987, 7(1): 52-54
    [34]张一先.废铁粉的应用研究.北京师范大学学报, 1984, 2: 45-48
    [35]胡海洋.重金属废水治理技术概况及发展方向.中国资源综合利用, 2008, 36(2): 22-25
    [36] Du Pont Andre. Quicklime apply in heavey meatals wastewater. Pollution Engineering, 1987, 19(4): 84-101
    [37]张希衡.废水治理工程.北京:冶金工业出版社, 1984: 25-30
    [38]丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望.环境科学, 1992, 13(2): 59-67
    [39]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势.广州化工. 2005, 4: 36-39
    [40]杨晓玲.用气浮法处理含重金属废水.云南冶金, 2000, 29(4): 38-40
    [41]赵庆良,李伟光.特种废水处理技术.哈尔滨:哈尔滨工业大学出版社, 2003: 55-60
    [42]孙建民,于丽青,孙汉文.重金属废水处理技术进展.河北大学学报, 2004, 24(4): 438-443
    [43]袁绍军,姜斌,李天成,等.电解法净化含重金属离子废水的试验研究.化学工业与工程, 2003, 20(1): 7-10
    [44]张志,赵永斌,刘如意.微电解-中和沉淀法处理酸性重金属矿山地下水的试验研究.有色金属, 2002, 2: 44-47
    [45]石凤林.离子交换树脂法移动处理重金属废水.工业水处理, 2004, 24(8): 79-81
    [46]雷兆武,孙颖.离子交换技术在重金属废水处理中的应用.环境科学与管理, 2008, 33(10): 82-84
    [47]任建敏,吴四维.天然吸附材料在废水重金属离子处理中的应用.重庆工商大学学报(自然科学版), 2005, 22(6): 537-539
    [48]许振良,徐惠敏,翟晓东.胶束强化超滤处理含锡和铅离子废水的研究.膜科学与技术, 2002, 22(3): 15-20
    [49]杨骏,秦涨峰,陈戎英.活性碳吸附水中铅离子的动态研究.环境科学, 1997, 16(5): 423-427
    [50] Fushimi H. Zeo1ite applys in heavy meatals watewater. Waseda Daigku Rikogaku Keknuysho Hokoku, 1980, 89: 88-101
    [51]高效江,戎秋涛.麦饭石对金属的吸附作用研究.环境污染与防治, 1997, 19(4): 4-8
    [52]沈岩柏,朱一民魏德洲.硅藻土对锌离子的吸附特性.东北大学学报(自然科学版), 2003, 24(9): 907-910
    [53]宋和付,陈安国.膨润土吸附去除Zn2+、Cd2+的研究.材料保护, 2001, 34(9): 40-41
    [54]韩润平,石杰,李建军,等.生物材料对重金属离子的吸附富集作用.化学通报, 2000, 7: 12-15
    [55]王宝庆,陈亚雄,宁平.活性炭水处理技术应用.云南环境科学, 2000, 19(3): 46-50
    [56] Corey E J, Bakshi R K, Shibata S. Highly nantioselective borane reduction of ketones catalyzed by chiral oxazborolidines. Mechanism and synthetic implications. Journal of the American Chemical Society, 1987, 109(18): 5551-5553
    [57] Maria L. Accumulation of metals by microorganisms-processes and importance for soil systems. Earth-Science Reviews, 2000, 51(1-4): 1-31
    [58] Wu H Y, Ting Y P. Metal extraction from municipal solid waste (MSW) incinerator fly ash-chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 2006, 38(6): 839-847
    [59]孙嘉龙,肖唐付,周连碧,等.微生物与重金属的相互作用机理研究进展.地球与环境, 2007, 35(4): 367-374
    [60] Geesey G G, Jang L K. Interactions between metal ions and capsular polymers. Metal Ions Bacteria, 1989, 325-357
    [61] Johnson P E, Shubert L E. Accumulation of mercury and other elements by Spirulina (cyanophyceae). Nutrition Reports International, 1986, 34: 1063-1070
    [62] Rai L C, Dubey S K, Mallick N. Influence of chromium on some physiological variables of Anabaena doliolum: interaction with metabolic inhibitors. Biometals, 1992, 5(1): 13-16
    [63] Volesky B, Holan Z R. Biosorption of heavy metals. Biotechnology Progress, 1995, 11(3): 235-250
    [64] Schultze-Lam S, Urrutia-Mera M, Beveridge T J. Metal and silicate sorption and subsequent mineral formation on bacterial surfaces: subsurface implications. Ann. Arbor Press, 1995: 111-147
    [65]李洪强,刘成伦,徐龙君.微生物吸附剂及其在重金属废水处理中的应用.材料保护, 2006, 39(11): 48-51
    [66]王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性.环境科学, 2001, 22(6): 72-75
    [67] Beveridge T J. Biotechnology for the Mining, Metal-Refining and Fossil Fuel. Biotechnology and Bioengineering Symposium, 1986, 16-20
    [68] Puranik P R, Paknikar K M. Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. Journal of biotechnology, 1997, 55(2): 113-124
    [69] Zhou J L. Zn biosorption by Rhizopus arrhizus and other fungi. Applied Microbiology and Biotechnology, 1999, 51(5): 686-693
    [70]徐荣,汤岳琴,王建华,等.固定化产黄青霉废菌体吸附铅与脱附平衡.环境科学, 1998, 19(4): 72-75
    [71] Congeevaram S, Dhanarani S, Park J, et al. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 2007, 146(1-2): 270-277
