用户名: 密码: 验证码:
Mn掺杂的GaN半导体材料局域结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀磁半导体材料(DMS)作为一种新型的多功能自旋电子器件的潜在应用材料已经越来越引起人们的关注。考虑到DMS和现有器件的兼容性,Ⅲ-Ⅴ族稀磁半导体材料成为在当前已存在的光电器件的基础上利用多种多样磁现象的选择对象。在Mn掺杂的Ⅲ-Ⅴ族稀磁半导体材料中,Mn替代Ⅲ族原子并提供局域磁距和空穴,导致Mn原子巡游电子和局域磁矩间产生交换相互作用。在过去的一段时间内,很大一部分工作围绕着GaAs:Mn材料展开。近来,Dietl等人采用Zener模型对闪锌矿结构的磁半导体计算表明GaMnN具有高于室温的居里温度,这一理论预测的出现大大的刺激了GaMnN材料的理论和实验研究。
     在本论文中,将利用同步辐射方法来研究具有不同掺杂浓度的Ⅲ-Ⅴ族GaN:Mn和GaAs:Mn半导体材料的性质。应用XAFS研究获得半导体样品(GaN:Mn和GaAs:Mn)中Mn原子的局域原子结构和电子态等信息,了解它的近邻结构,用以确定磁性原子Mn在样品中的价态信息,并通过建立不同的理论模型对其近边进行理论计算。结合实验光谱对Mn的掺杂浓度对其Mn的局域结构的影响进行讨论。同时结合X射线衍射和拉曼光谱等方法对薄膜的结构和振动模式进行研究。实验结果表明,Mn的掺杂浓度对Mn的局域结构有很大影响。对于不同的Mn掺杂浓度,Mn在薄膜内的占位形式有所不同。对低掺杂浓度的样品来说,Mn主要是以替位形式存在于薄膜内,Mn 3d和N 2p轨道之间的耦合杂化能力较强,但是随着Mn掺杂浓度的提高,替位Mn的比例明显下降,薄膜内出现了更多的间隙Mn和Mn团簇,由于晶格中缺陷形成,影响了其p-d耦合杂化能力,导致其p-d耦合杂化能力降低。通过Mn的L边X射线吸收和K边X射线吸收两种方法的研究结果对比发现,在高Mn掺杂浓度的Ga_(1-x)Mn_xN样品中,Mn在薄膜内局域结构与Mn在薄膜内的具体位置(近样品表面还是体内)有关。通过理论计算,给出了Mn团簇在Ga_(1-x)Mn_xN薄膜内的具体构型,在近Ga_(1-x)Mn_xN薄膜表面Mn原子主要以Mn_5这种团簇形式存在,而对于体内的Mn原子则主要以Mn_4这种团簇结构存在,这种现象主要是薄膜内间隙Mn的外扩散作用而导致的间隙Mn在样品表面和体内分布的不均匀而产生的。同时我们利用系统总形成能的计算来验证Mn_5这种构型的Mn团簇在GaN晶格内存在的可能。
     对于GaAs:Mn我们采用扩展X射线吸收精细结构和近边X射线吸收精细结构相结合的方法对Mn在Ga_(1-x)Mn_xAs中的局域结构进行了研究。在模拟EXAFS实验曲线时,我们采用了多相_χ(k)函数线性叠加模拟的方法来处理不同Mn掺杂浓度的样品中可能存在多种Mn原子局域环境配置的情况。同样我们发现Mn的掺杂浓度对这个体系的Mn局域结构也有一定影响。在较高Mn掺杂浓度的样品中,我们发现了MnAs第二相的出现,而在更高Mn掺杂且通过后期的热退火处理的样品中,薄膜的结晶质量变好,并有部分Mn的团簇形成,但在膜内并没有发现MnAs相。可见,对于不同掺杂浓度的半导体材料(GaMnN和GaMnAs)的局域原子结构和电子态的研究,可以确定Mn原子在半导体材料中的价态,进一步确定磁性原子Mn在稀磁半导体中的所处的位置,这些对于磁性半导体材料磁性机理和特性的进一步研究具有很重要的指导意义。
Dilute magnetic semiconductor(DMS) materials are increasingly attracting intense interest as promising candidates for a new generation of multifunctional spintronics devices.In Mn dopedⅢ-ⅤDMS,Mn minimally substitutes for the groupⅢatom and simultaneously provides a localized magnetic moment and a hole, leading to Mn 3d-host sp exchange and ferromagnetic ordering.Among theⅢ-ⅤDMS,GaAs:Mn has bee studied rigorously for the last few years.Recently,the predictions that GaN:Mn have the higher Curie temperatures(T_C) exceeding room temperature by theoretical calculations on the basis of the mean-field Zener model of ferromagnetism have stimulated more experimental and theoretical studies on this system.
