用户名: 密码: 验证码:
高纬极区电离层非相干散射谱的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以电离层等离子体的非麦克斯韦分布为出发点,围绕着非麦克斯韦离子分布函数的求解、非麦克斯韦非相干散射谱的计算以及高纬极区离子声波谱线增强的理论解释与实验分析开展了相关研究。由相关领域的研究现状和存在问题的分析可知,目前对于非麦克斯韦离子分布函数和非相干散射谱的求解还处于尝试阶段,同时离子声波谱线增强的理论解释也存在着很大的争论。所以本文将工作重点放在非麦克斯韦离子分布函数的求解,非麦克斯韦分布的电离层等离子体非相干散射谱的模拟以及离子声波谱线增强的理论解释和实验研究上。由于非相干散射雷达和电离层加热的发展,这些问题已经成为利用非相干散射雷达研究电离层的热点问题之一,亟待解决。作为研究工作的基础,本文首先介绍了电离层等离子体的基本理论。在此基础上,主要开展了如下工作:
     第一,基于电离层等离子体的非相干散射理论,在不考虑磁场的情况下,分别采用碰撞和非碰撞等离子体非相干散射谱密度的理论公式,对麦克斯韦分布下的分布函数以及非相干散射谱进行了模拟和讨论。
     第二,从玻耳兹曼方程出发,分别采用驰豫碰撞模型和麦克斯韦分子碰撞模型来描述玻耳兹曼碰撞积分项,基于麦克斯韦分布展开的5矩、13矩、20矩近似和双麦克斯韦分布展开的6矩、16矩近似来表示离子分布函数。结合两种碰撞模型下的输运方程,分别求解得到了驰豫碰撞模型和麦克斯韦分子碰撞模型下的各阶速度矩分量,将其代入分布函数的多项式中,获得了两种碰撞模型下离子分布函数的5矩、13矩、20矩、6矩以及16矩近似。对输运方程的解以及离子分布函数进行了数值模拟,同时对两种碰撞模型下输运方程的解以及分布函数进行了对比。
     第三,利用已经得到的驰豫碰撞模型和麦克斯韦分子碰撞模型下离子分布函数的多项式解,采用Sheffield的非相干散射理论对非相干散射谱进行了模拟。同时对驰豫碰撞模型和麦克斯韦分子碰撞模型下得到的非相干散射谱进行了对比分析。
     第四,考虑到非相干散射雷达在高纬极区电离层经常观测到的离子声波谱线增强的现象,分别采用现有的三种理论对离子声波谱线增强的现象进行了解释。通过在分布函数中引入场向热流项,对场向电流不稳定性,以及离子-离子双流不稳定理论进行了修正,使其更符合实际情况,从而更好地解释了离子声波谱线增强的现象。
     第五,联合EISCAT(European Incoherent Scatter)雷达观测数据和其他观测手段,例如光学手段(极光扫描光度计,全天空极光摄像机等),选取发生离子声波谱线增强的两次现象进行了讨论分析,找出可能引起发生离子声波谱线增强的原因。结合场向电流不稳定性和修正场向电流不稳定性对数据进行了分析,反演得到了相应的电离层等离子体参数。
Based on the theoretical study of Non-Maxwellian ionosphere plasma, the Non-Maxwellian ion distribution function, the Non-Maxwellian incoherent scatter spectra and the interpretations from the theories and experiments on the origin of Naturally Enhanced Ion Acoustic Lines (NEIAL) in the high latitude auroral ionosphere are investigated in this dissertation. A thorough relevant research reveals that the study on the Non-Maxwellian ion distribution and the Non-Maxwellian incoherent scatter spectra is just a preliminary work, and the interpretation on the origin of NEIAL also remains controversial. Consequently, this dissertation focuses on the work of the Non-Maxwellian ion distribution, the Non-Maxwellian incoherent scatter spectra and the interpretation on the origin of NEIAL. With the development of the incoherent scatter radar and the ionospheric heating, this field has become one of the hot topics in ionospheric study using the incoherent scatter radar, and is in urgent need for further study. As a basis of this dissertation, a brief review is firstly presented on the characteristics of the ionosphere plasma. The main works are as follows.
     Firstly, based on the incoherent scatter theories of ionosphere plasma, using the formulas of the incoherent scatter spectra of the collision and non-collision plasma without considering the magnetic field, the Maxwellian ion distribution function and the incoherent scatter spectra are calculated and discussed.