    [72] Arica M Y, Bayramoglu G, Yilmaz M, et al. Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Materials, 2004, 109 (1-3): 191-199
    [73] Baldi F, Filipplli M, Olson G J. Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters. Microbial Ecology, 1989, 17 (3): 263-274
    [74] Chang I S, Kim B H. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)]contaminated electroplating wastewater under sulfate-rich condition. Chemosphere, 2007, 68(2): 218-226
    [75] Ohtake H, Fuji E, Toda K. Reduction of toxic chromate in an industrial effluent by use of a chromate reducing strain of Enterobacter cloacae. Environmental Technology, 1990, 11(7): 663-668
    [76] Yamamoto K, Kato J, Yano T, et al. Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae. Biotechnology and Bioengineering, 1993, 41(1): 129-133
    [77] Compos J, Martinez-Pacheco M, Cervantes C. Hexavalent-chromium reductionby a chromate resistant Bacillus sp. strain. Antonie van Leeuwenhoek, 1995, 68(3): 203-208
    [78] Volesky B, May H, Holan Z R.Cadmium biosorption by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 1993, 41(1): 826-829
    [79] Lloyd J R. Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiology Today, 2002, 29: 67-69
    [80] Strandbery G W, Shumate S E, Parrott J R. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccaromyces cerevisiae and Pseundomonas areuginosa. Apply of Environmental Microbiology, 1981, 41(1): 237-246
    [81]郭学军,黄巧云,赵振华,等.微生物对土壤环境中重金属活性的影响.应用与环境生物学报, 2002, 8(1): 105-110
    [82] Siegel S M, Keller P, Siegel B Z, et al. Metal speciation, separation and recovery. Proc Intern Symp, Chicago: Kluwer Academic Publishers, 1986: 77-94
    [83] Francis A J, Dodge C J. Anaerobic microbial dissolution of transition and heavy metal oxdides. Applied and Environmental Microbiology, 1988, 54(4): 1009-1014
    [84] Evans M N, Chirwa, Wang Y T. Chromium(VI)reduction by Pseudomonas fluorescens LB in fixed film bioreactor. Journal of Environmental Engineering, 1997, 123(8): 760-766
    [85]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用.生态学报, 2002, 22(1): 125-133
    [86]陈坚.生物吸附剂的生产与应用.环境生物技术应用与发展, 2001, 199-241
    [87]陈昊,甘一如.重金属的生物吸附.化学工业与工程, 1999, 16(1): 19-25
    [88]张剑波,冯金敏.离子吸附技术在废水处理中的应用和发展.环境污染治理技术与设备, 2000, 1(1): 46-50
    [89] Srinath T, Verma T, Ramteke P W, et a1. Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 2002, 48(4): 427-435
    [90] Aksu Z, Acikel U, Kabasakal E, et a1. Equilibrium modelling of individual andsimultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 2002, 36(12): 3063-3073
    [91] Aksu Z, D?nmez Gonul. A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere, 2003, 50(8): 1075-1083
    [92] HO Y S, McKay G. The sorption of lead(II) ions on peat. Water Research, 1999, 33(2): 578-584
    [93] Tsezos M, Volesky B. Biosorption of uranium and thorium. Biotechnology and Bioengineering, 1981, 24:583-604
    [94] Adams B A, Holmes E L. Adsorptive properties of synthetic resins. Journal of the Society of Chemical Industry, 1935, 54: 1-6
    [95] Tsezos M, Volesky B. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnology and Bioengineering, 1982, 385-401
    [96]汤岳琴,牛慧等.产黄青霉菌对铅的吸附机理研究——参与铅生物吸附的化学物质及功能团的确定.四川大学学报(工程科学版), 2001, 33(3): 50-54
    [97]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除.上海环境科学, 2002, 21(2): 89-92
    [98] Wang J L. Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 2002, 37(8):847-850
    [99]廖家莉,杨远友,罗顺忠,等.固定化啤酒酵母对241Am溶液吸附特性的研究.环境科学学报, 2003, 23(4): 552-554
    [100] Kedari C S, Das S K, Ghosh S. Biosorption of long lived radionuclides using immobilized cells of Saccharomyces cerevisiae.World Journal of Microbiology and Biotechnology, 2001, 17(8): 789-793
