用户名: 密码: 验证码:
先进CMOS高k栅介质的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路的发展,摩尔定律一直驱动着集成电路的基本单元,即金属-氧化物-半导体场效应晶体管(MOSFET)的等比例缩小。在等比例缩小中,我们必须把栅氧化层的厚度减小为原来的1/k,这使得栅极氧化层的物理厚度走向了极限。当栅氧化层厚度无法再减小时,为了提升栅电容的数值,唯一的方法就是提高介质的相对介电常数。这就要求我们舍弃50年来一直在使用的SiO_2栅氧化层,转而使用相对介电常数更加高的材料,即高介电常数(High-k)介质。针对目前高k栅介质在实际研究中碰到的问题,本文对先进CMOS器件的高k栅介质开展了系统的实验和理论研究。一方面,用原子层淀积(atomic layer deposition)和分子束外延(Molecular beam epitaxy)方法制备了高性能的Al2O_3、HfO_2、Hf_xAl_yO_z、单晶Od_2O_3和单晶Nd_2O_3高k栅介质介质,系统研究了他们的材料结构、工艺优化以及电学性能;另一方面,通过第一性原理方法,系统研究了Hf基High-k介质本征点缺陷以及杂质点缺陷对高k栅介质材料和电学性能的影响。本文结果对先进CMOS器件中高k栅介质的应用具有重要的学术价值和指导意义。
     本文首先用分子束外延的方法在Si(100)上外延了高质量的单晶Gd_2O_3和Nd_2O-3高k介质。采用W金属栅和Pt金属栅,通过Forming Gas退火以及的“GateLast”Forming Gas工艺,我们成功地钝化了在单晶高介电常数介质和Si衬底之间存在的界面态,大大地降低了栅极漏电流和界面态密度。经过工艺优化的单晶Gd_2O_3高k栅介质具有很好的电学性能:(1)获得的Gd_2O_3的介电常数为21.5;(2)制备的单晶Gd_2O-3表现出了极好的绝缘性能,其室温漏电流为5.69×10~(-6)A/cm~2(EOT=1.4 nm),远低于国际半导体技术蓝图对2010年低功耗晶体管栅极漏电流的要求;(3)Gd_2O_3/Si(100)结构的C-V滞回电压可以降低到10 mV以内,界面态密度降到在10~(11)cm~(-2)eV~(-1)量级;研究了单晶Nd_2O_3栅介质/Si的近界面氧化层缺陷(NIOT)。利用低频C-V特性曲线,通过电学方法提取了NIOT。研究发现Nd_2O_3/Si(111)结构NIOT的密度为3.75×10~(12)cm~(-2),并利用G-f法对近界面氧化层缺陷的测量进行了验证;
     采用先进的原子层淀积工艺制备了Al_2O_3、HfO_2和HfAlO_(3.5)高k栅介质,优化了其生长工艺。在Si(100)衬底上制备了HfAlO_(3.5)高k栅介质,研究了1 kHz到100 kHz HfAlO_(3.5)高k栅介质的频率耗散特性。发现由于寄生电阻的关系,随着频率的上升,其MOS电容密度从0.73μF/cm~2下降到0.71μF/cm~2。在-0.5 V附近的C-V特性曲线存在扭结,表明有一定密度的慢界面态存在。在100 kHz下测定了A1/HfAlO_(3.5)/Si(100)MOS结构电容的高频C-V特性曲线,然后用Terman方法获得了Si禁带中央附近的界面态密度为5×10~(11)cm~(-2)eV~(-1)到1×10~(12)cm~(-2)eV~(-1)之间,并用Hill-Coleman测量方法进行了验证。
     为了在GaAs衬底上原子层淀积高质量的A1_2O_3高k栅介质,提出了一种新的GaAs表面钝化方法,有效地抑制了GaAs衬底上原子层淀积Al_2O_3的过程中发生的氧化反应。即首先对GaAs表面硫化,然后把硫化的GaAs在500℃下的NH_3氛围下热处理5分钟。结果得到了稳定的氮化的表面,抑制了原子层淀积生长过程中氧化物前驱体对GaAs表面的氧化,同时也去除了对MOS器件电学性能产生严重影响的GaAs表面的单质As,极大地提升了Al/Al_2O_3/GaAs结构的积累电容密度。
     研究了氧空位对Hf基栅介质原子结构和能带结构的影响。从能带结构发现,氧空位在HfO_2的禁带中央引入了带隙态,成为Trap-Assisted Tunneling或者Poole-Frenkel Tunneling等导电机制中的缺陷能级。分析表明,F离子进入氧空位以后,取代了原来氧离子的作用,通过F离子的2p轨道和Hf离子的5d轨道的p-d interaction造成轨道杂化,由于氟原子的电负性大于氧原子,把原来的Hf5d轨道上的带隙态推到了二氧化铪的导带以上,从来完全钝化了二氧化铪中的氧空位。从理论上解释了实验中发现的F离子对HfO_2氧空位的钝化能力。研究发现F离子在HfO_2和HfSiO_4介质中存在不同的钝化作用机理。在HfSiO_4中,由于Si和Hf的电正性的差异,在氧空位中的F接受来自于Hf的电子,而把来自于Si 2p轨道的电子推回到Si的2p轨道中,造成了具有7个核外电子的Si离子。这个Si离子的存在,造成了F离子对HfSiO_4的氧空位不具有钝化作用。
     分析比较了F离子和N离子对HfSiO_4/Si结构在栅电压作用下氧空位的钝化效果。研究发现,在漏电流方面,HfSiO_4基MOS结构中F离子对氧空位的钝化优于N离子对氧空位的钝化。但是,当栅极电压变化时,F离子在氧空位中会引起其附近Si离子的充放电。这是通常意义上我们所说的慢界面态,而N则仅仅是负的固定电荷。由于界面态对器件性能退化的作用远大于固定电荷的影响,因此,N离子对HfSiO_4氧空位的钝化作用要优于F离子。