     Secondly, according to the Boltzmann’s equations, the Boltzmann collision integral is represented with a simple relaxation collision model and the Maxwell molecule collision model, respectively. The ion velocity distribution function is described by 5-moment approximation, 13-moment approximation and 20-moment approximation based on Maxwellian distribution or by 6-moment approximation, 16-moment approxi- mation based on bi-Maxwellian distribution, respectively. The ion temperature, the ion drift velocity, the ion temperature, the stress tensor and the heat flow vector are obtained from the transport equations of the relaxation collision model and the Maxwell molecule collision model, respectively. The expressions of the ion velocity distributions of 5-moment approximation, 13-moment approximation, 20-moment approximation, 6-moment approximation and 16-moment approximation are derived. The comparison of the solutions of the transport equations and the ion velocity distribution between the relaxation collision model and the Maxwell molecule collision model are discussed.
     Thirdly, using the ion velocity distribution of the relaxation collision model and the Maxwell molecule collision model, the incoherent scatter spectra are calculated with the Sheffield’s incoherent scatter theories. The comparisons of the incoherent scatter spectra obtained by above two collision models are discussed.
     Fourthly, considering the phenomenon of NEIAL, which have been frequently observed by incoherent scatter radar in the high latitude auroral ionosphere, three different theories available are discussed to interpret the origin of NEIAL in the auroral ionosphere. By introducing the field-aligned heat flow, the current driven ion acoustic instability and the ion-ion two stream instability are modified, which can interpret NEIAL better.
     Finally, combining the EISCAT radar data and the others related method of the observation, such as optical detection (Meridian scanning photometer, All Sky TV Camera), the two NEIAL events are selected and discussed, and reason for the NEIAL occurring is obtained. According to theories of the field-aligned current instability and the modified field-aligned current instability, the reasonable ionosphere plasma parameters are inversed and obtained from the incoherent scatter radar data.
引文
[1] Fabry, C., C. r. hebd. Acad. Sci, Paris, 187, 777, 1928.
    [2] Gordon, W.E., Incoherent scatter of radio waves by free electrons with applications to space exploration by radar. Proc Inst Radio Engrs, 1958. 46: p. 1824-1829.
    [3] Bowles, K.L., Observation of vertical incidence scatter from the ionosphere at 41 Mc/s. Physical Review Letters, 1958. 1: p. 454-455.
    [4] Fejer, J.A., Scattering of radio waves by an ionized gas in thermal equilibrium in the presence of a uniform magnetic field. Canadian Journal of Physics 1960. 38: p. 1114.
    [5] Dougherty, J.P. and D.T. Farley, A theory of incoherent scattering of radio waves by a plasma. Proceedings of the Royal Society of London. Series A, 1960. 259(1296): p. 79-99.
    [6] Salpeter, E.E., Electron density fluctuations in a plasma. Physical Review Letters, 1960. 120(5): p. 1528-1535.
    [7] Hagfors, T., Density fluctuations in a plasma in a magnetic field with applications to the ionosphere Journal of Geophysical Research 1961. 66: p. 1699.
    [8] Salpeter, E.E., Plasma density fluctuations in a magnetic field. Physical Review Letters, 1961 122(6): p. 1663-1674.
    [9] Dougherty, J.P. and D.T. Farley, A theory of collision dominated electron density fluctuations in a plasma with applications to incoherent scattering. Journal of Geophysical Research 1963. 68: p. 5473-5486.
    [10] Dougherty, J.P. and D.T.A. Farley, Theory of Incoherent Scattering of Radio Waves by a Plasma 4. The effect of unequal ion and electron temperatures. Journal of Geophysical Research, 1966. 71(9): p. 4091-4099.
    [11] Evans, J.V., Theory and practice of ionosphere study by Thomson scatter radar. Proceedings of the IEEE, 1969. 57(4): p. 496~530.
    [12] AGGSON, T.L., Probe measurements of electric fields in space, ed. A. Emissions. 1969, New York: Reinhold. 305-316.
    [13] F?ppl, H., et al., Preliminary results of electric field measurements in the auroral zone. Journal of Geophysical Research, 1968. 73: p. 21-26.
    [14] Haerendel, G., et al., Highly irregular artificial plasma clouds in the auroral zone. Max-Planck-Inst. Phys. Astrophys., Inst. Extraterr. Phys., MPI-PAE/Extraterr, 1969. 21: p. 19.
    [15] Kelley, M.C., F.S. Mozer, and U. Fahleson, V., Electric field in the night-time and daytime auroral zone. Journal of Geophysical Research, 1971. 76: p. 6054-6066.
    [16] Mozer, F.S. and U. Fahleson, V., Electric field measurements in the auroral ionosphere. Journal of Geophysical Research, 1967. 72: p. 1109-1114.
    [17] Mozer, F.S. and U. Fahleson, V., Parallel and perpendicular electric fields in an auroral. Planet Space Science, 1970. 18: p. 1563-1571.
    [18] Mozer, F.S. and R. Serlin, Magnetospheric electric field measurements with balloons. J. Geophys. Res., 1969. 74: p. 4739-4754.
    [19] Potter, W.E., Rocket measurements of auroral electic and magnetic fields. Journal of Geophysical Research, 1970. 75: p. 5415-5431.
