用户名: 密码: 验证码:
与Si相容的自旋电子学材料的研究:磁性半导体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋电子学同时利用了电子的电荷和自旋两种属性,在器件内部实现了电与磁的耦合,是新一代的电子学。自旋电子学材料是当前自旋电子学的关键问题,Si是现代电子工业的基础。实现自旋电子学材料与Si半导体工艺的融合将会极大的促进半导体-自旋电子学的发展。因此,探索与Si相容的自旋电子学材料具有重要意义。论文着眼于与Si相容,以(Zn, Cr)S、(Ga, Mn)P和MnxSi1-x为主要研究对象,采用基于密度泛函的第一性原理方法计算探讨了锌氧族化合物、III-IV和IV族磁性半导体的掺杂磁性以及磁性产生机理。此外,论文还探讨了新型宽禁带绝缘体氧化物ZrO2和HfO2基磁性半导体的掺杂磁性以及这类材料向半导体中的自旋注入。
     在第二章和第三章中,论文以(Zn, Cr)S和(Ga, Mn)P为主要研究对象系统探讨了锌氧族化合物和III-IV磁性半导体的掺杂磁性和热力学性质。研究表明,过渡金属原子倾向于在半导体基体中平面团聚形成delta掺杂,delta掺杂构型往往具有增强的二维磁性。论文系统考察了(Zn, Cr)S和(Ga, Mn)P的单层、半层、双层delta掺杂和一些接近delta掺杂构型的构型(指原子通过短距迁移可以转化为delta掺杂构型的构型)的磁性及能量状态。研究表明,(Zn, Cr)S的所有研究的掺杂构型都具有半金属铁磁性;(Ga, Mn)P的单层和半层delta掺杂构型具有半金属铁磁性,而双层为反铁磁性。论文还考察了不同晶面上的delta掺杂。研究表明,在(Zn, Cr)S和(Ga, Mn)P的高对称(001)面上的delta掺杂构型往往具有增强的二维半金属铁磁性(更高的铁磁稳定性和理论上保持半金属铁磁性的使用温度),而在低对称的(111)和(110)面上则失去铁磁性或铁磁性受到削弱。掺杂构型对磁性半导体磁性的影响可以采用配位场理论和Jahn-Teller理论进行解释。
     在第四章中,论文系统探讨了MnxSi1-x磁性半导体的不同delta掺杂构型的磁性。研究表明,在Si的高对称(001)面上delta掺杂比在低对称(111)和(110)面上的铁磁性更稳定;在Si(001)面上低浓度单层delta掺杂具有半金属铁磁性,而半层和多层则失去半金属性质。MnxSi1-x磁性半导体的磁性起源可以用配位场理论描述。与(Zn, Cr)S和(Ga, Mn)P不同,delta掺杂使MnxSi1-x磁性半导体的铁磁稳定性提高但保持半金属铁磁性的使用温度降低。此外,论文还探讨了Si1-xGex合金和SiC的掺杂磁性。
     在第五章中,论文探讨了新型宽禁带绝缘体氧化物ZrO2和HfO2基磁性半导体的掺杂磁性和这类材料向半导体的自旋注入。研究表明,热电子弹道注入机制可以实现与Si相容性较差的磁性半导体或铁磁体向Si的自旋注入。论文探讨了(Zr, Mn)O2和(Hf, Mn)O2的特殊电子结构在热电子弹道注入机制中的应用。论文指出采用这两种材料作为自旋过滤材料不但能在费米能级处实现100%自旋极化注入,而且能在很大范围的热电子能级上实现100%自旋极化注入。论文观察到注入到半导体中的电子自旋方向可以通过调整热电子能量进行调制,这有可能在电子自旋方向控制方面产生应用。
     论文在各章中还探讨了几种常见3d过渡金属原子在ZnS、GaP、Si和ZrO2的(001)面上delta掺杂的磁性。研究表明,掺杂原子对掺杂磁性有决定性影响。
     论文在第二章中还探讨了基体晶体结构和应力对掺杂磁性的影响。研究表明,基体晶体结构对称性越高,体系的铁磁稳定性越高;一般来说,应力对磁性半导体磁性影响很大。但研究表明,在很大范围内应力对立方(Zn, Cr)S的稳定性和半金属性质影响不大。此外,论文在第二章中还探讨了锌硫族化合物的delta掺杂的极端情况-立方过渡金属硫化物的磁性。论文指出立方VS、VSe、VTe、CrS、CrSe和CrTe等具有潜在的自旋电子学应用前景。
     论文在第二章和第三章中还探讨了一些与Si具有较好相容性的锌硫族化合物和III-IV半导体及其合金的delta掺杂磁性。研究表明,立方(Zn, Cr)Se、(Ga, Mn)As、(Al, Mn)P、(Al, Mn)As、(Ga, Mn)PxAs1-x和(Ga1-xAlx, Mn)P等等都具有稳定的半金属铁磁性。此外,论文还探讨了一些与Si相容性较差的半导体材料的delta掺杂磁性,如立方(Zn, Cr)O、(Zn, Cr)Te、(Ga, Mn)Sb、(Al, Mn)Sb、(In, Mn)Sb、(In, V)N和(In, Cr)N等等都具有稳定的铁磁性。研究表明,这些材料都具有潜在的自旋电子学应用前景。
     论文指出,delta掺杂有望成为解决磁性半导体中掺杂过渡金属原子的团聚控制问题的方法之一。
Spintronics is predominant for utilizing the spin and charge degrees of freedom of electrons in the same time, which is regarded as a revolutionary electronics for the future. Materials is the key issue to spintronics, the most potential spintronics materials should possess half-metallic ferromagnetism (HMF), high Cure temperature (TC), good compatibility with mainstream semiconductors technology, and good synthesizability. Semiconductor- spintronics is one key topic of spintronics, which is regarded as the most practical spintronics. Silicon is not only the base of the modern electronics; recent studies show it has potential to be the base of the spintronics. So, the study of spintronics materials compatible with silicon would be very important, which would pave way to silicon-spintronics.
     Focused on (Zn, Cr)S, (Ga, Mn)P, and MnxSi1-x based magnetic semiconductors (MSs), the magnetism and origin of the magnetism in Zn-chalcogenides (ZnX, X=S, Se, Te), III-IV, and group IV MSs were studied using the first-principles density functional calculations. Moreover, the magnetism and electronic structures of ZrO2 and HfO2 based MSs and the spin injection from these materials into mainstream semiconductors were studied.
     In chapter two and three, the effect of doping structures on the magnetism and energetics of (Zn, Cr)S and (Ga, Mn)P based MSs was studied. The results indicate that transition metal (TM) impurities are prone to planar clustering into delta-doping structure with enhanced two- dimensional (2D) ferromagnetism (FM). For the delta-doping structures, the energetics and magnetism of the single-, half-, and double-layer delta-doping structures, and the some doping structures close to the delta-doping structure were studied. The results indicate that all studied doping structures of (Zn, Cr)S show robust HMF. For (Ga, Mn)P, only the single-layer and half-layer delta-doping structure of show HMF, while the double-layer delta-doping structure shows anti-FM (AFM). The effect of crystal faces of the matrix semiconductors on the magnetism was studied also. The results indicate that delta-doping on higher symmetric crystal faces (001) shows enhanced 2D FM, while magnetism in lower symmetric crystal faces [(111) and (110)] are deteriorated. The effect of doping structures on the magnetism in MSs can be dictated by the Ligand Field Theory (LFT) and Jahn-Teller effect theory.
     In chapter four, the effects of delta-doping structures and crystal faces on magnetism in MnxSi1-x were studied. The results indicate that the delta-doping structure in MnxSi1-x (001) show enhanced magnetism than in (111) and (110) faces, only low concentration single-layer delta-doping in MnxSi1-x (001) shows robust HMF, while the magnetism is deteriorated for half-layer and double-layer delta-doing structures. The origin of magnetism in MnxSi1-x using LFT and Jahn-Teller theory was discussed. Unlike (Zn, Cr)S and (Ga, Mn)P, the delta-doping structure of MnxSi1-x only show enhanced ferromagnetic stabilization, while temperature shown HMF is lowered. In the chapter, the magnetism in Si1-xGex and SiC based MSs are also studied. Moreover, the extreme case of the delta-doping structure of Zn-chalcogenides based MSs: TM-sulfides were studied. We find robust HMF in cubic VS, VSe, VTe, CrS, CrSe, and CrTe, and anticipate the potential spintronics application in these ferromagnets.