     In this thesis theⅢ-ⅤDMS GaN:Mn and GaAs:Mn thin films with different Mn doping density are studied by synchrony radiation method.The local structures of Mn in the doping films are studied by the Mn L-edge X-ray absorption spectroscopy (XAS) measurement and the K-edge extended X-ray absorption fine structure (EXAFS) technique.The structural and vibrate properties of the thin films are studied by X-ray diffraction(XRD) and Raman spectra.The relationship between the nature of Mn,the p-d hybridization and Mn doping density is discussed by comparing with the theoretical calculations.The results show that the Mn doping density has a great effect on the Mn local structures and the p-d hybridization of the Mn and host.Mn occupations in GaN are strongly influenced by the Mn doping concentrations and have different geometry configurations at surfaces or in the bulk.A new structural model of Mn_5 microclusters is proposed for the GaMnN surface,which explains well the L_3 edge XAS experimental results,and is also supported by our total formation energy calculations.The combined analysis of Mn L_3 edge and K edge XAS measurements is applied to identify the different characters of Mn atoms at surface or in bulk and provides a useful method for understanding the local structure of Mn in GaMnN,which greatly depends on sample preparations and is really important for the magnetic properties of DMSs.
     One the other hand,the local structure around Mn in GaAs:Mn is studied by using Mn K-edge extended X-ray absorption fine structure and near edge X-ray absorption fine structure.It is worth to mention that as simulating experimental curves, a model based on mixture of various possible configurations for Mn atoms has been used to clarify the complex local structures of our samples with different doping density.For 5%Mn doping sample,the secondary phase of MnAs appears and the sample with 8%doping density after the annealed process can form Mn clusters. Therefore,it is imperative to understand the nature of Mn atoms in the host material to get an adequate understanding of the ferromagnetic behavior in DMSs.
引文
[1]Science,281,951(1998)
    [2]Ohno.Phys.Rev.Lett.68(17) 2664(1992)
    [3]Wolf.S.A,Awschalom.D.D,Buhrman R.A,Science,294,1488(2001)
    [4]M.N.Baibichi,et al,Phys.Rev.Lett.61,2472(1988)
    [5]Prinz.G.A,Science,282,1660(1998)
    [6]S.Nakamura,M.Senoh,S.Nagahama,Appl.Phys.Lett.67,1968(1995)
    [7]Datta S and Das B Appl.Phys.Lett.56,665(1990)
    [8]Ohno Y,Young D K,Beschoten B,Matsukura F,Ohno H and Awschalom D D Nature 402,790(1999)
    [9]Ohno H Science 281,951(1998)
    [10]CHEN P,ZHANG R,ZHAO Z M,J Crystal Growth,255,150(2001)
    [11]A.Imamoglu,D.D.Awschalom,G.Byrkard,et al,Phys.Rev.Lett.83,4204(1999)
    [12]D.P.Divincenzo,Science 270,255(1995)
    [13]S.J.Pearton,C.R.Abernathy,D.P.Norton,A.F.Hebard,Y.D.Park,L.A.Boatner,J.D.Budai,Materials Science and Engineering,137,R40(2003)
    [14]刘宜华,张连生,物理学进展,Vol.14,82(1994)
    [15]C.Zener,Phys.Rev.B,81,440(1951)
    [16]M.Van Schilfgaarde,O.N.Mrasov,Phys.Rev.B,63,233205(2001)
    [17]J.K.Furdyna,J.Vac.Sci.Technol.A4,2002(1996)
    [18]G.Kolling,T.Mholden,V.F.Sears,J.K.Furdyna,and W.Giriat,J.Appl.Phys.53,7644(1982).