    [20] Potter, W.E. and L.J. Cahill, Electric and magnetic field measurements near an auroral electrojet. Journal of Geophysical Research, 1969. 74: p. 5159-5160.
    [21] Wescott, E.M., J.D. Stolarik, and J.P. Heppner, Electric fields in the vicinity of auroral forms from motions of barium vapor releases. Journal of Geophysical Research, 1969. 74: p. 3469-3487.
    [22] Hultqist, B., On the cause of the incoherent scatter plasma line in the presence of auroral electron precipitation. Journal of Atmospheric and Terrestrial Physics, 1986. 48: p. 1021-1025.
    [23] Bj?rn?, N., J.O. Havnes, and J. Trulsen, Enhancement of the Incoherent Scattering Plasma Lines Due to Precipitating Protons and Secondary Electrons. Physica Scripta, 1982. 25: p. 632-636.
    [24] Meltz, G. and F.W. Perkins, Ionospheric modification theory: past, present, and future. Radio Science 1974. 9(11): p. 885-888.
    [25] Utlaut, W.F., Ionospheric modification induced by high-power HF transmitters: a potential for extended range VHF-UHF communications and plasma physics research. Proceedings of the IEEE, 1975. 63(7): p. 1022-1043.
    [26] Kero, A., et al., First EISCAT measurement of electron-gas temperature in the artificially heated D-region ionosphere. Annales Geophysicae 2000. 18: p. 1210-1215.
    [27] Rietveld, M.T., et al., Ionospheric electron heating, optical emissions and striations induced by powerful HF radio waves at high latitude: aspect angledependence. Journal of Geophysical Research, 2003. 108(A4): p. doi:10. 1029/2002JA009543.
    [28] Saito, S., et al., Observation of isotropic electron temperature in the turbulent E region. Annales Geophysicae, 2001. 19(1): p. 11-15.
    [29] Honary, F., et al., EISCAT observations of electron temperature oscillations due to the action of high power HF radio waves. Journal of Atmospheric and Terrestrial Physics, 1993. 55(10): p. 1433-1448.
    [30] Stocker, A.J., et al., EISCAT observation of large scale electron temperature and density perturbations caused by high power HF radio waves. Journal of Atmospheric and Solar-Terrestrial Physics, 1992. 54(11-12): p. 1555-1572.
    [31] Sultan, P.J., et al., Detection of artificially created negative ion clouds with incoherent scatter radar. Journal of Geophysical Research, 1992. 97(A4): p. 4085-4097.
    [32] Cole, K.D., Atmospheric excitation and ionization by ions strong auroral and man-made electric fields. Journal of Atmospheric and Terrestrial Physics, 1971. 33: p. 1241-1349.
    [33] Schunk, R.W. and J.C.G. Walker, Ion velocity distributions in the auroral ionosphere. Planetary and Space Science 1972. 20( 12): p. 2175~2191.
    [34] St-Maurice, J.P. and R.W. Schunk, Auroral ion velocity distributions using a relaxation model. Planetary and Space Science 1973. 21(7): p. 1115~1130.
    [35] St-Maurice, J.P. and R.W. Schunk, Behavior of ion velocity distributions for a simple collision model. Planetary and Space Science 1974. 22(1): p. 1-18.
    [36] St-Maurice, J.P. and R.W. Schunk, Use of generalized orthogonal polynomial solution of Boltzmann's equation in certain aeronomy problems: auroral ion velocity distributions. Journal of Geophysical Research 1976. 81(13): p. 2145-2154.
    [37] St-Maurice, J.P. and R.W. Schunk, Auroral ion velocity distributions for a polarization collision model. Planetary and Space Science 1977. 25(3): p. 243-260.
    [38] St-Maurice, J.P., W.B. Hanson, and J.C.G. Walker, Retarding potential analyzer measurement of the effect of ion-neutral collisions on the ion velocity distribution in the auroral ionosphere. Journal of Geophysical Research, 1976. 81(1): p. 5438-5446.
    [39] St-Maurice, J.P. and R.W. Schunk, Ion velocity distributions in the hight-latitude ionosphere. Reviews of Geophysics and Space Physics 1979. 17(1): p. 99-133.
    [40] Barakat, A.R. and R.W. Schunk, Comparison of transport equations based on Maxwellian and bi-Maxwellian distributions for anisotropic plasmas. Journal of Physics D: Applied Physics, 1982. 15(7): p. 1195-1216.
    [41] Hubert, D., Convergence and approximation of auroral ion velocity distribution functions. Journal of Geophysical Research 1982. 87(A10): p. 8255-8262.
    [42] Hubert, D., Auroral ion velocity distribution function: The Boltzmann model revisited. Planetary and Space Science 1982. 30(11): p. 1137-1146.