     In chapter five, magnetism in the wide band-gap oxids, ZrO2 and HfO2, based MSs and the spin injection from the materials into mainstream semiconductors were studied. The results indicate that effective spin injection into silicon from ferromagnets incompatible with silicon may be realize by using spin-dependent ballistic hot-electron injection scheme. The results indicate that both (Zr, Mn)O2 and (Hf, Mn)O2 not only show HMF at the Fermi lever, but also show HMF at a large range of hot-electron energy. When (Zr, Mn)O2 and (Hf, Mn)O2 is used as the magnetic filtering in the ballistic hot-electron injection scheme, the electrons spin direction can be modulated by modulating the hot-electron energy. The character may be find use in spin direction controllment.
     The magnetism in ZnS, GaP, silicon, and ZrO2 based MSs with different 3d TM impurities was studied also. The results indicate that the magnetism is substantially determined by the impurities atoms. In chapter two, the effects of the structure of the matrix semiconductor and stress on the magnetism of (Zn, Cr)S based MSs were studied also. The results indicate that the higher the symmetry of the matrix semiconductor, the robust the magnetism. Generally, the stress show important impact on the magnetism in magnetic semiconductors. However, the stress shows little effect on the HMF in cubic (Zn, Cr)S. Moreover, the extreme case of the delta-doping structure of Zn-chalcogenides based MSs: TM-sulfides were studied. We find robust HMF in cubic VS, VSe, VTe, CrS, CrSe, and CrTe, and anticipate the potential spintronics application in these ferromagnets.
     In chapter two and three, the magnetism in Zn-chalcogenides and III-V based MSs with fair compatibility with silicon was studied. Therein, the results indicate robust HMF in (Zn, Cr)Se, (Ga, Mn)As, (Al, Mn)P, (Al, Mn)As, (Ga, Mn)PxAs1-x, (Ga1-xAlx, Mn)P, and so on. Furthermore, the stidies explored a group of MSs with robust HMF but poor compatible with silicon, such as cubic (Zn, Cr)O, (Zn, Cr)Te, (Ga, Mn)Sb, (Al, Mn)Sb, (In, Mn)Sb, (In, V)N, (In, Cr)N, and so on. The studies indicate potential spintronics application in these MSs.
     The studies speculate that the delta-doping may be a solution to the controlment of the aggregation trend of the TM impurities in MSs.
引文
[1] Wolf S. A., Awschalom D. D., Buhrman R. A., et al. Spintronics: A spin-based electronics vision for the future [J]. Science, 2001, 294:1488-1495
    [2] Johnson M. Spintronics [J]. J. Phys. Chem. B, 2005, 109:14278-14291
    [3] Zutic I., Fabian J., Das S. S. Spintronics: Fundamentals and applications [J]. Rev. Mod. Phys., 2004, 76:323-410
    [4] Baibich M. N., Broto J. M., Fert A., et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Phys. Rev. Lett., 1988, 61:2472-2475
    [5] Appelbaum I., Huang B., Monsma D. J. Electronic measurement and control of spin transport in silicon [J]. Nature, 2007, 447:295-298
    [6] Huang B., Monsma D. J., Appelbaum I. Coherent spin transport through a 350-micron-thick silicon wafer [J]. Phys. Rev. Lett., 2007, 99:177209
    [7] Pershin Y. V. Long-lived spin coherence states in semiconductor heterostructures [J]. Phys. Rev. B, 2005, 71:155317
    [8] Oestreich M., Bender M., Hubner J., et al. Spin injection, spin transport and spin coherence [J]. Semicond. Sci. Technol., 2002, 17(4):285-297
    [9] Schmidt G., Molenkamp L. W. Spin injection into semiconductors, physics and experiments [J]. Semicond. Sci. Technol., 2002, 17(4):310-321
    [10] Hu C. -M., Nitta J., Jensen A., et al. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts [J]. Phys. Rev. B, 2001, 63:125333
    [11] Schmidt G., Ferrand D., Molenkamp L. W., et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor [J]. Phys. Rev. B, 2000, 62:R4790-R4793
    [12] Alvarado S. F., Renaud P., Observation of spin-polarized-electron tunneling from a ferromagnet into GaAs [J]. Phys. Rev. Lett., 1992, 68:1387-1390
    [13] Rashba E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem [J]. Phys. Rev. B, 2000, 62:R16267-R16270
    [14] Flatte M. E., Byers J. M., Lau W. H. Semiconduc-tor Spintronics and Quantum Computation [M]. Edited by Awschalom D. D., Loss D., Samarth N. NewYork:Springer, 2002:107-143
    [15] LaBella, V. P., Bullock, D. W., Ding, Z., et al. Spatially resolved spin-Injection probability for gallium arsenide [J]. Science, 2001, 292:1518-1521
    [16] Jiang X., Wang R., Shelby R. M., et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO (100) [J]. Phys. Rev. Lett., 2005, 94:056601
    [17] Kirczenow G. Ideal spin filters: A theoretical study of electron transmission through ordered and disordered interfaces between ferromagnetic metals and semiconductors [J]. Phys. Rev. B, 2001, 63:054422
    [18] Grundler D. Ballistic spin-filter transistor [J]. Phys. Rev. B, 2001, 63:161307
    [19] Matsuyama T., Hu C.-M., Grundler D., et al. Ballistic spin transport and spin interference in ferromagnet/InAs(2DES)/ferromagnet devices [J]. Phys. Rev. B, 2002, 65:155322
    [20] Upadhyay S. K., Palanisami A., Louie R.N., et al. Probing ferromagnets with Andreev reflection [J]. Phys. Rev. Lett., 1998, 81:3247-3250
    [21] Upadhyay S. K., Louie R. N., Buhrman R. A. Spin filtering by ultrathin ferromagnetic films [J]. Appl. Phys. Lett. 1999, 74:3881
    [22] Hu C.-M., Matsuyama T. Spin Injection Across a Heterojunction: A Ballistic Picture [J]. Phys. Rev. Lett., 2001, 87:066803
    [23] Monsma D. J., Lodder J. C., Popma Th. J. A., et al. Perpendicular hot electron spin- valve effect in a new magnetic field sensor: the spin-valve transistor [J]. Phys. Rev. Lett., 1995, 74:5260-5263
    [24] Rippard W. H., Buhrman R. A. Spin-dependent hot electron transport in Co/Cu thin films [J]. Phys. Rev. Lett., 2000, 84:971-974
    [25] Sham L. J, ostreich T. Exciton interaction and spin dynamics in semiconductor heterostructures [J]. J. Lumin., 2000, 87-89:179-183
    [26] Sham L. J. Theory of spin coherence in semiconductor heterostructures [J]. J. Magn. Magn. Mater., 1999, 200(1-3):219-230
    [27] Awschalom D. D. Manipulating and storing spin coherence in semiconductors [J]. Physica E, 2005, 10(1-3):1-6
    [28] Hagele D., Oestreich M., Ruhle W. W., et al. Spin transport in GaAs [J]. Appl. Phys. Lett., 1998, 73:1580-1582
    [29] Sogawa T., Ando H., Ando S. Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires [J]. Phys. Rev. B, 2000, 61:5535-5539
    [30] Bir G. L., Aronov A. G., Pikus G. E. Spin relaxation of electrons due to scattering by holes [J]. Zh. Eksp. Teor. Fiz. 1975, 69:1382-1397
    [31] Elliott R. J. Theory of the effect of spin-orbit coupling on magnetic resonance in somesemiconductors [J]. Phys. Rev. 1954, 96:266-279
    [32] Yafet Y. Solid state physics [M]. Edited by Seitz F. and Turnbull D. New York: Academic, New York, 1963, 14:2
    [33] Dyakonov M. I., Perel V. I. Spin relaxation of conduction electrons in noncentrosymetric semiconductors [J]. Fiz. Tverd. Tela., 1971, 13:3581-3585
    [34] Dyakonov M. I., Perel V. I. Optical orientation in a system of electrons and lattice nuclei in semiconductors Theory [J]. Zh. Eksp. Teor. Fiz., 1973, 38:362-376.