    [19]Y.Matsumoto,M.Murakami,T.Shono,T.Hasegawa,T.Fukumura,M.Kawasaki,P.Ahmet,T.Chikyow,S.Y.Koshihara,and H.Koinuma,Science 291,854(2001)
    [20]Ogawa T,Shirai M,Suzuki N,J Magn Magn Mater,196-197,428(1999)
    [21]Krol A,Soo Y L,Huang S,Phys.Rev.B,47,7187(1993)
    [22]Story T,Galazka R R,Trankel R B.Phys Rev Lett.56,777(1986)
    [23]Shioda R,Ando K,Hayashi T et al.Phys Rev B.58,1100(1998)
    [24]Ohno Y,Young D.K,Beschoten B,Nature,402,790(1999)
    [25]Dietl T,Haury A,Merle Y,Phys Rev B.55,R3347(1997)
    [26]H.Munekata,H.Ohno,S.Von Molnar,A.Segmuller,L.L.Chang,and L.Esaki,Phys.Rev.Lett.63,1849(1989)
    [27]H.Ohno,H.Munekata,T.Penny,S.Von.Molnar,and L.L.Chang,Phys.Rev. Lett.68,2664(1992)
    [28]A.Amore Bonapasta,F.Filippone,and P.Giannozzi,Phys.Rev.B 72,121202(2005)
    [29]Shioda R,Ando K,Hayshi T,Phys.Rev B,58,1100(1998)
    [30]J.K.Furdyna,J Appl.Phys.64(4),29(1988)
    [31]H.Ohno,A.Shen,F.Matsukura,A.Oiwa,A.Endo,S.Katsumoto and Y.Iye,Appl.Phys.Lett,69,363(1996)
    [32]T.DIETL,H.OHNO,F.MATSUKURA,J.CIBERT and D.FERRAND,Science 287(2000) 1019.
    [33]Xuan Luo and Richard M.Martin,Phys.Rev.B,72,035212(2005)
    [34]D.J.Keavney,S.H.Cheung,S.T.King,M.Weinert,and L.Li,Phys.Rev.Lett.95,257201(2005)
    [35]H.Katayama-yoshida,R.Kato and T.Yamamoto,J.Cryst.Growth 231,428(2001).
    [36]K.Sato and H.Katayama-yoshida,Jpn.J.Appl.Phys.40,L485(2001).
    [37]M.Van Schilfgaarde and O.N.Myrasov,Phys.Rev.B,63,233205(2001).
    [38]T.Dietl,H.Ohno,F.Matsukura,J.Cibert andD.Ferrand,Science 287,1019(2000).
    [39]T.Jungwirth,W.A.Atkinson,B.H.Lee and A.H.Macdonald,Phys.Rev.B 59,981(1999).
    [40]G.P.Das,B.K.Raq and P.Jena,Phys.Rev.B 68,035207(2003).
    [41]K.Sato,W.Schweika,P.H.Dederichs and H.Katayama-yoshida,Phys.Rev.B 70,201202(2004).
    [42]L.Kronik,M.Jain and J.R.Chelikowsky,Phys.Rev.B 66,041203(2002).
    [43]E.Kulatov,H.Nakayama,H.Mariette,H.Ohta and Yu.A.Uspenskii,Phys.Rev.B,66 045203(2002).
    [44]Dwilin R,Doradzin R,Garczyn J,Diamond and Related Materials,7(9),1348(1998).