    [43] Hubert, D., Electron and ion auroral velocity distribution functions: Incoherent scattering of radar waves. Physica Scripta, 1982. 26(5): p. 398-400.
    [44] Hubert, D., Auroral ion velocity distribution function:Generalized polynomial solution of Boltzamann's equation. Planetary and Space Science 1983. 31(1): p. 119-127.
    [45] Hubert, D., Auroral ion distribution function of the E-region. Planetary and Space Science 1984. 32(9): p. 1061-1067.
    [46] Hubert, D., Non-Maxwellian velocity distribution function and incoherent scattering of radar waves in the auroral ionosphere. Journal of Atmospheric and Terrestrial Physics, 1984. 46(7): p. 601-611.
    [47] Barakat, A.R., R.W. Schunk, and J.P. St-Maurice, Monte Carlo calculations of the O+ velocity distribution in the auroral ionosphere. Journal of Geophysical Research, 1983. 88(1): p. 3237-3241.
    [48] Kikuchi, K., A. Barakat, and J.P. St-Maurice, Monte Carlo computations of F-region incoherent radar spectra at high latitudes and the use of a simple method for non-Maxwellian spectral calculations. Annales Geophysicae, 1989. 7(2): p. 183-194.
    [49] Barakat, A.R. and D. Hubert, Comparison of Monte Carlo simulations and polynomial expansions of auroral non-Maxwellian distribution, 2, the 3-D representation. Annales Geophysicae, 1990. 8(4): p. 679-704.
    [50] Winkler, E., J.P. St Maurice, and A.R. Barakat, Results from improved Monte Carlo calculations of auroral ion velocity distributions. Journal of Geophysical Research, 1992. 97(A6): p. 8399-8423.
    [51] Gaimard, P., et al., On the improvement of analytical calculations of collisional auroral ion velocity distributions using recent Monte Carlo results. J. Geophys. Res., 1998. 103(A3): p. 4079-4095.
    [52] Perraut, S., et al., EISCAT measurements of ion temperature which indicate non-isotropic ion velocity distributions. Journal of Atmospheric and TerrestrialPhysics, 1984. 46(7): p. 531-544.
    [53] L?vhaug, U.P. and T. Fl?, Ion temperature anisotropy in the auroral F regions as measured with EISCAT. Journal of Atmospheric and Terrestrial Physics, 1986. 48(10): p. 959-971.
    [54] Lockwood, M., B.J.I. Bromage, and R.B. Horne, Non-Maxwellian ion velocity distributions observed using EISCAT. Geophysical Research Letters, 1987. 14(2): p. 111-114.
    [55] Winser, K.J., M. Lockwood, and G.O.L. Jones, Non-thermal plasma observations using EISCAT: Aspect angle dependence. Geophysical Research Letters, 1987. 14(9): p. 957-960.
    [56] Lockwood, M., I.W. McCrea, and G.H. Millward, EISCAT observations of ion composition and temperature anisotropy in the high-latitude F-region. Journal of Atmospheric and Terrestrial Physics, 1993. 55(6): p. 895-906.
    [57] Raman, R.S.V., J.P. St-Maurice, and R.S.B. Ong, Incoherent scattering of radar waves in the auroral ionosphere. Journal of Geophysical Research, 1981. 86(A6): p. 4751-4762.
    [58] Suvanto, K. Non-Maxwellian ion velocity distribution in the ionospheric F-region. 1989. Kiruna: EISCAT Technical Note.
    [59] Kohl, H., The Incoherent Scattering of Radion Waves in a Non-Maxwellian Plasma: The Effect of Coulomb Collisions. Journal of Geophysical Research, 1991. 96(A10): p. 17,591-17,598.
    [60] Mueller, R.J., H.D. Cheng, and A.R. Barakat, Incoherent radar spectrum processing using neural network. Signal Processing, 1998. 69: p. 117-129.
    [61] Barghouthi, I.A., Incoherent radar spectra in the auroral ionosphere in the presence of a large electric field: The effect of O+-O+ Coulomb collision. Earth Planets Space, 2005. 57: p. 515-520.
    [62] Gurevich, A.V., Nonlinear phenomena in the ionosphere, ed. Springer-Verlag. 1978, Berlin.
    [63] Stubbe, P., Modifiying effects of a strong electromagnetic wave upon a weakly ionized plasma: a kinetic description. Radio Science, 1981. 16(3): p. 417-425.
    [64] Gustavsson, B., Simulation of high energy tail of electron distribution function. Advances in Polar Upper Atmosphere Research, 2004. 18(1): p. 1-9.
    [65] Gustavsson, B., The electron energy distribution during HF pumping, a picture painted with all colors. Annales Geophysicae, 2005. 23(5): p. 1747-1754
    [66] Saito, S., F.R.E. Forme, and S.C. Buchert, Effects of a kappa distributionfunction of electrons on incoherent scatter spectra. Annales Geophysicae, 2000. 18(9): p. 1216-1223.