    [35] Jedema F. J., Heersche H. B., Filip A. T., et al. Electrical detection of spin precession in a metallic mesoscopic spin valve [J]. Nature, 2002, 416:713-716
    [36] Jedema F. J., Nijboer M. S., Filip A. T., et al. Spin injection and spin accumulation in all-metal mesoscopic spin valves [J]. Phys. Rev. B, 2003, 67:085319
    [37] Hammar P. R., Johnson M., Potentiometric measurements of the spin-split subbands in a two-dimensional electron gas [J]. Phys. Rev. B, 2000, 61:7207-7210
    [38] Jedema F. J., Costache M. V., Heersche H. B., et al. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves [J]. Appl. Phys. Lett., 2002, 81:5162
    [39] Fiederling R., Kleim M., Reuscher G., et al. Injection and detection of a spin-polarized current in a light-emitting diode [J]. Nature, 1999, 402:787-790
    [40] Jiang X., Wang R., van Dijken S., et al. Optical detection of hot-electron spin injection into GaAs from a magnetic tunnel transistor source [J]. Phys. Rev. Lett., 2003, 90:256603
    [41] Young D. K., Gupta J. A., Johnston-Halperin E., et al. Optical, electrical and magnetic manipulation of spins in semiconductors [J]. Semicond. Sci. Technol., 2002, 17(4):275-284
    [42] Gupta J. A., Knobel R., Samarth N., et al. Ultrafast manipulation of electron spin coherence [J]. Science, 2001, 292(5526):2458-2461
    [43] Salis G., Fuchs D. T., Kikkawa J. M., et al. Optical manipulation of nuclear spin by a two-dimensional electron gas [J]. Phys. Rev. Lett., 2001, 86:2677-2680
    [44] Rashba E. I., Efros Al. L. Orbital mechanisms of electron-spin manipulation by an electric field [J]. Phys. Rev. Lett., 2003, 91:126405
    [45] Chtchelkatchev N. M. Nazarov Y. V. Andreev quantum dots for spin manipulation [J]. Phys. Rev. Lett., 2003, 90:226806
    [46] Felser C., Fecher G. H., Balke B.. Spintronics: A challenge for materials science and solid-state chemistry [J]. Angew. Chem. Int. Ed. Engl., 2007, 46(5):668-699
    [47] Galanakis I., Dederichs P. H., Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys [J]. Phys. Rev. B, 2002, 66:174429
    [48] Galanakis I., Dederichs P. H., Papanikolaou N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys [J]. Phys. Rev. B, 2002, 66:134428
    [49] de Groot R. A., Mueller F. M., van Engen P. G., et al. New class of materials: half-metallic ferromagnets [J]. Phys. Rev. Lett., 1983, 50:2024-2027
    [50] Kammerer S., Thomas A., Hütten A., et al. Co2MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions [J]. Appl. Phys. Lett., 2004, 85:79
    [51] Wu H., Kratzer P., Scheffler M. First-principles study of thin magnetic transition-metal silicide films on Si(001) [J]. Phys. Rev. B, 2005, 72:144425
    [52] Tsay J. -S., Yao Y. -D. Magnetic phase diagram of ultrathin Co/Si(111) film studied by surface magneto-optic Kerr effect [J]. Appl. Phys. Lett., 1999, 74:1311
    [53] AttemaJ. J., de Wijs G. A., de Groot R. A. The continuing drama of the half-metal/semiconductor interface [J]. J. Phys. D: Appl. Phys., 2006, 39(5):793-796
    [54] Schmidt G., Molenkamp L. W. Electrical spin injection into semiconductors [J]. Physica E, 2001, 9(1):202-208
    [55] Fiederling R., Keim M., Reuscher G., et al. Injection and detection of a spin-polarized current in a light-emitting diode [J]. Nature, 1999, 402(676):787-790
    [56] Awschalom D. D., Flatte M. E. Challenges for semiconductor spintronics [J]. Nat. Phys., 2007, 3(3):153-159
    [57] Schmidt G., Molenkamp L. W. Electrical spin injection using dilute magnetic semiconductors [J]. Physica E, 2001, 10(1-3):484-488
    [58] Fernandez-Rossier J., Sham L. J. A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors [J]. Phys. Rev. B, 2001, 64:235323
    [59] Qian M. C., Fong C.Y., Liu K., et al. Half-metallic digital ferromagnetic heterostructure composed ofδ-doped layer of Mn in Si [J]. Phys. Rev. Lett., 2006, 96:027211
    [60] Nazmul A. M., Amemiya T., Shuto Y., et al. High temperature ferromagnetism in GaAs-based heterostructures with Mnδdoping [J]. Phys. Rev. Lett., 2005, 95:017201
    [61] Wang H. -Y., Qian M. C. Electronic and magnetic properties of Mn/Ge digital ferromagnetic heterostructures: An ab initio investigation [J]. J. Appl. Phys., 2006, 99:08D705
    [62] Jeon H. C., Kang T. W., Kim T. W., et al. Enhancement of the magnetic properties in (Ga1–xMnx)N thin films due to Mn-delta doping [J]. Appl. Phys. Lett., 2005, 87:092501
    [63] Dietl T., Ohno H., Matsukura F., et al. Zener model description of ferromagnetism inzinc-blende magnetic semiconductors [J]. Science, 2000, 287:1019-1022.
