用户名: 密码: 验证码:
sLeX和LeY寡糖抗原表达及其调控与胚胎着床
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、目的和意义
     胚胎植入是一个复杂的发育过程,是子宫内膜与胚胎在时空上同步协调准备的过程。一方面,胚胎发育成具有侵入能力的胚泡阶段;另一方面,子宫内膜发育到允许胚胎侵入的接受态,只有二者同时发育到此阶段,植入才可发生。
     寡糖作为体内重要的信息分子,参与了细胞-细胞间的分子识别,也介导了细胞内的信号传导。在子宫内膜由非接受态向接受态变化过程中,许多细胞表面寡糖呈阶段特异性变化。Lewis寡糖属于细胞表面寡糖,在胚胎着床过程中发挥重要生物学功能。研究表明:着床窗口期的子宫内膜上皮sLeX表达增加,胚胎上表达L-选凝素(L-selectin),二者相互识别结合,参与胚胎着床。着床窗口期,LeY在人和鼠的子宫内膜上皮高表达,鼠的子宫内膜上皮细胞经LeY抗体预处理后,胚胎的着床率下降;同时,子宫内膜基质金属蛋白酶的活性、表达和分泌被明显抑制。
     岩藻糖化Lewis寡糖由岩藻糖基转移酶(Fucosylrans-ferase,FUTs)催化合成。目前已发现11种岩藻糖基转移酶( FUT1-11)。根据它们所催化生成的糖苷键类型的不同,可分为α1,2、α1,3和α1,6三类。其中,FUT7属于α1,3岩藻糖基转移酶,是sLeX [NeuAcα2→3Galβ1→4 (Fuc1→3) GlcNAcβ1→R]合成的关键酶。FUT4也属于α1,3岩藻糖基转移酶,催化L-fucose从GDP-fucose转移到H type 2 [Fucα→1Galβ1→4GlcNAcβ1→R]抗原,合成LeY[Fuc1→2Galβ1→4 (Fuc1→3) GlcNAcβ1→R],为LeY寡糖抗原合成关键酶。对FUT7和FUT4表达的调控可以调节细胞表面sLeX及LeY寡糖抗原的表达水平。
     本文通过对FUT4和FUT7的调控,进而对细胞表面sLeX、LeY寡糖抗原合成的调节,探讨细胞表面寡糖抗原sLeX、LeY在胚胎着床过程中的功能,进一步探讨其在生殖过程中的作用机制,为阐明寡糖在生殖中的作用提供理论依据。
     二、方法
     1.利用脂质体转染法将重组质粒转染至人子宫内膜细胞系(RL95-2、HEC-1A),人胚胎细胞系(JAR)中。
     2.采用RT-PCR方法检测FUT4,FUT7基因表达。
     3.采用Western blot、间接免疫荧光方法和流式细胞技术检测FUT4、FUT7、sLeX和LeY的表达。
     4.采用Annexin V/PI流式细胞技术检测细胞凋亡。
     5.利用黏附实验观察和分析胚胎细胞与子宫内膜细胞黏附情况。
     三、结果
     (一)sLeX/L-selectin介导的双向黏附在胚胎着床中的作用
     1.通过间接免疫荧光方法检测到JAR/RL95-2细胞同时表达sLeX/L-选择素。
     2.抗体封闭实验表明,sLeX和L-选凝素抗体分别封闭JAR细胞和RL95-2细胞,可以抑制JAR细胞与RL95-2细胞的黏附率。表明:JAR细胞和RL95-2细胞表面sLeX、L-selectin都参与胚胎着床。
     3.将FUT7过表达质粒分别转染至JAR细胞与RL95-2细胞,可增加细胞表面sLeX寡糖抗原的合成,促进JAR细胞与RL95-2细胞的黏附率;当JAR细胞和RL95-2细胞同时转染FUT7过表达质粒时,黏附率升高最为明显。表明:JAR细胞和RL95-2细胞表面sLeX介导胚胎着床。
     4.肝素为L-选凝素的抑制剂,当用肝素分别封闭JAR细胞与RL95-2细胞后,可抑制JAR细胞与RL95-2细胞的黏附率,当JAR细胞与RL95-2细胞同时经肝素封闭后,黏附率抑制作用最为明显。表明:JAR细胞和RL95-2细胞表面L-selectin介导胚胎着床。
     5.RL95-2细胞的凋亡较为转染组比较有所增加,转染空载体组与对照组无显著差异。
     (二)LeY寡糖抗原与子宫内膜接受潜能的关系
     1.JAR细胞与RL95-2细胞的黏附率高于其与HEC-1A细胞的黏附率。
     2.应用Western blot和间接免疫荧光方法检测RL95-2细胞LeY表达高于HEC-1A细胞。
     3.应用RT-PCT、Western blot和间接免疫荧光方法检测RL95-2细胞FUT4表达高于HEC-1A细胞。
     4.FUT4-siRNA抑制RL95-2细胞中FUT 4和LeY表达,可抑制胚胎细胞与子宫内膜细胞的黏附率。
     5.FUT4-过表达质粒促进HEC-1A细胞中FUT4和LeY表达,促进胚胎细胞与子宫内膜细胞的黏附率。
     6.FUT4-siRNA可以抑制RL95-2细胞中EGFR/MAPK信号通路的激活,FUT4-过表达可以激活HEC-1A细胞中EGFR/MAPK信号通路。
     四、结论
     (一)sLeX/L-selectin介导的双向黏附在胚胎着床中的作用
     1.JAR细胞表面表达L-选凝素,RL95-2细胞表面表达sLeX寡糖抗原,L-选凝素与sLeX寡糖抗原相识别,介导胚胎着床。
     2.JAR细胞表面表达的sLeX寡糖抗原与RL95-2细胞表面表达的L-选凝素相识别,介导胚胎着床。提示在胚胎细胞与子宫内膜细胞表面的sLeX和L-selectin介导的双向黏附系统在胚胎着床过程中发挥作用。
     3.sLeX介导的细胞黏附引起RL95-2细胞凋亡。说明sLeX和L-selectin介导的细胞黏附可以进一步引起子宫内膜细胞的凋亡,促进胚胎植入。
     (二)LeY寡糖抗原与子宫内膜接受潜能的关系
     1.RL95-2细胞中FUT4和LeY寡糖抗原表达高于HEC-1A细胞。提示:FUT4和LeY在高接受态的子宫内膜中表达高于其在低接受态子宫内膜。FUT4和LeY寡糖抗原可以作为子宫内膜接受态的标志。
     2.上调或抑制细胞中FUT4表达,可以调节细胞表面LeY寡糖抗原的合成,进而影响胚胎与子宫内膜的黏附率。说明LeY寡糖抗原在胚胎植入的过程中发挥作用。
     3.FUT4通过调节细胞表面LeY寡糖抗原的合成,进而调控细胞中EGFR/MAPK信号通路的激活,并参与胚胎着床。
I. Objective and purpose
     Implantation is a complex biological process. It requires the synchrony between the appropriately developed embryo and the receptive uterine endometrium. The apptoptiate developed of uterine and embryo is the basis for successful implantation. Oligosaccharides, as constituents of cell surface glycoconjugates, have been shown to have many biological activities during implantation process, which participate in the recongization of cell-cell and signal transduction. A variety of oligosaccharide structures have been identified at embryonic and uterine cell surfaces and change dynamically during progression of the implantation. Some reports show that strong L-selectin staining was present in the human embryo, whereas the expression of selectin oligosaccharide-based ligands was up-regulated during the implantation window, the binding of L-selectin and sialy Lewis X (sLeX) mediated the adhesion of embryo and uterine. Lewis Y (LeY) were highly expressed on both murine embryo and uterine endometrium during implantation period, and the functional blockage of LeY with specific anti-LeY antibody in either the embryo side or uterine endometrium side could reduce embryo implantation both in vitro and in vivo.