    [67] Rosenbluth, M.N. and N. Rostoker, Scattering of Electromagnetic Waves by a Nonequilibrium Plasma. Phys. Fluids 1962. 5(7): p. 776-788.
    [68] Foster, J.C., et al., Radar observations of the onset of current driven instabilities in the topside ionosphere. Geophysical Research Letters, 1988. 15: p. 160.
    [69] Rietveld, M.T., P.N. Collis, and J.-P. St-Maurice, Naturally enhanced ion-acoustic waves in the auroral ionosphere observed with the EISCAT 933 MHz radar. Journal of Geophysical Research, 1991. 96(A11): p.19, 2921- 19,305.
    [70] Collis, P.N., et al., EISCAT radar observations of enhanced incoherent scatter spectra; their relation to red auroral and field-aligned current. Geophysical Research Letters, 1991. 18(6): p. 1031-1034.
    [71] Wahlund, J.-E., et al., Scattering of electromagnetic waves from a plasma: enhanced ion acoustic fluctuations due to ion-ion two-stream instabilities. Geophysical Research Letters, 1992. 19(19): p. 1919-1922.
    [72] Forme, F.R.E., A new interpretation of the origin of enhanced ion acoustic fluctuations in the upper ionosphere. Geophys. Res. Lett., 1993. 20(21): p. 2347-2350.
    [73] Forme, F.R.E., Parametric decay of beam-driven Langmuir wave and enhanced ion-acoustic fluctuations in the ionosphere: a weak turbulence approach. Annales Geophysicae, 1999. 17(9): p. 1172-1181.
    [74] Forme, F.R.E., D. Fontaine, and J.-E. Wahlund, Two Different Types of Enhanced Ion Acoustic Fluctuations Observed in the Upper Ionosphere. Journal of Geophysical Research, 1995. 100(NO. A8): p. 14,625-14,636.
    [75] Wahlund, J.E., et al., EISCAT Observations of the Topside Ionospheric Ion Outflows During Auroral Activity: Revisited. Journal of Geophysical Research, 1992. 97: p. 3019–3037.
    [76] Buchert, S.C., et al., Naturally enhanced ion-acoustic lines seen with the EISCAT Svalbard Radar. Advances in Space Research, 1999. 23: p. 1699-1704.
    [77] Sedgemore-Schulthess, K.J.F., et al., Coherent EISCAT Svalbard Radar spectra from the dayside cusp/cleft and their implication for transient field-aligned currents. Journal of Geophysical Research, 1999. 104: p. 24,613–24,624.
    [78] Forme, F.R.E. and D. Fontaine, Enhanced ion acoustic fluctuations and ion outflows. Annales Geophysicae, 1999. 17(2): p. 182-189.
    [79] Stromme, A., et al., Evidence of naturally occurring wave-wave interactions in the polar ionosphere and its relation to naturally enhanced ion acoustic lines. Geophysical Research Letters, 2005. 32L05103(doi:10.1029/2004GL020239).
    [80] Ogawa, Y., et al., Naturally enhanced ion- acoustic lines at high altitudes. Annales Geophysicae, 2006. 24: p. 3351–3364.
    [81] Rietveld, M.T., et al., Coherent echoes during EISCAT UHF Common Programmes. Journal of Atmospheric and Terrestrial Physics, 1996. 58 p. 161–174.
    [82] Grydeland, T., et al., Interferometric observations of filamentary structures associated with plasma instability in the auroral ionosphere. Geophysical Research Letters, 2003. 30(doi: 10.1029/2002GL016362): p. 1338.
    [83] Grydeland, T., et al., Interferometric radar observations of filamented structures due to plasma instabilities and their relation to dynamic auroral rays. Annales Geophysicae, 2004. 22: p. 1115–1132.
    [84] Lunde, J., et al., Particle precipitations during NEIAL events: simultaneous ground based observations at Svalbard. Annales Geophysicae, 2007. 25: p. 1323-1336.
    [85] Sullivan, J.M., et al., An optical study of multiple NEIALs events driven by low energy electron precipitation. Annales Geophysicae, 2008. 26: p. 2435-2447.
    [86] Wahlund, J.-E., et al., Electron energization in the topside auroral ionosphere: on the importance of ion-acoustic turbulence. Journal of Atmospheric and Terrestrial Physics, 1993. 55: p. 623–645,.
    [87] Blixt, E.M., et al., Dynamic rayed aurora and enhanced ion-acoustic radar echoes. Annales Geophysicae, 2005. 23: p. 3-11.
    [88] Sedgemore-Schulthess, K.J.F. and J.P. St-Maurice, Naturally enhanced ion-acoustic spectra and their interpretation. Surveys in Geophysics, 2001. 22: p. 55-92.