    [101] Ruchi G, Saxena R K, Rani G. Fermentation waste of aspergillus terreus: a potential copper biosortion. World Joumal of Microbiology and Biotechnology, 2002, 18(5): 397-401
    [102] Adela K, A leksander P. Comparison of Rhizopus nigricans in apelleted growth form with some other types of waste microbial biomass as biosorbents for metal ions. World Journal of Microbiology and Biotechnology, 2001, 17: 677-685
    [103] Lopez A, Lazaro N. Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: A comparative study. Water, Air and Soil pollution, 2002, 135(1-4): 157-172
    [104] Nakajima A, Yasuda M. Copper biosorption by chemically treated Micrococcus luteus cells. World Journal of Microbiology and Biotechnology, 2001, 17(4): 343-347
    [105]黄淑惠.细菌固定金属的作用机制.环境科学学报, 1992, 19(3): 173-208
    [106]刘月英,傅锦坤,李仁忠,等.细菌吸附Pb2+的研究.微生物学报, 2000, 20(5): 535-539
    [107] Augustoda C A C, P de Franca F. Cadmium uptake by Spirulina maxima:toxicity and mechanism.World Journal of Microbiology and Biotechnology, 1998,14(4): 579-581
    [108] Rama R K U L. Biosorption of toxic metal ions by alkaliextracted biomass of a marine cyanobacterium, phormidium valderianum BDU 30501. World Journal of Microbiology and Biotechnology, 1999, 15(6): 729-732
    [109]李志勇,郭祀远,李琳.多糖在藻类富集微量元素中的作用机理.生命的化学, 1998, 18 (1): 17-19
    [110] Zhang X Z, Luo S G, Yang Q, et al. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. Jounral of Applied Phycology, 1997, 9(1): 65-71
    [111] Omar H H. Adsorption of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Biologia Plantarum, 2002, 45(2): 261-266
    [112] Costa A C A, Franga F P. The behavior of the microalgae Tetraselmis chuii in cadmium-contaminated solutions. Aquaculture Intenrational, 1998, 6(1): 57-66
    [113] Schiewer S. Modelling complexation and electrostatic atraction in heavy metal biosorption by Sargassum biomass. Jounral of Applied Phycology, 1999, 11(1): 79-87
    [114] Esteves A J P, Valdman E, Leite S G F. Repeated removal of cadmium and zinc from an industri ale ffluent by waste biomass Sargassum sp..Biotechnology Leters, 2000, 22: 499-502
    [115] Matheickal J T, Yu Q. Cu(II) binding by marine alga Ecklonia radita biomaterial. Environmental Technology, 1997, 18: 25 -34
    [116]郑逢中,洪丽玉,郑文教.红树杆物落叶碎屑对水中重金属吸附的初步研究.厦门大学学报(自然科学版), 1998, 36(1): 137-141
    [117]张红雨,冀兰涛,王乃岩,等.梧桐树落叶碎屑对水中重金属吸附的初步研究.精细化工, 2002, 19(2): 80-82
    [118]扬洪.壳聚搪对重金属离子的吸附行为.烟台大学学报, 1999, 12(4): 309-312
    [119] Antunes A P M, Watkins G M, Duncan J R. Batch studies on the removal of gold(III) from aqueous solution by Azolla filiculoides. Biotechnology Letters, 2001, 23(4): 249-251
    [120] Lalvani S B, Hubner A, Wiltowski T S. Removing Cr6+ and Cr3+ by using lignin. Energy Sources, 2000, 22(1): 45-46
    [121] Kuyucak N, Volesky B. The mechanism of cobalt biosorption. Biotechnology and Bioengineering, 1989, 33(7): 823-831
    [122] Mashitah M D, Zulfadhly Z, Bhatia S. Binding Mechanism of Heavy Metals Biosorption by Pycnoporus Sanguineus.Artificial Cells, Blood Substitutes and Biotechnology, 1999, 27(5-6): 441-448
    [123] Brady J M, Tobin J M. Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 1995, 17(9): 791-796
    [124]刘瑞霞,汤鸿霄,劳伟雄.重金属的生物吸附机理及吸附平衡模式研究.化学进展, 2002, 14(2): 87-92
    [125] Hosea M, Greene B. The kinetics and mechanism of lead(II) biosorption by powderized Rhizopus oligosporus. Inorganica Chimica Acta, 1986, 1: 12-16
    [126]叶锦韶,尹华,彭辉,等.掷孢酵母对含铬废水的生物吸附.暨南大学学报, 2005, 26(3): 401-405
    [127] Marques P, Rosa M F, Pinheiro H M. pH effects on the removal of Cu2+, Cd2+and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess Engineering, 2000, 23(2): 135-141.