     Lewis oligosaccharide belongs to A, B, H Lewis blood group family. Fuco- syltransferases (FUTs) catalyze the synthesis of Lewis oligosaccharides. Until now, 11 fucosyltransferases have been identifided, which composed ofα1,2-,α1,3-,α1,6- fucosyltransferases. FUT7 belongs toα1,3 fucosyltransferases, which is the key enzyme of sLeX [NeuAcα2→3Galβ1→4 (Fuc1→3) GlcNAcβ1→R] synthesis. FUT4 also belongs to 1,3-fucosyltransferases. Based on H type 2 [Fucα→1Galβ1→4GlcNAcβ1→R] epitope, LeY is synthesized by the addition of a Fuc residue to N-acetyl- glucosamine (N-GlcNAc) with theα1, 3-linkage, FUT4 is the key enzyme for the synthesis of LeY. The regulation of FUT7 and FUT4 may control the expression of the sLeX and LeY.
     In this study, we utilized the FUT7 and FUT4 overexpression plasmid or FUT4- siRNA plasmid to interfere the expression of sLeX and LeY oligosaccharide on cell surface, and evaluate the roles of oligosaccharides on cell surface during implantation. The study will promte the further elucidation of the mechanism of oligosaccharides in embryo implantaion.
     II. Methods
     1.The recombinant vector was transfected into cells.
     2.The expression of FUT4 and FUT7 were detected by the methods of RT-PCR.
     3.The expression of FUT4 and FUT7, sLeX and LeY were detected by the methods of Western blot, indirect immunofluorescence staining and flow cytometry assay.
     4.Effect of FUT7 on cell apoptosis was analyzed by Annexin V/PI flow cytome- tric assay.
     5.Detect the percent adhesion of JAR cell adhesion to RL95-2 or HEC-1A cell monolayer.
     III. Results
     (I)Dual adhesion mediated by sLeX/L-selectin in vitro implantation model.
     1.The expression of sLeX and L-selectin in JAR and RL95-2 cells were detected by indirect immunofluorescence staining. The results showed that the staining of sLeX was present in JAR cellsand RL95-2 cells. L-selectin staining was also observed in JAR cells and RL95-2 cells. It suggests that sLeX and L-selectin were co-existed in either JAR cells or RL95-2 cells.
     2.To check if the expression of sLeX and L-selectin on both JAR cells and RL95- 2 cells was functionally involved in sLeX/L-selectin adhesion system, the effect of anti- body blocking was undergone using adhesion inhibition assay. The adhesion of JAR cells to RL95-2 cells were inhibited by the specific antibodies blockage. The percent adhesion was significantly decreased when JAR cells was pre-incubated with anti-sLeX antibody or anti-L-selectin antibody. The preincubation of anti-sLeX antibody or anti- L-selectin antibody in RL95-2 cells also caused the similar inhibitory effect.
     3.FUT7 expression plasmid was transfected into JAR or RL95-2 cells. The results showed that the gene and protein level of FUT7 were elevated by RT-PCR and flow cytometry assay in both JAR and RL95-2 cells transfected with FUT7 expression plasmid compared with that of the control and mock vector transfection. Moreover, the synthesis of sLeX was also increased in JAR or RL95-2 cells after FUT7 expression plasmid transfection by flow cytometry assay. The percent adhesion was analyzed. When FUT7 expression plasmid was co-transfected into both of the cells, the percent adhesion was higher.
     4.Heparin, the inhibitor of L-selectin, was utilized. Statistical analysis showed that when JAR cells, RL95-2 cells, or both of the cells were incubated with heparin, the percent adhesions were also significantly decreased compared with that of the control. The inhibition was the most obvious when both cells were treated with heparin, comp- ared with the separate addition of heparin to either cell culture.
     5.The apoptosis was determined by flow cytometry assay after RL95-2 cells were transfected with FUT7 expression plasmid. The data indicated that after co-cultured with JAR cells, the extent of apoptosis in transfected RL95-2 cells was increased, compared with that of the control and mock vector transfected RL95-2 cells.
     (II)The relationship between potension of uterine receptivity and LeY oligo- saccharide.
     1.The percent adhesion of JAR to RL95-2 cell monolayer was higher than HEC- 1A cell monolayer; and co-culture the JAR cells with RL95-2 cell monolayer or HEC- 1A cell monolayer, respectively, the extension of JAR cells on RL95-2 cell monolayer was more obviously than that on HEC-1A cell monolayer.