    [89]沈长寿,资民筠, K. Schlegel,高纬电离层特性的实例研究.地球物理学报, 1989(3): p. 262-269.
    [90]李青,高频加热激发的电离层ELF辐射,中国电波传播研究所1993.
    [91]熊皓,人工高频波电离层变态及其应用.电子科学技术评论. 45(2): p. 45-57.
    [92]曹冲,吴健,电离层人工变态及变态效应的可能应用.电波与天线, 1993. 4(3): p. 561-574.
    [93] Zheng, C. Q., and J, Wu., Acomputation of the incoherent radar spectra of non-Maxwellian plasma in the high-latitude ionosphere. Chinese Journal ofGeophysics, 1994. 7(3): p. 381-387.
    [94] Wu, J. An improved tow-Maxwellian velocity distribution function and its applications in computations of incoherent scattering radar spectra of high-latitude F-region. Chinese Journal of Electronics, 1996. 5(2): p. 12-20.
    [95] Wu, J. An improved tow-Maxwellian velocity distribution function and its applications in computations of incoherent scattering radar spectra of high-latitude F-region. Chinese Journal of Electronics, 1996. 5(2): p. 12-20.
    [96]吴健,极光区离子分布函数视线方向上的解析解及其饱和现象.地球物理学报, 1997. 40(1): p. 739-746.
    [97]赵正予,魏寒颖,参量激励过程中三波耦合的一般色散关系(Ⅰ):最容易激励参量不稳定性的频率和波矢条件.空间科学学报, 2004. 24(6): p. 441-447.
    [98]赵正予,魏寒颖,参量激励过程中三波耦合的一般色散关系(Ⅱ):一般色散关系以及泵波阈值和增长率.空间科学学报, 2004. 25(1): p. 17-22.
    [99]倪彬彬,赵正予,项薇等,高频泵波加热电离层的数值模拟.电波科学学报, 2004. 19(3): p. 274-279.
    [100]何昉,赵正予,倪彬彬等,不同加热条件下电离层的效应研究.电波科学学报, 2006. 23(3): p. 181-187.
    [101]蔡红涛,马淑英由非相干散射雷达数据重建极光沉降粒子能谱.地球物理学报, 2007. 50(1): p. 10-17.
    [102]蔡红涛,马淑英, K. Schlegel,高纬电离层气候学特征研究——EISCAT雷达观测及与IRI模式的比较.地球物理学报, 2005. 48(3): p. 471-479.
    [103]黄文耿,古士芬,大功率无线电波与低电离层的相互作用.空间科学学报, 2003. 23(3): p. 181-187.
    [104]黄文耿,古士芬,大功率无线电波与高电离层的相互作用.空间科学学报, 2003. 23(5): p. 343-350.
    [105]黄文耿,古士芬,龚建村,大功率高频无线电波加热电离层.电波科学学报, 2004. 19(3): p. 296-301.
    [106]黄文耿,强电磁场对电离层改变的计算机数值模拟研究. 2003,中国科学院空间科学与应用研究中心:北京.
    [107]李芳,电磁波被尘埃等离子体散射的功率谱.电子科学学刊, 1999. 21(5): p. 679-685.
    [108] Wu J and J. W., The effect of the production and loss reaction on the parametric instability. nternational Journal of Computational Fluid Dynamics, 2006. 20(7): p. 491-496.
    [109] Wu, J., J. Wu, and C. La Hoz, On the ponderomotive force and the effect of lossreaction on parametric instability. Chinese Physics, 2007. 16(2): p. 558-563.
    [110]吴军,吴健,外场下等离子体中波的增强和带电粒子流的加速.电波科学学报, 2007. 22(1): p. 38-42.
    [111] Li, H. L., et al., Study on mesosphere summer echoes observed by digital ionosonde at Zhongshan Station. Antarctica. Earth Planets Space, 2007. 59(10): p. 1135-1139.
    [112] Li, H. L., et al., Study on reflectivity and wavenumber occurring polar mesosphere summer echoes. Journal of Electromagnetic Waves and Applications, 2008. 22(5/6): p. 803-814.
    [113]李海龙,吴健,黄际英等,极区中层顶区域尘埃粒子对电磁波散射的研究.电波科学学报, 2008.
    [114]李海龙,吴健,黄际英等,极区中层夏季回波与频率关系的初步分析.空间科学学报, 2007. 27(5): p. 416-419.
    [115]李海龙,吴健,黄际英等,南极中山站DPS-4电离层测高仪的中层夏季回波统计分析.极地研究, 2007. 19(1): p. 1-9.
    [116]李海龙,吴健,黄际英等,极区中层夏季回波反射特性随频率变化的研究?.中国电子科学研究院学报, 2008.
    [117]徐彬,吴振森,吴健等,电离层加热期间非相干散射谱的反演.电波科学学报, 2008. 23(4): p. 713-716.