    [128] Langmuir I. The adsorption of gases on plane surfaces of glass, mica andplatinum. Jonrnal of the American Chemical Society, 1918, 40:1361-1403
    [129] Freundlich H. Adsorption in solutions. Z. Phys. Chem., 1906, 57: 385-470
    [130]刘云国,冯宝莹,樊霆,等.真菌吸附重金属离子的研究.湖南大学学报(自然科学版), 2008, 35(1): 71-74
    [131] Ilhami T, G¨ulay B, Emine Y, et al. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. Journal of Environmental Management, 2005, 77(2): 85-92
    [132] Redlich O, Peterson D L. A useful adsorption isotherm. The Journal Physical Chemistry, 1959, 63(6): 1024
    [133] Tunali S, Akar T, ?zcan A S, et al. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola, Separation and Purification Technology, 2006, 147(3): 105-112
    [134] Ho Y S. Review of second-order models for adsorption systems. Journal of Hazardous Materials, 2006, 136(3): 681-689
    [135] Gulsad U, Mehtap T. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature. Journal of Hazardous Materials, 2006, B135(1/3): 87-93
    [136] Uslu G, Dursun A Y, Ekiz H I, et al. The effect of Cd (II), Pb (II) and Cu (II) ions on the growth and bioaccumulation properties of Rhizopus arrhizus. Process Biochemistry, 2003, 39(1): 105-110
    [137] Chen X C, Wang Y P, Lin Q, et al. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1, Colloids and Surfaces B: Biointerfaces, 2005, 46(2): 101-107
    [138] Congeevaram S, Dhanarani S, Park J. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 2007, 146(1-2): 270-277
    [139] Aksu Z, Donmez G. Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochemistry, 2006, 41(4): 860-868
    [140]韩润平,蒋海涛.酵母菌对Cr(VI)的生物吸附作用.环境保护科学, 2001,27 (104): 28-33
    [141] Zafar S, Aqil F, Ahmad I. Metal tolerance and biosorption potential of filamentous fungiisolated from metal contaminated agricultural soil. Bioresource Technology, 2007, 98(13): 2557-2561
    [142] Mergeay M, Monchy S, Vallaeys T. Ralstonia metallidurans, a bacterium specifically adpted to toxic metals: towards a catalogue of metal-rersponsive genes. FEMS micorbiology reviews, 2003, 27(2-3): 385-410
    [143] Wu Z X.Gan N Q, Huang Q, et al. Response of microcystis to copper stress - Do phenotypes of microcystis make a diference in sterss tolerance? Enviornmental Pollution, 2007, 147(2): 324-320
    [144] Jaeckel P, KraussG J, Krauss G. Cadmium and zinc response of the fungi Heliscus lugdunensis and Verticillium cf. alboatrum isolated from highly polluted water. Science of the Total Environment, 2005, 346(1-3): 274-279
    [145] Lima G I A, Corticeiro S C, Figueira P A. Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 2006, 39(4): 763-769
    [146] Choudhury R, Srivastava S. Zinc accumulative properties of Pseudomonas putida strain S4. Asian Jounal Microbiology Biotechnology and Environmetal Sciences, 2002, 4(2): 197–202
    [147] Sharma S, Dastidar M G, Sreekrishnan T R. Biological removal of zinc from wastewater using Aspergillus spp. European Journal of Mineral Processing and Environmental Protection, 2003, 3(1): 1-4
    [148] López E E, Vázquez C. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 2003, 50 (1): 137-143
    [149] Hassan S H A, Abskharon R N N, Gad El-Rab S M F, et al. Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city, Egypt. Journal of Basic Microbiology, 2008, 48(3): 168-176
    [150] D?nmez G, Aksu Z. Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp. Water research, 2001, 35(66): 1425-1434
    [151] Gulay B, Sema B, Yakup A M. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 2003, B101(3): 285-300
    [152]韩润平,李建军,鲍改玲.酵母菌吸附铅前后红外光谱比较.光谱实验室, 2000, 4(17): 385-387
    [153] Greene B, Hosea M, Mcpherson R. Interaction of gold(I) and gold(III) complexes with algal biomass, Environmental Science and Technology, 1996, 20(6): 627-632
    [154]林种玉,傅锦坤,吴剑鸣,等.贵金属离子非酶法生物还原机理初探.物理化学学报, 2001, 17(5): 477-480