     2.For LeY assay, the expression of LeY on RL95-2 cells was also higher than on HEC-1A cells by Western blot and indirect immunofluorescence staining.
     3.For FUT4 detect assay, RT-PCR, Western blot and indirect immunofluores- cence staining were utilized. Results revealed that the expression of FUT4 in RL95-2 cells was higher than in HEC-1A cells on gene level and protein level
     4.To detect the effect of FUT4-siRNA on the RL95-2 cells, different assays were employed. RT-PCR found that the expression of FUT4 gene was dramatically decreased by FUT4-siRNA transfection in comparison to untransfected controls. Western blot, indirect immunofluorescence staining and flow cytometry revealed all that the protein expression level of FUT4 was much lower in FUT4-siRNA transfected RL95-2 cells in comparison to untransfected controls. The percent adhesion of JAR cell to RL95-2 cell monolayer was been inhibited.
     5.To explore the effect of FUT4 on LeY synthesis, FUT4 expression plasmid was transfected into HEC-1A cells. The results showed that the gene and protein level of FUT4 were elevated in FUT4 expression plasmid transfected cell compare to untrans- fected control by RT-PCR, Western blot, indirect immunofluorescence staining and flow cytometry assay. The synthesis level of LeY is also augment parallel with the increased of FUT4. The percent adhesion of JAR cell to HEC-1A cell monolayer was been evaluated.
     6.To study the effect of FUT4 expression on EGFR/MAPK signaling pathway, tyrosine phosphorylation of EGFR and ERK1/2 was assessed by Western blotting. After stimulating with EGF (100 ng/ml) for 10 min, sample was harvested. In RL95-2 cells, FUT4 knocking down cells expressed less pEGFR, pTYr and pERK1/2. Meanwhile, overexpression of FUT4 in HEC-1A cells could increase the synthesis of pEGFR, pTYr and pERK1/2.
     IV. Conclusions
     (I) Dual adhesion mediated by sLeX/L-selectin in vitro implantation model.
     1.The binding of L-selectin on JAR cells and sLeX on RL95-2 cells mediates the embryo implantation.
     2.The binding of sLeX on JAR cells and L-selectin on RL95-2 cells mediates the embryo implantation. Dual adhesion mediated by sLeX/L-selectin participate the embryo implantation.
     3.Adhesion mediated by sLeX increases apoptosis of RL95-2 cells.
     (II) The relationship between potension of uterine receptivity and LeY oligo- saccharide.
     1.The expression FUT4 and LeY on RL95-2 cells is higher than which on HEC- 1A cells. The results indicate that FUT4 and LeY may been seemed as endometrial receptivity markers.
     2.Regulation of FUT4 can control the expression of LeY oligosaccharide, further increase the percent adhesion of embryo to uterine.
     3.FUT4 can regulate the LeY epression which further mediates the EGFR/MAPK signaling pathway and participates embryo implantation.
引文
1. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H. Molecular Cues to Implantation.Endocr Rev. 2004,25(3):341-373.
    2. Bowen JA,Burghardt RC. Cellular mechanisms of implantation indomestic farm animals. Semin Cell Dev Biol. 2000,11(2):93-104.
    3. Simon A, Safran A, Revel A. Aizenman E, Reubinoff B, Porat-Katz A, Lewin A Laufer N. Hyaluronic acid can successfully replace albumin as the sole macro- molecule in a human embryo transfer medium. Fertil Steril. 2003,79: 1434- 1438.
    4. Valles CS, Domínguez F. Embryo-endometrial interaction. Chang Gung Med J. 2006,29(1):9-14.
    5. Carson DD. The glycobiology of implantation. Front Biosci. 2002,Jun 1;7: d1535-1544.
    6. Zhu ZM, Wang XQ. Role for cell surface oligosaccharide in cell-cell re- cognition during implantation. Mol Hum Reprod. 1998,4:735-738.
    7. Wang XQ, Zhu ZM,Fenderson BA, Zeng GQ, Cao YJ, Jiang GT. Effects of mo- noclonal antibody directed to LeY on implantation in the mouse. Mol Hum Reprod. 1998,4:295-300.
    8. Zhu,ZM. et al. Monoclonal antibody directed to LeY oligosaccharide inhibits implantation in the mouse. Biol. Reprod. 1995,52:903-912
    9. Candelier JJ, Mollicone R, Mennesson B, Coullin P, Oriol R. expression of fucosyltransferases in skin, conjunctiva, and cornea during human development. Original paper. 2000,114:113-124.
    10. Lessey BA.Endometrial integrins and the establishment of uterine receptivity. Hum Repmd. 1998,13(Suppl 3):247-258.
    11. Casals G, Ordi J, Creus M, Fábregues F, Casamitjana R, Quinto L, Campo E, Balasch J. Osteopontin and alphavbeta3 integrin expression in the endometrium of infertile and fertile women. Reprod Biomed Online. 2008,16(6):808-16.
    12. Bowen JA,Hunt JS. The role of integrins in reproduction. ProcSoc Exp Biol Med. 2000,223(4):331-343.
    13. Longhurst CM and Jennings LK. Integrin-mediated signal transduction.Cell Mol Life Sci. 1998,54:514-526.
    14. Montanez E, Piwko-Czuchra A, Bauer M, Li S, Yurchenco P, F?ssler R.Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol. 2007,426:239-89.
    15. Lessey BA, Castelbaum AJ, Buck CA, Lei Y, Yowell CW and Sun J. Further characterization of endometrial integrins during the menstrual cycle and in pre gnancy. Fertil Steri. 1994,62:497-506.
    16. Klentzeris LD, Bulmer JN, Trejdosiewicz LK, Morrison L, Cooke ID. Beta-1 integrin cell adhesion molecules in the endometrium of fertile and infertile women. Hum Reprod. 1993, Aug;8(8):1223-1230.
    17. Lessey BA, Castelbaum AJ, Wolf L, Greene W, Paulson M, Meyer WR, Fritz MA. Use of integrins to date the endometrium. Fertil Steril. 2000,Apr;73(4): 779-787.