    [118]徐彬,吴振森,吴健等,碰撞等离子体的非相干散射谱.物理学报, 2009.
    [119]徐彬,吴振森,吴健等,我国极区冬季电离层加热实验研究.地球物理学报, 2009.
    [120] Xue, K., et al., 16-moment approximation for ion velocity distribution and its application in calculations of incoherent scattering spectra. Plasma Science and Technology, 2009. 11(2): p. 152-158.
    [121]薛昆,郭立新,吴健,徐彬,高纬电离层离子速度的非麦克斯韦分布及其应用.西安电子科技大学学报, 2008. 35(4): p. 658-663.
    [122]薛昆,郭立新,吴健,徐彬,麦克斯韦分子碰撞下的离子分布函数及其非相干散射谱的计算.空间科学学报, 2009. 29(3): p. 287-295.
    [123]薛昆,郭立新,吴健,徐彬,房朝锋,离子分布函数的20矩近似及其在非相干散射谱中的应用.地球物理学报, 2009. 11(2): p. 878-886.
    [124]薛昆,徐彬,吴健,郭立新,驰豫碰撞模型下非相干散射谱的计算.自然科学进展, 2007. 17(11): p. 1565-1571.
    [125]熊年禄,唐存琛,李行健,电离层物理概论,武汉大学出版社. 1997,武汉.
    [126]蔡红涛,极区电离层结构及粒子沉降和对流电场的作用——EISCAT观测与数值模拟, 2003,武汉大学, p. 15-19.
    [127] Akasofu, S.L., Energy coupling between the solar wind and the magnetosphere. Space Scicence Review, 1981. 29: p. 121-190.
    [128] Kamide and Matsushita, Penetration of high latitude electric fileds into low latitude. Journal of Atmospheric and Terrestrial Physics, 1981. 43: p. 411-425.
    [129]资民钧,沈长寿,磁层系统的能量输入、输出与日地耦合.地球物理学报, 1994. 37(增刊): p. 1-8.
    [130] Hargreaves, J.K., The solar-terrestrial environment, ed. C.U. Press. 1995, Cambridge.
    [131] Rishbeth, H. and W.B. Hanson, Acomment on plasma‘pile-up’in the F-region. Journal of Atmospheric and Terrestrial Physics, 1974. 36: p. 703-706.
    [132] Cowley, S.W.H. The auroral ionosphere and its coupling to the magnetosphere and solar wind. in Modern Ionospheric Science. 1996. Germany: European Geophysical Society.
    [133] Kohl, H., R. Rüster, and K. Schlegel, Modern Ionospheric Science, ed. E.G. Society. 1996.
    [134] Farley, D.T., Incoherent scatter correlation function measurements. Radio Scicence, 1969. 4: p. 935-953.
    [135] Farley, D.T.A., Theory of Incoherent Scattering of Radio Waves by a Plasma 4. The effect of unequal ion and electron temperatures. Journal of Geophysical Research, 1966. 71(9): p. 4091-4099.
    [136] Sheffield, J., Plasma Scattering of Electromagnetic Radiation. 1975, New York: Academic Press. 113~122.
    [137] Clemmow, P.C. and J.P. Dougherty, Electrodynamics of Particles and Plasmas. Addison-Wesley. 1969: Addison-Wesley Pub. Co. 269.
    [138] Taylor, E.C. and G.G. Comisar, Frequency Spectrum of Thermal Fluctuations in Plasmas Physical Review, 1963. 132: p. 2379.
    [139] Winkler, E. and J.P. St-Maurice, Ionospheric ion velocity distributions in the presence of strong inhomogeneous electric fields. EOS Trans.AGU, 1988. 69: p. 1338.
    [140] Perraut, S.N., A. Bjotna, and M. Breekke, Experiment evidence of non-isotropic temperature distribution of ions observed by EISCAT in auroral F-region. Geophysical Research Letters, 1984. 11(5): p. 519-522.
    [141] Fla, T.D., U.P. Lovhaug, and A. Brekke, Thermosphere winf measurements with EISCAT. Journal of Atmospheric and Terrestrial Physics, 1986. 48: p. 949-958.
    [142] Lockwood, I.W., K. Suvanto, and K.J. Winser, Incoherent scatter radar observation of non-Maxwellian ion velocity distributions in the auroral F-region. Advances in Space Research, 1989. 9(5): p. 113-118.
    [143] Moorcroft, D.R. and K. Schlegel, Evidence for non-Maxwellian ion distributions in F-region. Journal of Atmospheric and Terrestrial Physics, 1988. 50: p. 455-466.
    [144] Suvanto, K.K., et al., Analysis of incoherent Scatter Radar data from non-thermal F-region plasma. Journal of Atmospheric and Terrestrial Physics, 1989. 51: p. 483--495.