    [45]Zajat M,Doradzin R,Gosk J,Appl Phys Lett,78(9),1276(2001).
    [46]Reed M L,Ritums M K,Stadelmaier H H,Materials Letters,51,500(2001)
    [47]T.Sasaki,S.Sonoda,Y.Yamamoto,K.Suga,S.Shimizu,K.Kindo and H.Hori,J.Appl.Phys.91,7911(2002).
    [48]Theodoropoulou N,Hebard A F,Overberg M E,Appl Phys Lett,78(22),3475(2001).
    [49]See for example H.Morko,c,"Nitdde Semiconductors and Devices",2nd edition(Springer,New York,2006).
    [50]G.T.Thaler,M.E.Overberg,B.Gila,R.Frazier,C.R.Abernathy,S.J.Pearton,J.S.Lee,S.Y.Lee,Y.D.Park,Z.G.Khim,J.Kim and F.Ren,Appl.Phys.Lett.80,3964(2002).
    [51]M.E.Overberg,C.R.Abernathy,S.J.Pearton,N.A.Theodoropoulou,K.T.Mccarthy and A.F.Hebard,Appl.Phys.Lett.79,1312(2001).
    [52]M.A.Boselli,I.C.Da Cunha Lima,J.R.Leite,A.Troper and A.Ghazali,Appl.Phys.Lett.84,1138(2004).
    [53]V.A.Chitta,J.A.H.Coaquira,J.R.L.Fernandez,C.A.Duarte,J.R.Leite,D.Schikora,D.J.As,K.Lischka and E.Abram,Appl.Phys.Lett.85,3777(2004).
    [54]F.L.Deepak,P.V.Vanitha,A.Govindaraj and C.N.R.Rao,Chem.Phys.Lett.374,314(2003).
    [55]D.S.Han,J.Park,K.W.Rhie,S.Kim and J.Chang,Appl.Phys.Lett.86,032506(2005).
    [56]S.J.Pearton,C.R.Abernathy,G.T.Thaler,R.M.Frazier,D.P.Norton,F.Ren,Y.D.Park,J.M.Zavada,I.A.Buyanova,W.M.Chen andA.F.Hebard,J.Phys.:Condens.Mater.16,R209(2004).
    [57]M.Zajac,J.Gosk,E.Grzanka,M.Kami,A.Twardowski,B.Strojek,T.Szyszko and S.Podsiad L O,J.Appl.Phys.93,4715(2003).
    [58]K.Ando,Appl.Phys.Lett.82,100(2003).
    [59]J.M.Baik,Y.Shon,T.W.Kang and J.L.Lee,Appl.Phys.Lett.84,1120(2004).
    [60]J.Baik,S.U.Kim,Y.M.Koo,T.W.Kang and J.L.ee,Solid State Lett.7,G313(2004).
    [61]S.Dhar,O.Brandt,A.Trampert,L.D.Werttz,K.J.Friedland,K.H.Ploog,J.Keller,B.Beschoten and G.G.Untherodt,Appl.Phys.Lett.82,2077(2003).
    [62]K.H.Ploog,S.Dhar and A.Trampert,J.Vac.Sci.Technol.B 21,1756(2003).
    [63]T.Graf,M.Gjukic,M.S.Brandt,M.Stutzmann and O.Ambacher,Appl.Phys.Lett.81,5159(2002).
    [64]R.Y.Korotkov,J.M.Gregie andB.W.Wessels,Mat.Res.Soc.Symp.Proc.639,G3.7(2001).
    [65]B.Han,R.Y.Korotkov,B.W.Wessels and M.P.Ulmer,Appl.Phys.Lett.84,5320(2004).
    [66]B.Han,B.W.Wessels and M.P.Ulmer,Appl.Phys.Let.86,042505(2005).
    [67]I.Y.Yoon,T.W.Kang,M.C.Jeong,M.H.Ham and J.M.Myoung,Appl.Phys.Lett.85,4878(2004).