    [64] Xiong G., Wilkinson J., Tuzemen S., et al. Toward a new ultraviolet diode laser: luminescence and p-n junctions in ZnO films [A]. Proc. SPIE, 2002, 4644:256
    [65] Jeong I.-S., Kim J. H., Im S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure [J]. Appl. Phys. Lett., 2003, 83:2946
    [66] Nikitin S. E., Nikolaev Y. A., Polushina I. K., et al. Photoelectric phenomena in ZnO:Al-p-Si heterostructures [J]. Semiconductors, 2003, 37:1291-1295
    [67] Liu C.-H., Liu B.-C., Fu Z.-X. Electrical and deep levels characteristics of ZnO/Si heterostructure by MOCVD deposition [J]. Chinese Phys. B, 2008, 17:2292-2296
    [68] Ozgur U., Alivov Y. I., Liu C., et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys. 2005, 98:041301
    [69] Pearton S. J., Abernathy C. R., Norton D. P., et al. Advances in wide bandgap materials for semiconductor spintronics [J]. Mat. Sci. Eng. R, 2003, 40:137-168
    [70] Janisch R., Gopal P., Spaldin N. A. Transition metal-doped TiO2 and ZnO—present status of the field [J]. J. Phys. Condens. Matter, 2005, 17(27):R657-R689
    [71] Liu C., Yun F., Morkoc H. Ferromagnetism of ZnO and GaN: A Review [J]. J. Mater. Sci. Mater. Electron., 2005, 16(9):555-597
    [72] Pearton S. J., Abernathy C. R., Overberg M. E., et al. Wide band gap ferromagnetic semiconductors and oxides [J]. J. Appl. Phys., 2003, 93:1
    [73] Sharma P., Gupta A., Rao K. V., et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO [J]. Nat. Mater., 2003, 2:673-677
    [74] Xu H. Y., Liu Y. C., Xu C. S., et al. Structural, optical, and magnetic properties of Mn-doped ZnO thin film [J]. J. Chem. Phys., 2006, 124:074707
    [75] Sati P., Hayn R., Kuzian R., et al. Magnetic anisotropy of Co2+ as signature of intrinsic ferromagnetism in ZnO:Co [J]. Phys. Rev. Lett., 2006, 96:017203
    [76] Ueda K., Tabata H., Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films [J]. Appl. Phys. Lett., 2001, 79: 988-990
    [77] Neal J. R., Behan A. J., Ibrahim R. M., et al. Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films [J]. Phys. Rev. Lett., 2006, 96:197208
    [78] Kundaliya D. C., Ogale S. B., Lofland S. E., et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system [J]. Nat. Mater., 2004, 3:709-714
    [79] Garcia M. A., Ruiz-Gonzalez M. L., Quesada A., et al. Interface double-exchangeferromagnetism in the Mn-Zn-O system: new class of biphase magnetism [J]. Phys. Rev. Lett., 2005, 94:217206
    [80] Lawes G., Risbud A. S., Ramirez A. P., et al. Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO [J]. Phys. Rev. B, 2005, 71:045201
    [81] Kittilstved K. R., Norberg N. S., Gamelin D. R. Chemical manipulation of high-TC ferromagnetism in ZnO diluted magnetic semiconductors [J]. Phys. Rev. Lett., 2005, 94:147209
    [82] Norberg N. S., Kittilstved K. R., Amonette J. E., et al. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films [J]. J. Am. Chem. Soc., 2004, 126:9387-9398
    [83] Schwartz D. A., Norberg N. S., Nguyen Q. P., et al. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals [J]. J. Am. Chem. Soc., 2003, 125:13205-13218
    [84] Barick K. C., Bahadur D. Synthesis, self-assembly, and properties of Mn doped ZnO nanoparticles [J]. J. Nanosci. Nanotechnol., 2007, 7:1935-1940
    [85] Radovanovic P. V., Gamelin D. R. High-temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots [J]. Phys. Rev. Lett., 2003, 91:157202
    [86] Sluiter M. H., Kawazoe Y., Sharma P., et al. First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature [J]. Phys. Rev. Lett., 2005, 94:187204
    [87] Risbud A. S., Spaldin N. A., Chen Z. Q., et al. Magnetism in polycrystalline cobalt-substituted zinc oxide [J]. Phys. Rev. B, 2003, 68:205202
    [88] Park C. H., Chadi D. J. Hydrogen-mediated spin-spin interaction in ZnCoO [J]. Phys. Rev. Lett., 2005, 94:127204
    [89] Huang D., Zhao Y.-J., Chen D.-H., et al. Magnetism and clustering in Cu doped ZnO [J]. Appl. Phys. Lett., 2008, 92:182509
    [90] Pan H., Yi J. B., Shen L., et al. Room-temperature ferromagnetism in carbon-doped ZnO [J]. Phys. Rev. Lett. 2007, 99:127201
    [91] Sato K., Katayama-Yoshida H. Ab initio study on the magnetism in ZnO-, ZnS-, ZnSe- and ZnTe-based diluted magnetic semiconductors [J]. Phys. status solidi. B., 2002, 229(2):673-680
    [92] Bergqvist L., Eriksson O., Kudrnovsky J., et al. Magnetic percolation in diluted magnetic semiconductors [J]. Phys. Rev. Lett., 2004, 93:137202
    [93] Saito H., Zayets V., Yamagata S., et al. Magneto-optical studies of ferromagnetism in the II-VI diluted magnetic semiconductor Zn1-xCrxTe [J]. Phys. Rev. B, 2002, 66:081201
    [94] Saito H., Zayets V., Yamagata S., et al. Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1-xCrxTe [J]. Phys. Rev. Lett., 2003, 90:207202
    [95] Ferrand D., Cibert J., Wasiela A., et al. Carrier-induced ferromagnetism in p-Zn1-xMnxTe [J]. Phys. Rev. B, 2001, 63:085201
    [96] Nobuhiko O., Nozomi N., Stephane M., et al. Significant enhancement of ferromagnetism in Zn1-xCrxTe doped with iodine as an n-type dopant [J]. Phys. Rev. Lett., 2006, 97:037201
    [97] Ozaki N., Okabayashi I., Kumekawa T., et al. Suppression of ferromagnetism due to hole doping in Zn1-xCrxTe grown by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 87(19):192116
    [98] Kuroda S., Nishizawa N., Takita K., et al. Origin and control of high-temperature ferromagnetism in semiconductors [J]. Nat. Mater., 2007, 6:440-446
    [99] Zhao L., Zhang B., Pang Q., et al. Chemical synthesis and magnetic properties of dilute magnetic ZnTe:Cr crystals [J]. Appl. Phys. Lett., 2006, 89:092111
    [100] Sreenivasan M. G., Teo K. L., Cheng X. Z., et al. Structural, magnetic, and transport investigations of CrTe clustering effect in (Zn, Cr)Te system [J]. J. Appl. Phys., 2007, 102:053702
    [101] Saito H., Yamagata S, Ando K. Magnetoresistance in a room temperature ferromagnetic diluted magnetic semiconductor Zn1–xCrxTe [J]. J. Appl. Phys., 2004, 95:7175
    [102] Wang W. G., Yee K. J., Kim D. H., et al. Microstructure, magnetic, and spin-dependent transport properties of (Zn, Cr)Te films fabricated by magnetron sputtering [J]. Phys. Rev. B, 2008, 77:155207
    [103] Wang W., Ni C., Zhu T., et al. Structural, magnetic, and transport properties of (Zn, V)Te semiconductors [J]. J. Appl. Phys., 2006, 99:08D503
    [104] Sato K., Katayama-Yoshida H. First principles materials design for semiconductor spintronics [J]. Semicond. Sci. Technol., 2002, 17(4):367-376
    [105] Liu Y. Liu B. -G. First-principles study of half-metallic ferromagnetism and structural stability of CrxZn1?xTe [J]. J. Phys. D: Appl. Phys., 2007, 40:6791-6796
    [106] Wang Q., Sun Q., Jena P., et al. First-principles study of ferromagnetic coupling in Zn1–xCrxTe thin film [J]. J. Appl. Phys., 2005, 97:043904
    [107] Stern R. A., Schuler T. M., MacLaren J. M., et al. Calculated half-metallic behavior indilute magnetically doped ZnS [J]. J. Appl. Phys., 2004, 95:7468
    [108] Ge X.-F., Zhang Y.-M. First-principles study of half-metallic ferromagnetism in Zn1?xCrxSe [J]. J. Magnet. Magnet. Mater. 2009, 321(3):198-202