    [145] Winser, K.J., G.O.L. Jones, and P.L.S. Willianms, A quantitative study of the high-latitude ionospheric through using EISCAT's common programes. Journal of Atmospheric and Terrestrial Physics, 1986. 46: p. 893-904.
    [146] Kelly, J.D., et al., The Sondrestrom Radar and Acoompanying Ground-Based Instrumentation. Space Science Reviews, 1995 71: p. 797--813.
    [147] Grad, H., Principles of the kinetic theory of gases, ed. Springer-Verlag. Vol. XII. 1958: In Flügge's Handbuch des Physik. 205-294.
    [148] Tanenbaum, B.S., Plasma Physics. 1967, New York.
    [149] Shunk, R.W., Mathematical Structure of Transport Equations for Multispecies Flows. Reviews of Geophysics, 1977. 15(4): p. 429-445.
    [150] Chapman, S. and T.G. Cowling, The mathematical theory of non-uniform gases. 1970, New York, : Cambridge University Press.
    [151] Banks, P., Collision frequencies and energy transfer. Ions. Planetary and Space Science, 1966b. 14: p. 1105
    [152] Dalgarno, A., The mobilities of ions in their parent gases. Phil. Trans. R. Soc., 1958. 250(982): p. 426-439.
    [153] Schunk, R.W. and J.C.G. Walker, Transport processes in the E-region of the ionosphere. Journal of Geophysical Research, 1971. 76.
    [154] Mason, A.E. and H.W. Schamp, Mobility of gaseous ions in weak electricfields. Annals of Physics, 1958. 4: p. 233-270.
    [155] McDANIEL, E.W. and E.A. MASON, The Mobility and Diffusion of Ions in Gases. 1973, New York: Wiley.
    [156] Oraevskii, V., R. Chodura, and W. Feneberg, Hydrodynamic equations for plasmas in strong magnetic fields - I: Collisionless approximation. Plasma Phys, 1968. 10 (9): p. 819-828
    [157] Xu, B., K. Xue, and J. Wu, Incoherent scatter spectra from plasma of a13-moment approximation distribution function. Sci China Ser E-Tech Sci, 2008. 51(5): p. 624-631.
    [158] Kindel, J.M. and C.F. Kennel, Topside current instabilities. Journal of Geophysical Research, 1971. 76: p. 3055-3078.
    [159] Boehm, M.H., et al., High-resolution sounding rocket observations of large amplitude Alfven waves. Journal of Geophysical Research, 1990. 95: p. 12,157-12,171.
    [160] Neubert, T. and F. Christiansen, Small-scale, field-aligned currents at the top-side ionosphere. Geophysical Research Letters, 2003. 30(2010): p. doi:10.1029/2003GL017808.
    [161] Gary, S.P. and N. Omidi, The ion-ion acoustic instability. Journal of Plasma Physics, 1978. 37(2): p. 45-61.
    [162] Galeev, A.A. and R.S. Sagdeev, Nonlinear Plasma Theory, In Reviews of plasma Physics. Vol. 7. 1979, New York: A division of Plenunm Publishing Corporation.
    [163] Papadopolous, K., A review of anomalous resistivity for the ionosphere. Reviews of Geophysics and Space Physics, 1977. 15: p. 113.
    [164] St-Maurice, J.P., W. kofman, and D. James, In situ generation of intense parallel electric fields in the lower ionosphere. Journal of Geophysical Research, 1996. 101(A1): p. 335-356.
    [165] Sandholt, P.E., A. Egeland, and B. Lybekk, On the spatial relationship between auroral emissions and magnetic signatures of plasma convection in the midday polar cusp and cap ionospheres during negative and positive IMF Bz A case study Journal of Geophysical Research, 1986. 91: p. 12108-12112.
    [166] Stasiewicz, K. and T. Potemra, Multiscale current structres observed by Freja. Journal of Geophysical Research, 1998. 103(A3): p. 4315-4325.
    [167] Stasiewicz, K., G. Holmgren, and L. Zanetti, Density depletions and current singularities observed by Freja. Journal of Geophysical Research, 1998. 103(A3): p. 4251-4260.
    [168] Lorentzen, D.A., et al., Pulsating dayside aurora in relation to ion upflow events during a northward interplanetary magnetic field (IMF) dominated by a strongly negative IMF BY. Journal of Geophysical Research, 2007. A03301(A03301): p. doi:10.1029/2006JA011757.
    [169] Zhang, S.P. and G.G. Shepherd, The Daytime Cusp Aurora in the O(1D) Emission Observed by WINDII on UARS. http://stpl.cress.yorku.ca/~sheng /cusp _final.pdf, 2006.
    [170] Maehlum, B.N., et al., Preliminary results from a study of the F-region heating during an intense aurora observed by EISCAT. Journal of Atmospheric and Terrestrial Physics, 1984. 46: p. 619-623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700