    [1]马礼敦,杨福家,同步辐射应用概论,上海,复旦大学出版社,2000
    [2]唐孝威,同步辐射及其应用,北京,人民教育出版社,1986
    [3]王其武,刘文汉,X射线吸收精细结构及其应用,科学出版社,1994
    [4]F.W.Lytle,D.E.Sayers,and E.A.Stem,Physica B 58.701(1989)
    [5]冼鼎昌,新世纪的同步辐射,中国科协年会论文2004
    [6]A.Bianconi,Appl.Surf.Sci.6,382(1980)
    [7]P.A.Lee,Rev.Mod.Phy.53,769(1981)
    [8]M.O.Krause,J.Phys.Chem.Reference Data,8,307(1979)
    [9]J.Stohr.NEXAFSSpectroscopy.1~(St)Edition,Berlin Heidelberg:Springer-Verlag,1992
    [10]K.Teo,EXAFS:Basic Principles and data Analysis,Springer-Verlat(1986)
    [1]Ohno Y,Young D K,Beschoten B,Matsukura F,Ohno H and Awschalom D D Nature 402 790(1999)
    [2]Datta S and Das B Appl.Phys.Lett.56 665(1990)
    [3]Ohno H Science 281 951(1998)
    [4]Ohno H,Munekata H,Penney T,von Molnar S and Chang L L 1992 Phys.Rev.Lett.68 2664
    [5]A.Amore Bonapasta,F.Filippone,and P.Giannozzi Phys.Rev.B 72,121202(2005)
    [6]F.Matsukura,H.Ohno,A.Shen,and Y.Sugawara,Phys.Rev.B 57,R2037(1998).
    [7]J.L.Xu,M.van Schilfgaarde,and G.D.Samolyuk Phys.Rev.Lett.94,097201(2005)
    [8]W.Pacuski,D.Ferrand,J.Cibert,C.Deparis,J.A.Gaj,P.Kossacki,and C.Morhain Phys.Rev.B 73,035214(2006)
    [9]T.M.Schuler,R.A.Stern,R.McNorton,S.D.Willoughby,J.M.MacLaren,D.L.Ederer,Phys.Rev.B 72,045211(2005)Priya Mahadevan and S.Mahalakshmi Phys.Rev.B 73,153201(2006)
    [10]D.J.Keavney,S.H.Cheung,S.T.King,M.Weinert,and L.Li Phys.Rev.Lett.95,257201(2005)
    [11]M.S.Miao,Aditi Herwadkar,and Walter R.L.Lambrecht Phys.Rev.B 72,033204(2005)
    [12]A.Titov et al.Phys.Rev.B 72,115209(2005)
    [13]Priya Mahadevan and S.Mahalakshmi Phys.Rev.B 73,153201(2006)
    [14]B.Han,B.W.Wessels,and M.P.Ulmer,Appl.Phys.Lett.86,042505(2005).
    [15]Kronik L,Jain M and Chelikowsky J R,2002 Phys.Rev.B 66 041203(R)
    [16]S.V.Novikov,K.W.Edmonds,A.D.Giddings,K.Y.Wang,C.R.Staddon,R.P.Campion,B.L.Gallagher and C.T.Foxon,Semicond.Sci.Technol.19,L13-L16(2004)
    [17]T.Kozawa,T.Kachi,H.Kano,Y.Taga,and M.Hashimoto,J.Appl.Phys.75,1098(1994);C.Wetzel,W.Walukiewicz,and J.W.Ager Ⅲ,Mater.Res.Soc.Symp.Proc.449,567(1997)
    [18]M.Zajac,R.Doradzi(?)ski,J.Gosk,J.Szczytko,M.Lefeld-Sosnowska,M.Kami(?)ska,A.Twardowski,M.Palczewska,E.Grzanka and W.G(?)bicki,Appl. Phys.Lett.78,1276(2001)
    [19]W.Limmer,W.Ritter,R.Sauer,B.Mensching,C.Liu,and B.Rauschenbach,Appl.Phys.Lett.72,2589(1998)
    [20]J.J.Rehr and R.C.Albers,Rev.Mod Phys.72,621(2000)
    [21]G.van der Laan and I.W.Kirkman,J.Phys.:Condens.Matter 4,4189(1992)
    [22]Y.Yonamoto,T.Yokoyama,K.Amemiya,D.Matsumura,and T.Ohta,Phys.Rev.B 63,214406(2001).