    18. Merviel P, Challier JC, Carbillon L, Foidart JM, Uzan S. The role of integrins in human embryo implantation. Fetal Diagn Ther. 2001,Nov-Dec;16(6): 364- 371.
    19. Nardo LG, Bartoloni G, Di Mercurio S, Nardo F. Expression of alpha(v)beta3 and alpha4beta1 integrins throughout the putative window of implantation in a cohort of healthy fertile women. Acta Obstet Gynecol Scand. 2002,Aug; 81(8): 753-758.
    20. Reddy VR, Gupta SM, Meherji PK. Expression of integrin receptors on peri- pheral lymphocytes: correlation with endometrial receptivity. Am J Reprod Immunol. 2001,Sep;46(3):188-195.
    21. Wang J, Armant DR. Integrin-mediated adhesion and signaling during blast- ocyst implantation. Cells Tissues Organs. 2002,172(3):190-201.
    22. Damsky CH, Librach C, Lim KH, Fitzgerald ML, McMaster MT, Janatpour M, Zhou Y,Logan SK, Fisher SJ. Integrin switching regulates normal trophoblast invasion. Development. 1994,Dec;120(12):3657-3666.
    23. Zoppi N, Barlati S, Colombi M. FAK-independent alphavbeta3 integrin-EGFR complexes rescue from anoikis matrix-defective fibroblasts. Biochim Biophys Acta. 2008,Jun;1783(6):1177-1188.
    24. Srinivasan KR, Blesson CS, Fatima I, Kitchlu S, Jain SK, Mehrotra PK, Dwivedi A. Expression of alphaVbeta3 integrin in rat endometrial epithelial cells and its functional role during implantation. Gen Comp Endocrinol. 2009, Jan 15;160(2):124-133.
    25. Lessey BA. Two pathways of progesterone action in the human endometrium:implications for implantation and contraception. Steroids. 2003,Nov;68(10-13): 809-815.
    26. Daftary GS, Troy PJ, Bagot CN, Young SL, Taylor HS. Direct regulation of beta3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol. 2002,Mar;16(3):571-579.
    27. Bulletti C, de Ziegler D. Uterine contractility and embryo implantation. Curr Opin Obstet Gynecol. 2006,Aug;18(4):473-484.
    28. Sahni A, Sahni SK, Francis CW. Endothelial cell activation by IL-1beta in the presence of fibrinogen requires alphavbeta3. Arterioscler Thromb Vasc Biol. 2005,Oct;25(10):2222-2227.
    29. Casals G, Ordi J, Creus M, Fábregues F, Casamitjana R, Quinto L, Campo E, Balasch J. Osteopontin and alphavbeta3 integrin expression in the endome- trium of infertile and fertile women. Reprod Biomed Online. 2008,Jun;16(6): 808-816.
    30. DuQuesnay R, Wright C, Aziz AA, Stamp GW, Trew GH, Margara RA, White JO. Infertile women with isolated polycystic ovaries are deficient in endo- metrial expression of osteopontin but not alphavbeta3 integrin during the implantation window. Fertil Steril. 2009,Feb;91(2):489-499.
    31. Surrey ES, Minjarez DA, Schoolcraft WB. The incidence of aberrant endometrial alphavbeta(3) vitronectin expression in a high risk infertility population: could prolonged GnRH agonist therapy play a role? J Assist Reprod Genet. 2007,Nov;24(11):553-556.
    32. Ceydeli N, Kaleli S, Calay Z, Erel CT, Akbas F, Ertungealp E. Difference in alpha(v)beta3 integrin expression in endometrial stromal cell in subgroups of women with unexplained infertility. Eur J Obstet Gynecol Reprod Biol. 2006, Jun 1;126(2):206-211.
    33. Smalley DM, Ley K.L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med. 2005,Apr-Jun;9(2):255-266.
    34. Rosen SD.Ligands for L-selectin:homing,inflammation,and beyond.Annu Rev Immuno1. 2004,22:129-156.
    35. McEver RP.Selectins:lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002,14(5):581-586.
    36. Dominguez F, Yá?ez-MóM, Sanchez-Madrid F, Simón C. Embryonic imp- lantation and leukocyte transendothelial migration: different processes withsimilar players? FASEB J. 2005,Jul;19(9):1056-1060.
    37. Frenette PS.Wagner DD.Insights into selectin function from knock—out mice. Thromb Haemost,1997,78(1):60-64.
    38. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003,Jan 17;299(5605):405- 408.
    39. Fazleabas AT,Kim JJ.Development.What makes an embryo stick [J]? Science. 2003,Jan17,299(5605):355-356.
    40. Lai TH, Shih IeM, Vlahos N, Ho CL, Wallach E, Zhao Y. Differential expre- ssion of L-selectin ligand in the endometrium during the menstrual cycle. Fertil Steril. 2005,Apr;83 Suppl 1:1297-1302.
    41. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002,Jun;143(6):2119- 2138.
    42. Smalley DM and Ley K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med. 2005,9:255–266.
    43. Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P, Steeber DA, Tedder TF. Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity. 2003,Nov;19(5): 713-724.
    44. Dawood MY,Lau M ,Khan-Dawood FS.E-cadherin and its messenger ribo- nucleic acid in periimplantation phase human endometrium in normal and clomiphene-treated cycles. Am J Obstet Gynecol, 1998,178 (5):996-1001.
    45. Bloor DJ, Metcalfe AD, Rutherford A, Brison DR, Kimber SJ. Expression of cell adhesion molecules during human preimplantation embryo development. Mol Hum Reprod. 2002,Mar;8(3):237-245.
    46. Dye JF, Jablenska R, Donnelly JL, Lawrence L, Leach L, Clark P, Firth JA. Phenotype of the endothelium in the human term placenta. Placenta. 2001, Jan;22(1):32-43.
    47. Hunt GC, Schwarzbauer JE. Tightening the connections between cadherins and fibronectin matrix. Dev Cell. 2009,Ma;16(3):327-328.