    [155] Guibal E, Roulph C, Cloirec P L. The effect of medium on adsorption of uranyl ion by crosslinked chitosan resin. Environmental Science and Technology, 1995, 29: 2496-2504
    [156] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free radic boil med,1995, 18: 31-126
    [157]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统.新疆教育学院学报, 2003, 19 (2): 103-108
    [158] Monnet R, Bordas F, Deluchat V, et al. Toxicity of copper excess on the lichen Dermatocarpon luridum: Antioxidanten zymea ctivities. Chemosphere, 2006, 65: 1806-1813
    [159] Noctor G, Arisi A-C M, Jouanin L, et al. Gluthione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 1998, 321(49): 623-647
    [160] Nagalakshmi N, Prasad M N V. Responses of glutathione cycle enzymes and gulathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 2001, 160: 291-299
    [161] Moellering D, Mcandrew J, Patel RP, et al. Nitric oxide-depen-dent induction of glutathione synthesis through increased expression ofγ-glutamylcysteine synthetase. Archives of Biochemistry and Biophysics, 1998, 358(1): 74-82
    [162] Guelfi A, Azevedo R A, Lea P J, et al. Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach.The Journal of General and Applied Microbiology, 2003, 2(49): 63-73
    [163]安贤惠.还原型谷胱甘肽提取方法初探.淮海工学院学报, 2003, 12(2): 49-52
    [164] Banerjee B D, Seth V, Bahattacharya A. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicology Letters, 1999, 107(1-3): 33-47
    [165] Saint D, Labrot F, Narbonne J F, et al. Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Archives of Environmental Contamination and Toxicology, 1998, 35(4): 602-614
    [166] Luna C M, Gonzalez C A, Tripp V S. Oxidative damage caused by on excels of copper in oat leaves. Plant and Cell Physiology, 1994, 35: 11-15
    [167]张小兰.施国新,徐楠,等. Hg2+、Cd2+对轮藻部分生理生化指标的影响.南京师大学报(自然科学版), 2002, 25(1): 38-43
    [168]胡韧,林秋奇,张小兰. Cr3+、Cr6+及其复合污染对狐尾藻的毒害作用.生态科学, 2003, 22 (4): 327-331
    [169]耿建明,曹享云,朱端卫,等.翩对甘蓝型油菜不同品种幼苗期生理特征的影响.植物营养与肥料学报, 1999, 5 (1): 81-84
    [170] Sinha S, Saxena R, Singh S. Chromium induced lipid peroxidation in the plants of Pistia stradotes L.: role of antioxidants and antioxidant enzymes. Chemosphere, 2005, 58(5): 595-604
    [171]张绪成,上官周平,高世铭. NO对植物生长发育的调控机制.西北植物学报, 2005, 25(4): 812-818
    [172] Garcla-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive Plant responses against drought stress. Plant Physiology, 2001, 126: 1196-1204
    [173] Uehida A, Jagendorf A T, HibinoT. Effcets of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in riee. Plant Science, 2002, 163: 515-523
    [174] Zhao L Q, Zhang F, Guo J K, et al. Nitric oxide functions as a signal in salt resistance in the ealluses from two ecotypes of reed. Plant Physiology, 2004,134: 849-857
    [175]王彦梅,张玉秀,柴团耀,等.重金属对小麦和黑麦种子萌发及幼苗生长的影响.中国生态农业学报, 2008, 16(3): 802-804
    [176] Clark D, Durner J, Navarre D A, et al. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molecular Plant-Microbe Interactions, 2000, 13:1380-1384
    [177] Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 2004, 161(5): 531-542
    [178] WangY S, Yang Z M, Nitric oxide reduces alumimum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant and Cell Physiology, 2005, 46(12): 1-9
    [179]张正斌,李培峰,刘春颖.一氧化氮在浮游植物中的研究进展.中国海洋大学学报, 2006, 36(1): 37-41
    [180] Delledonne M, Xia Y J, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588
    [181] Khilesh K S, Laxuman S, Nirupama Mallick. Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella. Ecotoxicology and Environmental Safety, 2004, 59: 223-227
    [182] Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 1999, 208: 337-344
    [183] Yamasaki H, Sakihama Y, Takahasli S. An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Science, 1999, 4: 128-129
    [184] Dursun A Y, Uslu G, Cuci Y, et al. Bioaccumulation of cooper (II), lead (II) and Chromium (II) by growing Aspergillus niger. Process Biochemistry, 2003, 38: 1647-1651.