    [23]Y.Ishiwata,M.Watanabe,R.Eguchi,T.Takeuchi,Y.Harada,A.Chainani,S.Shin,T.Hayashi,Y.Hashimoto,S.Katsumoto,and Y.Iye,Phys.Rev.B 65,233201(2002).
    [24]K.W.Edmonds,N.R.S.farley,T.K.Johal,R.P.Campoin,B.L.Gallagher,C.T.Foxon and G.van der Laan,J..Appl.Phys.95 7166(2004)
    [25]Shiqing Wei,Wensheng Yan,Zhihu Sun,Qinghua Liu,Wenjie Zhong,Xinyi Zhang,Hiroyuki Oyanagi and Ziyu Wu,Appl.Phys.Lett.89 121901(2006)
    [26]G.Kresse and J.Hafner,Phys.Rev.B 47,558(1993);49,14251(1994).
    [27]G.Kresse and J.Furthm(u|¨)ller,Phys.Rev.B 54,11169(1996).
    [281 K.W.Edmonds,P.Boguslawski,K.Y.Wang,R.P.Campoin,S.V.Novikov,Phys.Rev.Lett.92,037201(2004)
    [29]J.K.Kao,H.H.Hsieh,J.Y.Pieh,Y.K.Chang,K.C.Kuo,and P.K.Tseng 1997Phys.Rev.B 55 7633
    [30]Z.S.Popovic,S.Satpathy,Phys.Rev.B 70,161308(R)(2004)
    [1]Ohno H,Matsukura F,Omiya T,J Appl.Phys.85,4277(1999)
    [2]K.Sato,P.H.Dederichs,H.Katayama-Yoshida,Europhys.Lett.61,403(2003)
    [3]K.C.Ku,S.J.Potashnik,R.F.Wang,Appl.Phys.Lett.82,2302(2003)
    [4]Theodoropoulou N,Hebard A F,Overberg M E,Appl.Phys.Lett.78(22)3475(2001).
    [5]W.Xu,Y.X.Zhou,X.Y.Zhang,Solid State Communications 141,374(2007)
    [6]Von S,Munekata H,Ohno H,J Magn Magn Mater,93,356(1991).
    [7]Satoh Y,Inoue N,Nishikawa Y,3rd Symposium On Physics and Application of Spin-Related Phenomena in Semiconductors,[C].11,23(1997).
    [8]Ohno H,Shen A,Matsukura F,Appl.Phys.Lett.,1996,69(3):363-365.
    [9]Matsukura F,Ohno H,Shen A,Phys.Rev.B,1998,57(4):R2037-R2040.
    [10]Oi.Wa A,Katsumoto S,Endo,Solid State Communications,1997,103(4):209.
    [11]谭红琳,张鹏翔,光谱学与光谱分,Vol.21,No.14,August,2001,498
    [12]李国华,马宝珊,光散射学报,Vol.18,No.12,June,2006,106
    [13]Limmer W,Glunk M,Mascheck S,Phys.Rev.B,66,205209(2002)
    [14]Y Ayasly,Y Agata,T Soga,Japan.J.Appl.Phys.,1998,37:L1354
    [15]J.J.Rehr and R.C.Albers,Rev.Mod Phys.72,621(2000)
    [16]钟文杰,韦世强,中国科学技术大学学报 31,228(2001)
    [17]R.Shioda,K.Ando,T.Hayashi,M.Tanaka,Phys.Rev.B,58(3),1100(1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700