    48. Taneyhill LA. To adhere or not to adhere: the role of Cadherins in neural crest developpment. Cell Adh Migr. 2008,Oct;2(4):223-230.
    49. Jha RK, Titus S, Saxena D, Kumar PG, Laloraya M. Profiling of E-cadherin, beta-catenin and Ca(2+) in embryo-uterine interactions at implantation. FEBS Lett. 2006,Oct16;580(24):5653-5660.
    50. Halbersztadt A, Pajak J, Nowicki P, Ja?ocha I, Gabry? MS. Implantation and antigenicity of human endometrium. Postepy Hig Med Dosw (Online). 2006, 60:71-77.
    51. Tiwari R, Mehrotra PK, Srivastava A. Implantation in vitro: co-culture of rat blastocyst and epithelial cell vesicles. Cell Tissue Res. 2004,Feb;315(2): 271- 277.
    52. Donaghay M, Lessey BA.Uterine receptivity: alterations associated with benign gynecological disease. Semin Reprod Med. 2007,Nov;25(6):461-475.
    53. Vinatier D, Dufour P, Leroy JL. The mechanisms of endometriosis. Rev Prat. 1999,Feb1;49(3):254-257.
    54. Horne AW, White JO, Lalani el-N. Adhesion molecules and the normal endo- metrium. BJOG. 2002,Jun;109(6):610-617.
    55. Liu Y, Xing FQ. Expression of E-cadherin in human embryo. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2003,Aug;20(4):348-349.
    56. SarrióD, Palacios J, Hergueta-Redondo M, Gómez-López G, Cano A, Moreno- Bueno G. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer. 2009,Mar3;9:74.
    57. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM. Molecular interactions in cancer cell metastasis. Acta Histochem. 2009,Jan 20. [Epub ahead of print]
    58. Xu HT, Li QC, Zhang YX, Zhao Y, Liu Y, Yang ZQ, Wang EH. Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem Cytobiol. 2008,46(3):315-321.
    59. Wang JY. Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function. Inflammopharmacology. 2005,13(1-3):91-101.
    60. Bolz H, Reiners J, Wolfrum U, Gal A. Role of cadherins in Ca2+-mediated cell adhesion and inherited photoreceptor degeneration. Adv Exp Med Biol. 2002, 514:399-410.
    61. Li Q, Wang J, Armant DR, Bagchi MK, Bagchi IC. Calcitonin down-regulates E-cadherin expression in rodent uterine epithelium during implantation. J BiolChem. 2002,Nov 29;277(48):46447-46455.
    62. Li YY, Li L, Hwang IS, Tang F, O WS. Coexpression of adrenomedullin and its receptors in the reproductive system of the rat: effects on steroid secretion in rat ovary. Biol Reprod. 2008,Aug;79(2):200-208.
    63. Simón C, Martín JC, Pellicer A. Paracrine regulators of implantation. Baillie- res Best Pract Res Clin Obstet Gynaecol. 2000,Oct;14(5):815-826.
    64. Bagchi IC, Kumar S. Steroid-regulated molecular markers of implantation. Semin Reprod Endocrinol. 1999,17(3):235-240.
    65. Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expre- ssion and cell signaling cascades. Free Radic Biol Med. 2000,28(9): 1379-1386.
    66. Defrère S, Van Langendonckt A, Moulin P, Befahy P, Gonzalez D, Martinez -Madrid B,Dolmans MM, Donnez J. Human endometrial epithelial cells (EEC) constitutively express more intercellular adhesion molecule (ICAM)-1 than endometrial stromal cells (ESC) in culture. Am J Reprod Immunol. 2005, Jul;54(1):5-12.
    67. Kobayashi H, Boelte KC, Lin PC. Endothelial cell adhesion molecules and cancer progression. Curr Med Chem. 2007,14(4):377-386.
    68. Salafia CM, Haynes N, Merluzzi VJ, Rothlein R. Distribution of ICAM-1 within decidua and placenta and its gestational age-associated changes. Pediatr Pathol. 1991,May-Jun;11(3):381-388.
    69. Burrows TD, King A, Loke YW. Expression of adhesion molecules by endo- vascular trophoblast and decidual endothelial cells: implications for vascular invasion during implantation. Placenta. 1994,Jan;15(1):21-33.
    70. Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polari- zed domains. Hum Reprod. 1999,Feb;14(2):429-447.
    71. Campbell S, Swann HR, Seif MW, Kimber SJ, Aplin JD. Cell adhesion mole- cules on the oocyte and preimplantation human embryo. Hum Reprod. 1995, Jun;10(6):1571-1578.
    72. Savion S, Irlin J, Shepshelovich J, Brengauz M, Toder V. Anti-Mac-1 anti- bodies and early pregnancy loss in mice. J Reprod Fertil. 1996,May;107(1): 7- 10.
    73. Spencer TE, Bazer FW. Biology of progesterone action during pregnancyrecognition and maintenance of pregnancy. Front Biosci. 2002,Sep 1;7:d1879- 1898.
    74. Aplin JD. MUC-1 glycosylation in endometrium: possible roles of the apical glycolcalyx at implantation. Hum Reprod. 1999,Dec;14 Suppl 2:17-25.
    75. Hohn HP, Denker HW. Experimental modulation of cell-cell adhesion, invas- iveness and differentiation in trophoblast cells. Cells Tissues Organs. 2002, 172 (3):218-236.
    76. Mangioni S, ViganòP, Florio P, Borghi O, Vignali M, Petraglia F, Di Blasio AM. Effect of activin A on tumor necrosis factor-alpha/intercellular adhesion mole- cule-1 pathway in endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol. 2005,Dec 1;123(2):218-223.
    77. Wang F, He YL, Peng DX, Liu MB. Expressions of nuclear factor-kappaB and intercellular adhesion molecule-1 in Endometriosis. Di Yi Jun Yi Da Xue Xue Bao. 2005,Jun;25(6):703-705.
    78. Daniel Y, Geva E, Amit A, Eshed-Englender T, Baram A, Fait G, Lessing JB. Do soluble cell adhesion molecules play a role in endometriosis? Am J Reprod Immunol. Am J Reprod Immunol. 2000,Mar;43(3):160-166.