    [109] Da Silva J. L. F., Dalpian G. M., Wei S.-H. Carrier-induced enhancement and suppression of ferromagnetism in Zn1-xCrxTe and Ga1-xCrxAs: origin of the spinodal decomposition [J]. New J. Phys., 2008, 10:113007
    [110] Fukushima T., Sato K., Katayama-Yoshida H., et al. Theoretical prediction of Curie temperature in (Zn, Cr)S, (Zn, Cr)Se and (Zn, Cr)Te by first principles calculations [J]. Jpn. J. Appl. Phys., 2004, 43:L1416-L1418
    [111] Sonoda S., Shimizu S., Sasaki T., et al. Molecular beam epitaxy of wurtzite (Ga, Mn)N films on sapphire(0001) showing the ferromagnetic behaviour at room temperature [J]. J. Cryst. Growth, 2002, 237-239:1358-1362
    [112] Sasaki T., Sonoda S., Yamamoto Y. et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN [J]. J. Appl. Phys., 2002, 91:7911
    [113] Ohno H. Making nonmagnetic semiconductors ferromagnetic [J]. Science, 1998, 281(5379):951-956
    [114] Bonanni A. Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths [J]. Semicond. Sci. Technol., 2007, 22:R41-R56
    [115] Sanvito S., Theurich G., Hill N. A. Density functional calculations for III–V diluted ferromagnetic semiconductors: A review [J]. J. Supercond., 2002, 15(1):85-104
    [116] Jungwirth T., Sinova J., Masek J., et al. Theory of ferromagnetic (III, Mn)V semiconductors [J]. Rev. Mod. Phys., 2006, 78(3):809-864
    [117] Sinova J., Jungwirth T., Cerne J. Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: A review [J]. Int. J. Mod. Phys. B, 2004, 18(8):1083-1118
    [118] Ohno H., Shen A., Matsukura F., et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs [J]. Appl. Phys. Lett., 1996, 69:363
    [119] Ohno H. Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors [J]. Phys. Rev. Lett., 1992, 68:2664-2667
    [120] Akai H. Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As [J]. Phys. Rev. Lett., 1998, 81:3002-3005
    [121] Dietl T., Ohno H., Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors [J]. Phys. Rev. B, 2001, 63:195205
    [122] Beschoten B., Crowell P. A., Malajovich I., et al. Magnetic circular dichroism studies ofcarrier-induced ferromagnetism in (Ga1-xMnx)As [J]. Phys. Rev. Lett., 1999, 83:3073
    [123] Potashnik S. J., Ku K. C., Chun S. H., et al. Effects of annealing time on defect-controlled ferromagnetism in Ga1–xMnxAs [J]. Appl. Phys. Lett., 2001, 79:1495
    [124] Ku K. C., Potashnik S. J., Wang R. F., et al. Highly enhanced Curie temperature in low-temperature annealed [Ga, Mn]As epilayers [J]. Appl. Phys. Lett., 2003, 82:2302
    [125] Edmonds K. W., Wang K. Y., Campion R.P., et al. High-Curie-temperature Ga1–xMnxAs obtained by resistance-monitored annealing [J]. Appl. Phys. Lett., 2002, 81:4991
    [126] Ohya S., Ohno K., Tanaka M. Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs [J]. Appl. Phys. Lett., 2007, 90:112503
    [127] Xu J. L., van Schilfgaarde M., Samolyuk G. D. Role of disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN [J]. Phys. Rev. Lett., 2005, 94:097201
    [128] Berciu M., Bhatt R. N. Effects of disorder on ferromagnetism in diluted magnetic semiconductors [J]. Phys. Rev. Lett., 2001, 87:107203
    [129] Jungwirth T., Konig J., Sinova J., et al. Curie temperature trends in (III, Mn)V ferromagnetic semiconductors [J]. Phys. Rev. B, 2002, 66:012402
    [130] Sato K., Dederics P. H., Katayama-Yoshida H. Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles [J]. Europhys. Lett., 2003, 61:403-408
    [131] Reed M. L., El-Masry N. A., Stadelmaier H. H., ey al. Room temperature ferromagnetic properties of (Ga, Mn)N [J]. Appl. Phys. Lett., 2001, 79:3473
    [132] Overberg Mark E., Abernathy Cammy R., Pearton Stephen J., et al. Indication of ferromagnetism in molecular-beam-epitaxy-derived N-type GaMnN [J]. Appl. Phys. Lett., 2001, 79:1312
    [133] Theodoropoulou N., Hebard A. F., Overberg M. E., et al. Magnetic and structural properties of Mn-implanted GaN [J]. Appl. Phys. Lett., 2001, 78:3475
    [134] Thaler G. T., Overberg M. E., Gila B., et al. Magnetic properties of n-GaMnN thin films [J]. Appl. Phys. Lett., 2002, 80:3964
    [135] Chitta V. A., Coaquira J. A. H., Fernandez J. R. L., et al. Room temperature ferromagnetism in cubic GaN epilayers implanted with Mn+ ions [J]. Appl. Phys. Lett., 2004, 85:3777
    [136] Dhar S., Brandt O., Trampert A., et al. Origin of high-temperature ferromagnetism in (Ga, Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy [J]. Appl. Phys. Lett., 2003, 82:2077
    [137] Zajac M., Gosk J., Grzanka E., et al. Possible origin of ferromagnetism in (Ga, Mn)N[J]. J. Appl. Phys., 2003, 93:4715
    [138] Rao B. K., Jena P. Giant magnetic moments of nitrogen-doped Mn clusters and their relevance to ferromagnetism in Mn-doped GaN [J]. Phys. Rev. Lett., 2002, 89:185504
    [139] Sandratskii L. M., Bruno P., Mirbt S. Effect of the Mn clustering in (GaMn)N on the magnetic transition temperature [J]. Phys. Rev. B, 2005, 71:045210
    [140] Raebiger H., Ayuela A., von Boehm J. Electronic and magnetic properties of substitutional Mn clusters in (Ga, Mn)As [J]. Phys. Rev. B, 2005, 72:014465
    [141] Hynninen Teemu, Raebiger Hannes, von Boehm J., et al. High Curie temperatures in (Ga, Mn)N from Mn clustering [J]. Appl. Phys. Lett., 2006, 88:122501
    [142] Das G. P., Rao B. K., Jena P. Ferromagnetism in Mn-doped GaN: From clusters to crystals [J]. Phys. Rev. B, 2003, 68:035207
    [143] Graf T., Goennenwein S. T. B., Brandt M. S. Prospects for carrier-mediated ferromagnetism in GaN [J]. Phys. Status Solidi B, 2003, 239(2):277-290
    [144] Sato K., Schweika W., Dederichs P. H., et al. Low-temperature ferromagnetism in (Ga, Mn)N: Ab initio calculations [J]. Phys. Rev. B, 2004, 70:201202
    [145] Park S. E., Lee H.-J., Cho Y. C., et al. Room-temperature ferromagnetism in Cr-doped GaN single crystals [J]. Appl. Phys. Lett., 2002, 80:4187
    [146] Kim J. J., Makino H., Sakurai M., et al. Structure and magnetic properties of Cr-doped GaN [J]. J. Vac. Sci. Technol. B, 2005, 23(3):1308-1312
    [147] Hashimoto M., Emura S., Tanaka H., et al. Local crystal structure and local electronic structure around Cr in low-temperature-grown GaCrN layers [J]. J. Appl. Phys., 2006, 100:103907
    [148] Haider M. B., Yan R., Al-Brithena H., et al. Room temperature ferromagnetism in CrGaN: Dependence on growth conditions in rf N-plasma molecular beam epitaxy [J]. J. Cryst. Growth, 2005, 285(3):300-311
    [149] Kobayashia S., Shanthi S., Kimura S., et al. Molecular-beam epitaxial growth and characterization of ferromagnetic cubic GaCrN on GaAs substrate [J]. J. Cryst. Growth, 2007, 308(1):58-62
    [150] Kimura S., Subashchandran S., Zhou Y. K., et al. Epitaxial growth of ferromagnetic cubic GaCrN on MgO substrate [J]. Jpn. J. Appl. Phys., 2006, 45:76-78
    [151] Lee J. S., Lim J. D., Khim Z. G., et al. Magnetic and structural properties of Co, Cr, V ion-implanted GaN [J]. J. Appl. Phys., 2003, 93:4512
    [152] Bonanni A., Kiecana M., Simbrunner C., et al. Paramagnetic GaN:Fe and ferromagnetic (Ga, Fe)N: The relationship between structural, electronic, and magneticproperties [J]. Phys. Rev. B, 2007, 75:125210