     用第一性原理系统研究了Cl、Ge和B杂质对铪基高k栅介质性能的影响,对观测到的实验现象进行了很好的理论解释。原子层淀积工艺带来的Cl残留杂质对HfO_2高k栅介质电学特性将产生影响。分析表明,替代位的Cl残留杂质在MOS结构中是一个可充放电的缺陷,会造成MOS结构滞回电压的增大;间隙位的Cl残留扎在在MOS结构中是负的固定电荷,会造成MOS结构平带电压的正偏。Cl残留杂质对HfSiO_4高k栅介质电学性能的影响,与其在HfO_2的作用相类似。Ge原子从衬底中扩散进入HfO_2介质,可形成3种缺陷,即V_3Ge、V_4Ge和Ge间隙缺陷。在HfO_2/TiN金属栅结构的费密能级体系下,由于Ge缺陷在各个情况下基本都带负电,Ge缺陷在HfO_2/Ge界面总体表现为负的固定电荷,导致MOS结构的平带电压正向漂移。
     硼在HfO_2高k栅介质中以2种状态存在,即间隙B缺陷和V_3B缺陷。对于+1价的间隙B缺陷来说,其在HfO_2的带隙中引入了两个带隙态,分别为相对于价带顶2.53 eV和相对于导带底0.26 eV。在pMOSFET工作条件下,空穴经衬底价带注入到HfO_2的价带中,因此,后一个带隙态不会造成太大的影响。但是,第一个带隙态在Si的价带和HfO_2的价带之间,在一定浓度的间隙B缺陷的存在下,电子可以沿着这个能级从衬底流向栅极,即产生Trap-Assisted Tunneling。因此会对MOS结构的栅极漏电流造成大的影响。首次在理论上给出了高k栅介质中B杂质对pMOSFET阈值电压不稳定性影响的完整解释。扩散到HfO_2介质中的硼在pMOSFET的工作条件下,永远是带正电的,因此把体系的阈值电压往负方向漂移,增大了整个器件的开启电压。同时,当pMOSFET不工作的时候,由于衬底在没有栅电压时,电子是多子,这些硼缺陷又会释放掉正电荷,又使器件的开启电压有一定的下降。
Along with the development of integrated circuit,Moore's Law is driving thescaling down of the basic element of integrated circuit,which is calledmetal-oxide-semiconductor field effect transistor (MOSFET).In the principle ofscaling down,we have to reduce the thickness of gate oxide with a scale of l/k atevery technology node.With the continuous scaling down of MOSFET,the thicknessof gate oxide is going to its physical limit.As it is not possible to reduce the thicknessof gate oxide anymore,we have to choose a dielectric with higher dielectric constant(High-k dielectrics) in order to maintain the gate capacitance.According to theproblems in the practical usage of high-k dielectrics,we investigate the high-kdielectrics in advanced CMOS devices with experimental and theoretical method.Oneside,we use atomic layser deposition and molecular bean method to deposit highquality Al_2O_3、HfO_2、HfxAl_yO_z、single crystalline Gd_2O_3 and Nd_2O_3 high-k dielectrics,and systematically study the process optimization,material and electrical properties;on the other side,within the framework of first priciples calculation,we investigatethe impact of native defects and impurities on material and electrical properties ofhafnium based high-k dielectrics.The conclusions obtained in this thesis are of highacademically value for the applications of high-k dielectrics in advanced CMOSdevices.