    79. Prefumo F, Semino C, Melioli G, Venturini PL. A defective expression of ICAM-1 (CD54) on secretory endometrial cells is associated with endome- triosis. Immunol Lett. 2002,Jan 1;80(1):49-53.
    80. Siedentopf F, Tariverdian N, Rücke M, Kentenich H, Arck PC. Immune status, psychosocial distress and reduced quality of life in infertile patients with endometriosis. Am J Reprod Immunol. 2008,Nov;60(5):449-461.
    81. Skrzypczak J, Szczepańska M, Puk E, Kamieniczna M, Kurpisz M. Peritoneal fluid cytokines and sICAM-1 in minimal endometriosis: search for discrimi- nating factors between infertility and/or endometriosis. Eur J Obstet Gynecol Reprod Biol. 2005,Sep 1;122(1):95-103.
    82. Hey NA, Graham RA, Seif MW and Aplin JD. The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implanttation stage. J Clin Endocrinol Metab. 1994,Feb;78(2):337-342.
    83. Gipson IK, Ho SB, Spurr-Michaud SJ, Tisdale AS, Zhan Q, Torlakovic E, Pudney J, Anderson DJ, Toribara NW, Hill JA 3rd. Mucin genes expressed by human female reproductive tract epithelia. Biol Reprod. 1997,Apr;56(4):999- 1011.
    84. Stepensky D, Tzehoval E, Vadai E, Eisenbach L. O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma. Clin Exp Immunol. 2006,Jan;143(1):139-149.
    85. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EN, Wilson D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990, Sep5;265 (25):15286-15293.
    86. Hilkens J, Ligtenberg MJ, Vos HL, Litvinov SV. Cell membraneassociated mucins and their adhesion-modulating property. Trends Biochem Sci. 1992,17: 359-363.
    87. Wesseling J, van der Valk SW and Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996,7:565-577.
    88. Strous GJ, Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol. 1992,27(1-2):57-92.
    89. Aplin JD, Meseguer M, Simón C, Ortíz ME, Croxatto H, Jones CJ. MUC1, glycans and the cell-surface barrier to embryo implantation. Biochem Soc Trans. 2001,May;29(Pt 2):153-156.
    90. Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K. Embryo implantation. Dev Biol. 2000,Jul 15;223(2):217-237.
    91. Aplin JD, Hey NA, Graham RA. Human endometrial MUC1 carries keratan sulfate: characteristic glycoforms in the luminal epithelium at receptivity. Glycobiology. 1998,Mar;8(3):269-276.
    92. Aplin JD, Seif MW, Graham RA, Hey NA, Behzad F, Campbell S, Ann NY. The endometrial cell surface and implantation. Expression of the polymorphic mucin MUC-1 and adhesion molecules during the endometrial cycle. Acad Sci. 1994,Sep 30;734:103-121.
    93. Brayman M, Thathiah A, Carson DD. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol. 2004,Jan 7;2:4.
    94. Horne AW, White JO, Lalani el-N, Mobberley MA, Margara RA, Trew GH, Ryder TA. Analysis of epitopes on endometrial epithelium by scanning immuno- electron microscopy. Biochem Biophys Res Commun. 2002,Mar 22;292(1): 102-108.
    95. Aplin JD, Meseguer M, Simón C, Ortíz ME, Croxatto H, Jones CJ. MUC1, glycans and the cell-surface barrier to embryo implantation. Biochem Soc Trans. 2001,May;29(Pt 2):153-156.
    96. Meseguer M, Aplin JD, Caballero-Campo P, O'Connor JE, Martín JC, RemohíJ, Pellicer A, Simón C. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod. 2001,Feb;64(2):590-601.
    97. Thathiah A, Carson DD. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem J. 2004,Aug 15;382(Pt 1):363-373.
    98. Thathiah A, Brayman M, Dharmaraj N, Julian JJ, Lagow EL, Carson DD. Tumor necrosis factor alpha stimulates MUC1 synthesis and ectodomain release in a human uterine epithelial cell line. Endocrinology. 2004,Sep; 145(9):4192-4203.
    99. Thathiah A, Blobel CP, Carson DD. Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J Biol Chem. 2003,Jan 31;278(5): 3386-3394.
    100. Sivridis E, Giatromanolaki A, Koukourakis MI, Georgiou L, Anastasiadis P. Patterns of episialin/MUC1 expression in endometrial carcinomas and pro- gnostic relevance. Histopathology. 2002,Jan;40(1):92-100.
    101. Vlad AM, Diaconu I, Gantt KR. MUC1 in endometriosis and ovarian cancer. Immunol Res. 2006,36(1-3):229-36.
    1. Guzeloglu-Kayisli, O., Basar, M., and Arici, A. (2007) Basic aspects of implanttation. Reprod Biomed Online. 15, 728-739.
    2. Makrigiannakis, A. and Minas, V. (2007) Mechanisms of implantation. Reprod Biomed Online. 14, 102-109.
    3. Aplin, J.D. (1997) Adhesion molecules in implantation. Rev Reprod. 2, 84-93.
    4. Dey, S.K., Lim, H., Das, S.K., Reese, J., Paria, B.C., Daikoku, T., and Wang, H. (2004) Molecular cues to implantation. Endocr Rev. 25, 341-373.
    5. Uchimura, K. Rosen SD. (2006) Sulfated L-selectin ligands as a therapeutic target in chronic inflammation. Trends Immunol. 27, 559-565.
    6. Jackson, L.A., Drevets, D.A., Dong, Z.M., Greenfield, R.A., and Murphy, J.W. (2005) Levels of L-selectin (CD62L) on human leukocytes in disseminated cryptococcosis with and without associated HIV-1 infection. J Infect Dis. 191, 1361-1367.
    7. Kawashima, H. (2006) Roles of sulfated glycans in lymphocyte homing. Biol Pharm Bull. 29, 2343-2349.
    8. Resto, V.A., Burdick, M.M., Dagia, N.M., McCammon, S.D., Fennewald, S.M., and Sackstein, R. (2008) L-selectin-mediated lymphocyte-cancer cell inter- actions under low fluid shear conditions. J Biol Chem. 283, 15816-15824.