    [153] Dhar S., Perez L., Brandt O., et al. Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300K[J].Phys. Rev. B, 2005, 72:245203
    [154] Lee J. -H., Choi I. -H., Shin S., et al. Room-temperature ferromagnetism of Cu-implanted GaN [J]. Appl. Phys. Lett., 2007, 90:032504
    [155] Wu R. Q., Peng G. W., Liu L., et al. Cu-doped GaN: A dilute magnetic semiconductor from first-principles study [J]. Appl. Phys. Lett., 2006, 89:062505
    [156] Polyakov A. Y., Smirnov N. B., and Govorkov A. V., et al. Properties of highly Cr-doped AlN [J]. Appl. Phys. Lett., 2004, 85:4067
    [157] Kumar D., Antifakos J., Blamire M. G., et al. High Curie temperatures in ferromagnetic Cr-doped AlN thin films [J]. Appl. Phys. Lett., 2004, 84:5004
    [158] Liu H. X., Wu S. Y., Singh R. K., et al. Observation of ferromagnetism above 900 K in Cr–GaN and Cr–AlN [J]. Appl. Phys. Lett., 2004, 85:4076
    [159] Overberg M. E., Gila B. P., Thaler G. T., et al. Room temperature magnetism in GaMnP produced by both ion implantation and molecular-beam epitaxy [J]. J. Vac. Sci. Technol. B, 2002, 20(3):969-973
    [160] Kronik L., Jain M., Chelikowsky J. R. Electronic structure and spin polarization of MnGaP [J]. Appl. Phys. Lett., 2004, 85:2014
    [161] Overberg M. E., Thaler G. T., Frazier R. M., et al. Ferromagnetic semiconductors based upon AlGaP [J]. J. Appl. Phys., 2003, 93:7861
    [162] Bolduc M., Awo-Affouda C., Stollenwerk A., et al. Above room temperature ferromagnetism in Mn-ion implanted Si [J]. Phys. Rev. B, 2005, 71:033302
    [163] Bandaru P. R., Park J., Lee J. S., et al. Enhanced room temperature ferromagnetism in Co- and Mn-ion-implanted silicon [J]. Appl. Phys. Lett., 2006, 89:112502
    [164] Zeng L., Helgren E., Rahimi M., et al. Quenched magnetic moment in Mn-doped amorphous Si films [J]. Phys. Rev. B, 2008, 77:073306
    [165] Zhou S., Potzger K., Zhang G., et al. Structural and magnetic properties of Mn-implanted Si [J]. Phys. Rev. B, 2007, 75:085203
    [166] Liu L., Chen N., Wang Y., et al. Investigation of Mn-doped Si films prepared by magnetron cosputtering [J]. J. Cryst. Growth, 2006, 291(1):239-242
    [167] Liu X. C., Lu Z. H., Lu Z. L., et al. Hole-mediated ferromagnetism in polycrystalline Si1–xMnx:B films [J]. J. Appl. Phys., 2006, 100:073903
    [168] Liu X. C., Lin Y. B., Wang J. F., et al. Effect of hydrogenation on the ferromagnetism in polycrystalline Si1?xMnx:B thin films [J]. J. Appl. Phys., 2007, 102:033902
    [169] Zhang Y., Jiang Q., Smith D. J., et al. Growth and characterization of Si1–xMnx alloys on Si(100) [J]. J. Appl. Phys., 2005, 98:033512
    [170] Chiu S. H., Hsu H. S., Huang J. C. A. The molecular beam epitaxy growth, structure, and magnetism of Si1?xMnx films [J]. J. Appl. Phys., 2008, 103:07D110
    [171] Cho S., Choi S., Hong S. C., et al. Ferromagnetism in Mn-doped Ge [J]. Phys. Rev. B, 2002, 66:033303
    [172] Kang J.-S., Kim G., Wi S. C., et al. Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors [J]. Phys. Rev. Lett., 2005, 94:147202
    [173] Tsui F., He L., Ma L., et al. Novel germanium-based magnetic semiconductors [J]. Phys. Rev. Lett., 2003, 91:177203
    [174] Kazakova O., Kulkarni J. S., Holmes J. D., et al. Room-temperature ferromagnetism in Ge1?xMnx nanowires [J]. Phys. Rev. B, 2005, 72:094415
    [175] Choi S., Hong S. C., Cho S., et al. Ferromagnetic properties in Cr, Fe-doped Ge single crystals [J]. J. Appl. Phys., 2003, 93:7670
    [176] Li A. P., Wendelken J. F., and Shen J., et al. Magnetism in MnxGe1?x semiconductors mediated by impurity band carriers [J]. Phys. Rev. B, 2005, 72:195205
    [177] Li A. P., Shen J., Thompson J. R., et al. Ferromagnetic percolation in MnxGe1–x dilute magnetic semiconductor [J]. Appl. Phys. Lett., 2005, 86:152507
    [178] Lee J. J., Medvedeva J. E., Song J. H., et al. Ferromagnetism of Mn/Ge multilayers grown by molecular beam epitaxy [J]. J.Supercond. Nov. Magnet., 2005, 18(3):335-338
    [179] Jamet M., Barski A., Devillers T., et al. High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns [J]. Nat. Mater., 2006, 5:653-659
    [180] Devillers T., Jamet M., Barski A., et al. Structure and magnetism of self-organized Ge1?xMnx nanocolumns on Ge(001) [J]. Phys. Rev. B, 2007, 76:205306
    [181] Stroppa A., Picozzi S., Continenza A., et al. Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors [J]. Phys. Rev. B, 2003, 68:155203
    [182] Miura Y., Shirai M., Nagao K. First-principles design of ferromagnetic nanostructures based on group-IV semiconductors [J]. J. Phys.: Condens. Matter, 2004, 16:S5735
    [183] Weng H., Dong J. First-principles investigation of transition-metal-doped group-IV semiconductors: RxY1?x (R=Cr, Mn, Fe; Y=Si,Ge) [J]. Phys. Rev. B, 2005, 71:035201
    [184] Zhu, W., Zhang, Z., Kaxiras, E. Dopant-assisted concentration enhancement of substitutional Mn in Si and Ge [J]. Phys. Rev. Lett., 2008, 100:027205
    [185] Liu Q., Yan W., Wei H., et al. Energetic stability, electronic structure, and magnetism inMn-doped silicon dilute magnetic semiconductors [J]. Phys. Rev. B, 2008, 77:245211
    [186] Wu H., Kratzer P., Scheffler M. Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si [J]. Phys. Rev. Lett., 2007, 98:117202
    [187] Peressi M., Debernardi A., Picozzi S., et al. Half-metallic Mn-doped Si(x)Ge(1-x) alloys: A first principles study [J]. Comp. Mater. Sci., 2005, 33(1-3):125-131
    [188] Picozzi S., Antoniella F., Continenza A., et al. Stabilization of half metallicity in Mn-doped silicon upon Ge alloying [J]. Phys. Rev. B, 2004, 70:165205
    [189] Matsumoto Y., Shono T., Hasegawa T., et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Science, 2001, 291:854-856
    [190] Kim J. Y., Park J. H., Park B. G., et al. Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films [J]. Phys. Rev. Lett., 2003, 90:017401
    [191] Shinde, S. R., Ogale, S. B., Das Sarma, S., et al. Ferromagnetism in laser deposited anatase Ti1-xCoxO2-δfilms [J]. Phys. Rev. B, 2003, 67:115211
    [192] Griffin K. A., Pakhomov A. B., Wang C. M., et al. Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2 [J]. Phys. Rev. Lett., 2005, 94:157204
    [193] Philip J., Punnoose A., Kim B. I., et al. Carrier-controlled ferromagnetism in transparent oxide semiconductors [J]. Nat. Mater., 2006, 5:298-304
    [194] Archer P. I., Radovanovic P. V., Heald S. M., et al. Low-temperature activation and deactivation of high-Curie-temperature ferromagnetism in a new diluted magnetic semiconductor: Ni2+-Doped SnO2 [J]. J. Am. Chem. Soc., 2005, 127:14479-14487
    [195] Ogale S. B., Choudhary R. J., Buban J. P., et al. High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO(2-δ) [J]. Phys. Rev. Lett., 2003, 91:077205
    [196] Mahadevan P., Zunger A. Room-temperature ferromagnetism in Mn-doped semiconducting CdGeP2 [J]. Phys. Rev. Lett., 2002, 88:047205
    [197] Cho S., Choi S., Cha G. B., et al. Room-temperature ferromagnetism in (Zn1-xMnx)GeP2 semiconductors [J]. Phys. Rev. Lett., 2002, 88:257203
    [198] Thangavel R., Rajagopalan M., Kumar J. First-principles prediction of half-metallic ferromagnetism in Cd(TM)O2 (TM= Cr, Mn, Fe, Co, Ni) compounds [J]. Physica B, 2008, 403(17):2768-2772