     In chapter 1,we successfully fabricate high quality epitaxial single crystallineGd_2O_3 and Nd_2O_3 on Si(100).After forming gas treatment (for tungsten metal gate) or“Gate last”forming gas treatment (for Pt metal gate),we are able to passivate theinterface states existing between single crystalline oxide and silicon substrate,andreduce the leakage through gate and interface state density.According to the electricalanalysis,the single crystalline oxide on silicon exhibit good electrical properties:(1)the dielectrics constant of Gd_2O_3 is estimated to 21.5;(2) the oxide exhibit very goodinsulating capability.At the Equivalent Oxide Thickness of 1.4 nm,the gate leakageobtained is around 5.69×10~(-6) A/cm~2,which is much lower than the requirement of MOSFET for low power application predicated by International Technology Roadmapfor Semiconductor;(3) the hysteresis of Gd_2O_3/Si(100) MOS structure is in the rangeof 10 mV and the interface state density is estimated in the level of 10~(11) cm~(-2)eV~(-1).Moreover,we develop a method for estimation of near interface oxide traps (NIOT) insingle crystalline oxide.With the help of quasistatic C-V curve,we are able to extractNIOT by electrical method.The NIOT in Nd_2O_3/Si(111) MOS structure is around3.75×10~(12) cm~(-2).
     In chapter 2,one side,we successfully deposit the Al_2O_3,HfO_2 and Hf_xAl_yO_zunder the framework of atomic layer deposition,and optimize the processes fordielectric deposition.The frequency dispersion and interface state density of HfAlO_(3.5)high-k dielectrics on Si(100) are investigated from 1 kHz to 100 kHz.According tothe electrical analysis,the MOS capacitance density is reduced from 0.73μF/cm~2 to0.71μF/cm~2 because of parastic resistance.The strechout at -0.5 V of C-Vcharacteristics indicates the existing of slow interface states.Under the framework ofTerman method,the interface density of Al/HfAlO_(3.5)/Si(100) MOS structure at 100kHz is estimated to be around 5×10~(11) cm~(-2)eV~(-1) and1×10~(12) cm~(-2)eV~(-1),and this valueis further confirmed by Hill-Coleman method;on the other side,in order to fabricatehigh quality Al_2O_3 high-k dielectrics on GaAs with atomic layer deposition,wepropose a new surface passivation method for GaAs surface,and with this method,the reoxidation of GaAs surface during atomic layer deposition of Al_2O_3 is greatlyinhibited.Moreover,this method can also remove elemental As on GaAs surfaceaccording to XPS analysis.As a result,the accumulation capacitance density ofAl/Al_2O_3/GaAs MOS structure is greatly increased.