    [185] Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 2003, 32 (1): 78-91
    [186]张汉波,王力,沙涛,等.从铅锌矿渣中分离的微生物对重金属吸附特性的研究.微生物学杂志, 2004, 24(5): 34-37
    [187] Nourbakhsh M N, Killcarslan S, Ilhan S, et al. Biosorption of Cr6+, Pb2+and Cu2+ ions in industrial waste water on Bacillus sp. Chemical Engineering Journal, 2002, 85(2-3): 351-355
    [188] Holan Z R, Volesky B. Accumulation of Cd (II), Pb (II) and Ni (II) by fungal and wood biosorbent. Applied biochemistry and biotechnology, 1995, 53(2): 133-146
    [189] Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 2003, 37(18): 4486-4496
    [190] Kadukova J, Virckova E. Comparison of differences between copper bioaccumulation and biosorption. Environment International, 2005, 31(2): 227-232.
    [191] Chen Y X. Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonasputida CZ1. Colloids and Surfaces B: Biointerfaces, 2005, 46(2): 101-107
    [192] Rostami K H, Joodaki M R. Some studies of cadmium adsorption using Aspergillus niger, Penicillium austurianum, employing an airlift fermenter, Chemical Engineering Journal, 2002, 89(1-3): 239-252
    [193]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究.应用与环境生物学报, 2007, 13(6): 848-852
    [194] Klimmek S, Stan H J, Wilke A, et al. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae, Environmental Science and Technology, 2001, 35(21): 4283-4288
    [195] Ozdemir G, Ceyhan N, Ozturk T, et al. Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chemical Engineering, 2004, 102(3): 249-253
    [196] Aksu Z. Equilibrium and kinetic modelling of cadmium(II) biosorption by C. Vulgaris in a batch system: effect of temperature. Separation and Purifiation Technology, 2001, 21(3): 285-294
    [197] Galun M, Galun E, Siegel B Z, et al. Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water Airand Soil Pollution, 1987, 33(3-4): 359-371
    [198] Tunali S, Akar T. Zn(II) biosorption properties of Botrytis cinerea biomass. Journal of Hazardous Materials, 2006, 131B(1-3): 137-145
    [199] Arzu Y D. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochemisty Enginieering Journal, 2006, 28(2): 187-195
    [200] Uslu G, Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. Journal of Hazardous Materials, 2006, 135B(1/3): 87-93
    [201] Tunali S, Akar T,ǒzcan A S, et al. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Separation and Purifiation Technology, 2006, 47(3): 105-112
    [202] Akar T, Tunali S. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresource Technology, 2006, 97(15): 1780-1787
    [203] Krishna B S, Murty D S R, Jai Prakash B S. Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite. Journal of Colloid and Interface Science, 2000, 229: 230-236
    [204] Tan X L, Wang X K, Fang M, et al. Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296: 109-116
    [205] Smith J M, Van Ness H C. Introduction to chemical engineering thermodynamics (fourth ed), McGraw-Hill, Singapore, 1987, 65-76
    [206] Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr (VI) by Mucor hiemalis. Biochemical Engineering Journal, 2005, 23(2): 185-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700