    [199] Pan H. and Feng Y. P., Wu Q. Y. et al. Magnetic properties of carbon doped CdS: A first-principles and Monte Carlo study [J]. Phys. Rev. B, 2008, 77:125211
    [200] Delikanli S., He S., Qin Y., et al. Room temperature ferromagnetism in Mn-doped CdS nanorods [J]. Appl. Phys. Lett., 2008, 93:132501
    [201] Nabi Z., Ahuja R. Ferromagnetism in (Mn, Li) co-doped CdSe [J]. Europhys. Lett., 2008, 84:57012
    [202] Zhang C.-W., Yan S.-S., Wang P.-J., et al. Half-metallic ferromagnetism in Cd1?xTMxSe (TM = Cr, V and Mn) semiconductors [J]. Comp. Mater. Sci., 2008, 43(4):710-714
    [203] Antony J., Qiang Y., Faheem M., et al. Ferromagnetic semiconductor nanoclusters: Co-doped Cu2O [J]. Appl. Phys. Lett., 2007, 90:013106
    [204] Pan L., Zhu H., Fan C., et al. Mn-doped Cu2O thin films grown by rf magnetron sputtering [J]. J. Appl. Phys., 2005, 97:10D318
    [205] Wei M., Braddon N., Zhi D., et al. Room temperature ferromagnetism in bulk Mn-Doped Cu2O [J]. Appl. Phys. Lett., 2005, 86:072514
    [206] Yao K.L., Gao G.Y., Liu Z.L., et al. Half-metallic ferromagnetic semiconductors of V- and Cr-doped CdTe studied from first-principles pseudopotential calculations [J]. Physica B, 2005, 366(1-4):62-66
    [207] Fukuma Y., Asada H., Taya T., et al. Ferromagnetism in Ge1–xCrxTe epilayers grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2006, 89:152506
    [208] Fukuma Y., Asada H., Moritake N., et al. Ferromagnetic semiconductor Ge1?xCrxTe with a Curie temperature of 180 K [J]. Appl. Phys. Lett., 2007, 91:092501
    [209] Fukuma Y., Goto K., Senba S, et al. IV-VI diluted magnetic semiconductor Ge1?xMnxTe epilayer grown by molecular beam epitaxy [J]. J. Appl. Phys., 2008, 103:053904
    [210] Gupta A., Cao H., Parekh K., et al. Room temperature ferromagnetism in transition metal (V, Cr, Ti) doped In2O3 [J]. J. Appl. Phys., 2007, 101:09N513
    [211] Herwadkar A., Lambrecht W. R. L., van Schilfgaarde M. Linear response theoretical study of the exchange interactions in Mn-doped ScN: Effects of disorder, band gap, and doping [J]. Phys. Rev. B, 2008, 77:134433
    [212] Houari A., Matar S. F., Belkhir M. A. Stability and magnetic properties of Mn-substituted ScN semiconductor from first principles [J]. Comp. Mater. Sci., 2008, 43(2):392-398
    [213] Jia X., Yang W., Qin M. Magnetism in Mn doped yttrium nitride: First-principles calculations [J]. Appl. Phys. Lett., 2008, 93:222501
    [214] Ostanin S., Ernst A., Sandratskii L. M., et al. Mn-stabilized Zirconia: From imitation diamonds to a new potential high-TC ferromagnetic spintronics material [J]. Phys. Rev. Lett., 2007, 98:016101
    [215] Archer T., Pemmaraju C. D., Sanvito S. Magnetic properties of ZrO2-diluted magnetic semiconductors [J]. J. Magnet. Magnet. Mater., 2007, 316(2):e188-e190
    [216] Pemmaraju C. D., Sanvito S. Ferromagnetism driven by intrinsic point defects in HfO2 [J]. Phys. Rev. Lett., 2005, 94:217205
    [217] Weng H., Dong J. Ferromagnetism in HfO2 induced by hole doping: First-principles calculations [J]. Phys. Rev. B, 2006, 73:132410
    [218] Anderson P. W. Magnetism [M]. Edited by Rado G., Suhl H., New York: Academic, 1963:25
    [219] Zener C. Interaction between the d shells in the transition metals [J]. Phys. Rev., 1951, 81:440-444
    [220] Zener C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure [J]. Phys. Rev., 1951, 82:403-405
    [221] Zener C. Interaction between the d-shells in the transition metals. III. Calculation of the Weiss factors in Fe, Co, and Ni [J]. Phys. Rev., 1951, 83:299-301
    [222] Dalpian G. M., Wei S.-H. Carrier-mediated stabilization of ferromagnetism in semiconductors: holes and electrons [J]. Phys. Status Solidi B, 2006, 243(9):2170-2187
    [223] Torrance J. B., Shafer M. W., McGuire T. R. Bound magnetic polarons and the insulator-metal transition in EuO [J]. Phys. Rev. Lett., 1972, 29:1168-1171
    [224] Durst A. C., Bhatt R. N., Wolff P. A. Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors [J]. Phys. Rev. B, 2002, 65:235205
    [225] Durst A. C., Bhatt R. N. Effective interaction Hamiltonian of polaron pairs in diluted magnetic semiconductors [J]. Phys. Rev. B, 2002, 65:075211
    [226] Dietl T., Ohno H., Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors [J]. Phys. Rev. B, 2001, 63:195205
    [227] Berciu M., Bhatt R. N. Effects of disorder on ferromagnetism in diluted magnetic semiconductors [J]. Phys. Rev. Lett., 2001, 87:108203
    [228] Bhatt R. N., Berciu M., Kennett M. D., et al. Diluted magnetic semiconductors in the low carrier density regime [J]. J. Supercond., 2002, 15:71-83
    [229] Litvinov V. I., Dugaev V. A. Ferromagnetism in magnetically doped III-V semiconductors [J]. Phys. Rev. Lett., 2001, 86:5593-5596
    [230] Konig J., Lin H. H., MacDonald A. H. Theory of diluted magnetic semiconductor ferromagnetism [J]. Phys. Rev. Lett., 2001, 84:5628-5631
    [231] Schliemann J., Konig J., MacDonald A. H. Monte Carlo study of ferromagnetism in (III, Mn)V semiconductors [J]. Phys. Rev. B, 2001, 64:165201
    [232] Risbud A.S., Magnetis in polycrystalline cobalt-substituted zinc oxide [J]. Phys. Rev. B, 2003, 68:205202
    [233]姜寿亭.铁磁性理论[M].北京:科学出版社1993:137-200
    [234] Raebiger H., Ayuela A., von Boehm J. Electronic and magnetic properties of substitutional Mn clusters in (Ga, Mn)As [J]. Phys. Rev. B, 2005, 72:014465
    [235] Kurz P., Bihlmayer G., Blugel S. Magnetism and electronic structure of hcp Gd and the Gd (0001) surface [J]. J. Phys.: Condens. Matter, 2002, 14(25):6353-6371
    [236] Turek I., Kudrnovsky J., Bihlmayer G., et al. Ab initio theory of exchange interactions and the Curie temperature of bulk Gd [J]. J. Phys.: Condens. Matter, 2003, 15(17):2771
    [237] Sato K., Dederics P. H., Katayama-Yoshida H. Curie temperatures of III V diluted magnetic semiconductors calculated from first principles [J]. Europhys. Lett., 2003, 61(3):403-408
    [238] Ohno H., Shen, A., Matsukura, F., et al., (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs [J]. Appl. Phys. Lett., 1996, 69:363-365
    [239] Matsukura F., Ohno H., Shen A., et al. Transport properties and origin of ferromagnetism in (Ga, Mn)As [J]. Phys. Rev. B, 1998, 57:R2037-R2040
    [240] Shinde S. R., Ogale S. B., Higgins J. S., et al. Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2-delta films [J]. Phys. Rev. Lett., 2004, 92:166601
    [241]李震宇.新材料物性的第一性原理研究[D].合肥:中国科技大学, 2004
    [242]丁迅雷.金团簇上小分子吸附的第一性原理研究[D].合肥:中国科技大学, 2004
    [243] Payne M. C., Teter M. P., Allan D. C., et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64:1045-1097
    [244] Segall M. D., Lindan P. L. D., Probert M. J., et al. First-principles simulation: Ideas, illustrations and the castep code [J]. J. Phys: Condens Matter, 2002, 14(11):2717-2743.
    [245] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett, 1996, 77(18):3865-3868.
    [246] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41(11):7892-7895.
    [247] Laks D. B., Van de Walle C. G., Neumark G. F., et al. Native defects and self-compensation in ZnSe [J]. Phys. Rev. B, 1992, 45(19):10965-10978.