     In chapter 4,we study the passivation mechanism of F to oxygen vacancy ofhafnium oxide.According to our results,oxygen vacancy introduces gap states in theband gap of HfO_2 and is the source of Trap-Assisted Tunneling or Poole-FrenkelTunneling.After F goes into oxygen vacancy,it can replace the effects of missingoxygen at that place,and by the p-d interaction of F 2p orbital and Hf 5d orbital,F areable to push the gap state of Hf 5d orbital at oxygen vacancy to the conduction bandof hafnium oxide.As a result,F passivates the oxygen vacancy completely.Then,we compare the passivation effect of fluorine in HfO_2 and HfSiO_4.In HfSiO_4,F gets theelectron from hafnium and push the electron from silicon back to the Si 2p orbitalbecause of difference of capabilility to donate electrons.Thus,the silicon around Fhas 7 electrons in its outshell and results in the failure of passivation of oxygenvacancy.In the lateral parts of this chapter,we compare the passivation effects of Fand N to the oxygen vacancy of HfSiO_4.Based on our calculation results,F at oxygenvacancy is better than N at the reduction of gate leakage;on the other hand,F atoxygen vacancy is a rechargeable defects when the gate voltage is sweeping while Nonly serves as negative fixed charge.At this point,N is better than F.Consideringthese two points,N is better than F for the passivation of oxygen vacancy in HfSiO_4.
     In chapter 5,we study the degradation mechanism of Cl、Ge and B impurities onelectrical performance of hafnium based high-k dielectrics.(1)Cl residue in HfO_2 andHfSiO_4 will be negative fixed charge and rechargeable defects depending on thespatial location of Cl in HfO_2 and HfSiO_4 lattice,and it can explain all theexperimental phenomenon observed by various groups;(2)according to the threekinds of Ge defect in HfO_2(V_3Ge,V_4Ge and interstitial Ge),we are able to explainthe experimental results such as positive flatband voltage shift,enlarged leakagecurrent and C-V hysteresis induced by Ge defects,and with the help of theseconclusions;(3)+1 charged interstitial B introduces two gap states in band gap,andone is about 2.53 eV above HfO_2 VBM which can cause Trap-Assisted Tunneling.And moreover,we also systematically explain the mechanism of B induce thresholdvoltage instability of pMOSFET.When pMOSFET is under negative bias,B ispositively charged,which will cause the threshold voltage of transistor towardnegative;on the other hand,when pMOSFET is not biased,B will partially releasethese positive charge,which recover the threshold voltage partially.
引文
[1]Kingon,A.I.,J.P.Maria,and S.K.Streiffer,Alternative dielectrics to silicon dioxide for memory and logic devices [J],Nature,2000,406:1032-1038.
    [2]Packan,P.A.,Perspectives:Device physics-Pushing the limits [J],Science,1999,285:2079-2081.
    [3]Solomon,P.M.,Device innovation and material challenges at the limits of CMOS technology [J],Annual Review of Materials Science,2000,30:681-697.
    [4]Meindl,J.D.,J.A.Davis,P.Zarkesh-Ha,C.S.Patel,K.P.Martin,and P.A.Kohl,Interconnect opportunities for gigascale integration [J],IBM Journal of Research and Development,2002,46:245-263.
    [5]Wilk,G.D.,R.M.Wallace,and J.M.Anthony,High-kappa gate dielectrics:Current status and materials properties considerations [J],Journal of Applied Physics,2001,89:5243-5275.
    [6]Robertson,J.,High dielectric constant gate oxides for metal oxide Si transistors [J],Reports on Progress in Physics,2006,69:327-396.
    [7]Wu,M.,Y.I.Alivov,and H.Morkoc,High-kappa dielectrics and advanced channel concepts for Si MOSFET [J],Journal of Materials Science-Materials in Electronics,2008,19:915-951.
    [8]Lombardo,S.,J.H.Stathis,B.P.Linder,K.L.Pey,F.Palumbo,and C.H.Tung,Dielectric breakdown mechanisms in gate oxides [J],Journal of Applied Physics, 2005, 98: 36.
    [9] Frank, D. J., R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong, Device scaling limits of Si MOSFETs and their application dependencies [J], Proceedings of the IEEE, 2001, 89: 259-288.
    [10] Stemmer, S., Thermodynamic considerations in the stability of binary oxides for alternative gate dielectrics in complementary metal-oxide-semiconductors [J], Journal of Vacuum Science & Technology B, 2004, 22: 791-800.
    [11] Gao, K. Y., F. Speck, K. Emtsev, T. Seyller, and L. Ley, Thermal stability of surface and interface structure of atomic layer deposited A12O3 on H-terminated silicon [J], Journal of Applied Physics, 2007,102: 8.