    9. McEver, R.P. (1997) Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj J. 14, 585-591.
    10. Genbacev, O.D., Prakobphol, A., Foulk, R.A., Krtolica, A.R., Ilic, D., Singer, M.S., Yang, Z.Q., Kiessling, L.L., Rosen S,D. and Fisher, S.J. (2003) Tropho- blast L-selectin-mediated adhesion at the maternal-fetal interface. Science 299, 405-408.
    11. Fazleabas, A.T. and Kim, J.J. (2003) Development. What makes an embryo stick? Science. 299, 355-356.
    12. Prakobphol, A., Genbacev, O., Gormley, M., Kapidzic, M., and Fisher, S.J. (2006) A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta. Dev Biol. 298, 107-117.
    13. Lai, T.H., Shih, Ie.M., Vlahos, N., Ho, C.L., Wallach, E., and Zhao Y. (2005) Differential expression of L-selectin ligand in the endometrium during the menstrual cycle. Fertil Steril. 83, 1297-1302.
    14. Wang, B., Sheng, J.Z., He, R.H., Qian, Y.L., Jin, F. and Huang, H.F. (2008) High expression of L-selectin ligand in secretory endometrium is associated with better endometrial receptivity and facilitates embryo implantation in human being. Am J Reprod Immunol 60, 127-134.
    15. L?ubli, H., Stevenson, J.L., Varki, A., Varki, N.M., and Borsig, L. (2006) L-selectin facilitation of metastasis involves temporal induction of Fut7- dependent ligands at sites of tumor cell arrest. Cancer Res. 66, 1536-1542.
    16. Smith, P.L., Gersten, K.M., Petryniak, B., Kelly, R.J., Rogers, C., Natsuka, Y., and Alford, J.A. (1996) Expression of the alpha (1, 3) fucosyltransferase Fuc- TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J Biol Chem. 271, 8250-8259.
    17. Zhang, Y., Liu, S., Liu, Y., Wang, Z., Wang, X., and Yan, Q. (2009) Overex- pression of fucosyltransferase VII (FUT7) promotes embryo adhesion and im- plantation. Fertil Steril. 91, 908-914.
    18. Liu, S., Zhang, Y., Liu, Y., Qin, H., Wang, X., and Yan, Q. (2008) FUT7 antisense sequence inhibits the expression of FUT7/sLeX and adhesion between embryonic and uterine cells. IUBMB Life. 60, 461-466.
    19. Staun, R.E. and Shalev, E. (2005) Human trophoblast function during the implantation process. Reprod Biol Endocrinol. 20, 56.
    20. Lim, K.J. (2003) Molecular factors in human implantation: adhesion molecules, proteases and cytokines. Malays J Pathol. 25, 1-13.
    21. Achache, H. and Revel, A. (2006) Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 12, 731-746.
    22. Thie, M. and Denker, H.W. (2002) In vitro studies on endometrial adhesiveness for trophoblast: cellular dynamics in uterine epithelial cells. Cells Tissues Organs. 172, 237-252.
    23. Tinel, H., Denker, H.W., and Thie, M. (2000) Calcium influx in human uterine epithelial RL95-2 cells triggers adhesiveness for trophoblast-like cells. Model studies on signalling events during embryo implantation. Mol Hum Reprod. 6, 1119-1130.
    24. Carson DD. (2002) The glycobiology of implantation. Front Biosci. Jun 1, 1535-44.
    25. Zhu, Z.M. and Wang, X.Q. (1998) Role for cell surface oligosaccharide in cell- cell recognition during implantation. Mol Hum Reprod. 4, 735-738.
    26. Wang, X.Q., Zhu, Z.M., Fenderson, B.A., Zeng, G.Q., Cao, Y.J., and Jiang, G.T. (1998) Effects of monoclonal antibody directed to LeY on implantation in the mouse. Mol Hum Reprod. 4, 295-300.
    27. Shamonki, M.I., Kligman, I., Shamonki, J.M., Schattman, G.L., Hyjek, E., Spandorfer, S.D., Zaninovic, N., and Rosenwaks, Z. (2006) Immunohistochemi- cal expression of endometrial L-selectin ligand is higher in donor egg recipients with embryonic implantation. Fertil Steril. 86, 1365-1375.
    28. Becker, D.J. and Lowe, J.B. (2003) Fucose: biosynthesis and biological fun- ction in mammals. Glycobiology. 13, 41-53.
    29. Taniguchi, N., Honke, K., and Fukuda, M. (2002) Handbook of glycosyl- transferases and related genes. In Fucosyltransferases (Oriol R, Mollicone R, Narimatsu H, eds.). pp. 205–231, Springer-Verlag, Tokyo.
    30. Nelson, S.M. and Greer, I.A. (2008) The potential role of heparin in assisted conception. Hum Reprod Update. 14, 623-645.
    31. Stevenson, J.L., Varki, A., and Borsig, L. (2007) Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thromb Res. 120, 107-111.
    32. Kirn-Safran, C.B., D'Souza, S.S., and Carson, D.D. (2008) Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placent- ation. Semin Cell Dev Biol. 19, 187-193.
    33. Montanez, E., Piwko-Czuchra, A., Bauer, M., Li, S., Yurchenco, P., and F?ssler, R. (2007) Analysis of integrin functions in peri-implantation embryos, hemato- poietic system, and skin. Methods Enzymol. 426, 239-289.
    34. Casals, G., Ordi, J., Creus, M., Fábregues, F., Casamitjana, R., Quinto, L., Campo, E., and Balasch, J. (2008) Osteopontin and alphavbeta3 integrin expre- ssion in the endometrium of infertile and fertile women. Reprod Biomed Online. 16, 808-816.
    35. Hakomori, S. (2004) Carbohydrate-to-carbohydrate interaction, through glycol- synapse, as a basis of cell recognition and membrane organization. Glycoconj J. 21, 125-137.