    [248] Hordequin C., Ristoiu D., Ranno L. et al. On the cross-over from half-metal to normal ferromagnet in NiMnSb [J]. 2000, Eur. Phys. J. B, 16(2):287-293
    [249] Wang Z. L., Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246
    [250] Huang M. H., Mao S., Feick H., et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292(5523):1897-1899
    [251] Ashrafi A., Jagadish C. Review of zincblende ZnO: Stability of metastable ZnO phases [J]. J. Appl. Phys., 2007, 102(7):071101
    [252] Ashrafi A. B. M. A., Ueta A., Avramescu A., et al. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers [J]. Appl. Phys. Lett., 2000, 76(5):550
    [253] Kim S.-K., Jeong S.-Y., Cho C.-R. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing [J]. Appl. Phys. Lett., 2003, 82(4):562
    [254] Ding Y., Wang Z. L., Sun T., et al. Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires [J]. Appl. Phys. Lett., 2007, 90(15):153510
    [255] Almamun A. Heterointerfaces of stable and metastable ZnO phases [J]. Appl. Surf. Sci. 2008, 255(5):2342-2346
    [256] Limaye M. V., Singh S. B., Date S. K., et al. Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles [J]. Mater. Res. bull., 2009, 44:339-344
    [257]刘邦贵.与半导体相容的半金属铁磁体[J].物理, 2005, 34(1):37-42
    [258] Akinaga H., Manago T., Shirai M. Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy [J]. Jpn. J. Appl. Phys., 2000, 39:L1118
    [259] Mavropoulos P., Galanakis I. A review of the electronic and magnetic properties of tetrahedrally bonded half-metallic ferromagnets [J]. J. Phys.: Conden. Matter, 2007, 19(31):315221
    [260] Galanakis I., Mavropoulos P. Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems [J]. Phys. Rev. B 2003, 67:104417
    [261] Xie W. -H., Xu Y. -Q., Liu B. -G., et al. Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides [J]. Phys. Rev. Lett., 2003, 91:037204
    [262] Zhao Y. J., Mahadevan P., Zunger A. Practical rules for orbital-controlled ferromagnetism of 3d impurities in semiconductors [J]. J. Appl. Phys., 2005, 98:113901
    [263] Overberg M. E. Magnetic properties of Mn-implanted AlGaP alloys [J]. J. Vac. Sci. Technol. B, 2003, 21(5):2093
    [264] Overberg M. E., Thaler G. T., Frazier R. M., et al. Ferromagnetic AlGaCrP films by ion implantation [J]. Electrochem. Solid state lett., 2004, 7(2):G44-G46
    [265] Overberg M. Ferromagnetism in Mn- and Cr-implanted AlGaP [J]. Solid State Electron.,2003, 47(9):1549-1552
    [266] Theodoropoulou N., Hebard A. F., Overberg M. E., et al. Unconventional carrier- mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn)P:C [J]. Phys. Rev. Lett., 2002, 89(10):107203
    [267] Owens F. J. Ferromagnetism above room temperature in bulk sintered gallium phosphide doped with manganese [J]. J. Phys. Chem. Solids, 2005, 66(5):793-796
    [268] Owens F. J., Gupta A., Rao K.V., et al. Unusual room temperature ferromagnetism in bulk sintered GaP doped with Copper [J]. IEEE T. Magn., 2007, 43(6):3043-3045
    [269] Chen, P. MBE growth and properties of InN-based dilute magnetic semiconductors [J]. J. Cryst. Growth, 2004, 269(1):66-71
    [270] Chen P., Makino H., Yao, T. InMnN: A nitride-based diluted magnetic semiconductor [J]. Solid State Commu., 2004, 130(1-2):25-29
    [271] Shon Y., Jeon H. C., Park Y. S., et al. Enhanced Curie temperature of InMnP:Zn-TC~300 K [J]. Appl. Phys. Lett., 2004, 85(10):1736
    [272] Shon Y., Lee S., Jeon H. C., et al. Ferromagnetic formation of two phases due to MnP and InMn3 from InMnP:Zn implanted with Mn (10 at. %) [J]. Appl. Phys. Lett., 2006, 88(23):232511
    [273] Shon Y., Jeon H. C., Park Y. S., et al. Diluted magnetic semiconductor of p-type InMnP:Zn epilayer [J]. J. Cryst. Growth, 2005, 281(2-4):501-507
    [274] Shon Y., Jeon H., Park Y., et al. Characteristics of diluted magnetic semiconductor for p-type InMnP:Zn epilayer [J]. Thin Solid Films, 2006, 505(1-2):129-132
    [275] Herwadkar A.D. Electronic structure and magnetism in some transition metal nitrides: Mn-doped ScN, dilute magnetic semiconductor and CrN, Mott insulator [D]. Cleveland: Case Western Reserve University, 2006.
    [276] Herwadkar A., Lambrecht W. R. Mn-doped ScN: A dilute ferromagnetic semiconductor with local exchange coupling [J]. Phys. Rev. B, 2005, 72(23):235207
    [277] Shaposhnikov V. L., Sobolev N. A. The electronic structure and magnetic properties of transition metal-doped silicon carbide [J]. J. Phys.: Condens. Matter, 2004, 16:1761-1768
    [278] Theodoropoulou N., Hebard A. F., Chu S.N.G., et al. Magnetic and structural properties of Fe, Ni, and Mn-implanted SiC [J]. J. Vac. Sci. Technol. A, 2002, 20(3):579-582
    [279] Pearton S. J., Park Y. D., Abernathy C. R., et al. Ferromagnetism in GaN and SiC doped with transition metals [J]. Thin Solid Films, 2004, 447-448(30):493-501
    [280] Navrotsky A. Thermochemical insights into refractory ceramic materials based onoxides with large tetravalent cations [J]. J. Mater. Chem., 2005, 15:1883-1890
    [281] Peacock P. W., Robertson J. Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces [J]. Phys. Rev. Lett., 2004, 92(5):057601
    [282] Robertson J. High dielectric constant gate oxides for metal oxide Si transistors [J]. Rep. Prog. Phys., 2006, 69(2):327-396
    [283] Venkatesan M., Fitzgerald C. B., Coey J. M. D. Thin films: Unexpected magnetism in a dielectric oxide [J]. Nature, 2004, 430:(7000):630
    [284] Coey J. M., Venkatesan M., Stamenov P., et al. Magnetism in hafnium dioxide [J]. Phys. Rev. B, 2005, 72(2):024450
    [285] Hong N. H., Poirot N., Sakai J. Evidence for magnetism due to oxygen vacancies in Fe-doped HfO2 thin films [J]. Appl. Phys. Lett., 2006, 89(4):042503
    [286] Abraham D. W., Frank M. M., Guha S. Absence of magnetism in hafnium oxide films [J]. Appl. Phys. Lett., 2005, 87:252502
    [287] Chang Y. H., Soo Y. L., Lee W. C., et al. Observation of room temperature ferromagnetic behavior in cluster-free, Co doped HfO2 films [J]. Appl. Phys. Lett., 2007, 91:082504
    [288] Wang W., Hong Y., Yu M., et al. Structure and magnetic properties of pure and Gd-doped HfO2 thin films [J]. J. Appl. Phys., 2006, 99:08M117
    [289] Soo Y. L., Weng S. C., Sun W. H., et al. Local environment surrounding Co in MBE-grown Co-doped HfO thin films probed by EXAFS [J]. Phys. Rev. B, 76:132404
    [290] Archer T., Das Pemmaraju C., Sanvito S. Magnetic properties of ZrO2-diluted magnetic semiconductors [J]. J. Magn. Magn. Mater., 2007, 316:e188-e190
    [291] Yu J., Duan L. B., Wang Y. C., et al. Absence of ferromagnetism in Mn- and Fe-stabilized zirconia nanoparticles [J]. Physica B, 2008, 403:4264-4268
    [292] Lee C. -K., Cho E., Lee H. -S., et al. First-principles study on doping and phase stability of HfO2 [J]. Phys. Rev. B, 2008, 78:012102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700