    36. Liu, S., Hoke, D., Julian, J., and Carson, D.D. (1997) Heparin/heparan sulfate (HP/HS) interacting protein (HIP) supports cell attachment and selective, high affinity binding of HP/HS. J Biol Chem. 272, 25856-25862.
    1. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H. Molecular Cues to Implantation.Endocr Rev. 2004,25(3):341-373.
    2. Bowen JA,Burghardt RC. Cellular mechanisms of implantation indomestic farm animals. Semin Cell Dev Biol. 2000,11(2):93-104.
    3. Simon A, Safran A, Revel A. Aizenman E, Reubinoff B, Porat-Katz A, Lewin A Laufer N. Hyaluronic acid can successfully replace albumin as the sole macro- molecule in a human embryo transfer medium. Fertil Steril. 2003,79:1434- 1438.
    4. Valles CS, Domínguez F. Embryo-endometrial interaction. Chang Gung Med J. 2006,29(1):9-14.
    5. Carson DD. The glycobiology of implantation. Front Biosci. 2002,Jun1;7: d1535-1544.
    6. Zhu ZM, Wang XQ. Role for cell surface oligosaccharide in cell-cell recog- nition during implantation. Mol Hum Reprod. 1998,4,735-738.
    7. Wang XQ, Zhu ZM,Fenderson BA, Zeng GQ, Cao YJ, Jiang GT. Effects of monoclonal antibody directed to LeY on implantation in the mouse. Mol Hum Reprod. 1998,4,295-300.
    8. Zhu,ZM. et al. Monoclonal antibody directed to LeY oligosaccharide inhibits implantation in the mouse. Biol. Reprod. 1995,52:903-912
    9. Taniguchi N, Honke K, Fukuda M, et al. Handbook of Glycosyltransferases and Related Genes. In: Oriol R, Mollicone R, Narimatsu H, editors. Fucosytrans- lferases. Tokyo, Springer-Verlag. 2002:205-231.
    10. Dettke, M., Palfi, G., & Loibner, H. Activation-dependent expression of the blood group-related Lewis Y antigen on peripheral blood granulocytes. The Journal of Leukocyte Biology. 2000,68:511-514.
    11. Yi, C., Anette, M., Uwe, K., Reinhard, S.A. The fucosylated histo-blood group antigens H type 2 (blood group O, CD173) and Lewis Y (CD174) are expressed on CD34+ hematopoietic progenitors but absent on mature lymphocytes. Glyco- biology. 2001,11:8677-8683.
    12. Ma B, Simala-Grant JL, Taylor DE. Fucosylation in prokaryotes and eukaryotes. Glycobiology.2006,16:158-184.
    13. De VT, Knegtel RM, Holmes EH, Macher BA. Fucosyltransferases: structure/function studies. Glycobiology.2001,11:119-128.
    14. Chandrasekaran EV, Jain RK, Rhodes JM, Srnka CA, Larsen RD, Matta KL. Expression of blood group Lewis b determinant from Lewis a: association of this novel alpha (1,2)-L-fucosylating activity with the Lewis type alpha (1,3/4)- L-fucosyltransferase. Biochemistry. 1995,34:4748-4756.
    15. Allahverdian S, Wojcik KR, Dorscheid DR. Airway epithelial wound repair: role of carbohydrate sialyl Lewis X. Am J Physiol Lung Cell Mol Physiol. 2006, 291:828-836.
    16. M. Klinger, H. Farhan, H. Just, H. Drobny, G. Himmler, H. Loibner, G.C. Mudde, M. Freissmuth, V. Sexl, Antibodies directed against Lewis-Y antigen inhibit signaling of Lewis-Y modified ErbB receptors. Cancer Res. 2004,64:1087- 1093.
    17. H. Farhan, C. Schuster,M. Klinger, E.Weisz, G.Waxenecker,M. Schuster, V. Sexl, G.C. Mudde, M. Freissmuth, R. Kircheis, Inhibition of xenograft tumor growth and down-regulation of ErbB receptors by an antibody directed against Lewis Y antigen. J. Pharmacol. Exp. Ther. 2006,319:1459-1466.
    18. A.M. Scott, D. Geleick, M. Rubira, K. Clarke, E.C. Nice, F.E. Smyth, E. Stockert, EC. Richards, F.J. Carr,W.J. Harris, K.L. Armour, J. Rood, et al., Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors, Cancer Res. 2000,60:3254-3261.
    19. Cong L, Gasser J, Zhao J, Yang B, Li F, Zhao AZ. Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC- 1-A and RL95 2. Endocr Relat Cancer. 2007,Sep;14(3):713-20.
    20. Harduf H, Goldman S, Shalev E. Human uterine epithelial RL95-2 and HEC-1A cell-line adhesiveness: the role of plexin B1. Fertil Steril. 2007,Jun;87(6): 1419-27.
    21.田永强,赵兴绪,段恩奎.胚泡植入的分子机理.甘肃农业大学学报. 2002,3 (1):1-9.
    22. Thie M, Rospel R, Dettmann W, et al. Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. J Hum Reprod. 1998,13(11): 3211-3219.
    23. Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placentaof man and laboratory animals. Placenta. 2000,21(4):289-305.
    24. Basu A., Murthy U., Rodeck U., Herlyn M., Mattes L., Das M. Presence of tumor associated antigens in epidermal growth factor receptors from different human carcinomas. Cancer Res.1987,47:2531-2536.
    25. Labarriere N., Piau P., Otry C., Denis M., Lustenberger P., Meflah K.H blood group antigen carried by CD44V modulates tumorigenicity of rat colon carci- noma cells. Cancer Res. 1994,54:6275-6281.
    26. Basu A., Murthy U., Rodeck U., Herlyn M., Mattes L., Das M. Presence of tumor associated antigens in epidermal growth factor receptors from different human carcinomas. Cancer Res.1987,47:2531-2536.
    27. Lopez-Ferrer A., de Bolos C., Barranco C., Garrido M., sern J., Carlstedt I., et, al. Role of fucosyltransferases in the association between apomucin and Lewis anti gen expression in normal and malignant gastric epithelium. Gut.2000,47: 349-356.
    28. De B.C., Garrido M., Real F.X. MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology. 1995,109:723-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700