    [12] Xu, M., C. H. Xu, S. J. Ding, H. L. Lu, D. W. Zhang, and L. K. Wang, Spectroscopic and electrical properties of atomic layer deposition A12O3 gate dielectric on surface pretreated Si substrate [J], Journal of Applied Physics, 2006, 99: 6.
    [13] Sivasubramani, P., P. Zhao, M. J. Kim, B. E. Gnade, R. M. Wallace, L. F. Edge, D. G. Schlom, G. N. Parsons, and V. Misra, Thermal stability studies of advanced gate stack structures on Si (100) [C], 5th Conference on Characterization and Metrology for ULSI Technology, 2005: 156-160.
    [14] Monch, W., On the band structure lineup at interfaces of SiO2, Si3N4, and high-kappa dielectrics [J], Applied Physics Letters, 2005, 86: 3.
    [15] Ye, P. D., D. G. Wilk, B. Yang, S. N. G. Chu, K. K. Ng, and J. Bude, Improvement of GaAs metal-semiconductor field-effect transistor drain-source breakdown voltage by oxide surface passivation grown by atomic layer deposition [J], Solid-State Electronics, 2005, 49: 790-794.
    [16] Ye, P. D., G. D. Wilk, B. Yang, J. Kwo, H. J. L. Gossmann, M. Frei, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, GaAs-Based metal-oxide semiconductor field-effect transistors with A12O3 gate dielectrics grown by atomic layer deposition [J], Journal of Electronic Materials, 2004, 33: 912-915.
    [17] Ye, P. D., G. D. Wilk, B. Yang, J. Kwo, H. J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition [J], Applied Physics Letters, 2004, 84: 434-436.
    [18] Toyoda, S., H. Kamada, T. Tanimura, H. Kumigashira, M. Oshima, G. L. Liu, Z. Liu, and K. Ikeda, Thermal stability in a-Si/HfSiO(N)/Si gate stack structures studied by photoemission spectroscopy using synchrotron radiation [J], Applied Physics Letters, 2008, 93: 3.
    [19] Sun, Q. Q., L. Dong, Y. Shi, H. Liu, S. J. Ding, and D. W. Zhang, Atomic scale study of the degradation mechanism of boron contaminated hafnium oxide [J], Applied Physics Letters, 2008, 92: 3.
    [20] Suzuki, K., H. Tashiro, Y. Morisaki, and Y. Sugita, Diffusion coefficient of B in HfO2 [J], IEEE Transactions on Electron Devices, 2003, 50: 1550-1552.
    [21] Rotondaro, A. L. P., N. R. Visokay, J. J. Chambers, A. Shanware, R. Khamankar, H. Bu, R. T. Laaksonen, L. Tsung, M. Douglas, R. Kuan, M. J. Bevan, T. Grider, J. McPherson, and L. Colombo, Advanced CMOS transistors with a novel HfSiON gate dielectric [C], Symposium on VLSI Technology, 2002:148-149.
    [22] Pisecny, P., K. Husekova, K. Frohlich, L. Harmatha, J. Soltys, D. Machajdik, J. P. Espinos, M. Jergel, and J. Jakabovic, Growth of lanthanum oxide films for application as a gate dielectric in CMOS technology [C], Symposium on New Materials in Future Silicon Technology Held at the E-MAR 2004 Spring Meeting, 2004: 231-236.
    [23] Sharma, R. K., A. Kumar, and J. M. Anthony, Advances in high-k dielectric gate materials for future ULSI devices [J], Jom-Journal of the Minerals Metals & Materials Society, 2001, 53: 53-55.
    [24] Kakushima, K., K. Tachi, M. Adachi, K. Okamoto, S. Sato, J. Song, T. Kawanago, P. Ahmet, K. Tsutsui, N. Sugii, T. Hattori, and H. Iwai, Advantage of La2O3 Gate Dielectric over HfO2 for Direct Contact and Mobility Improvment [C], 38th European Solid-State Device Research Conference,2008: 126-129.
    [25] Ng, J. A., N. Sugii, K. Kakushima, P. Ahmet, K. Tsutsui, T. Hattori, and H. Iwai, Effective mobility and interface-state density of La2O3 nMISFETs after post deposition annealing [J], Ieice Electronics Express, 2006, 3: 316-321.
    [26] Lee, B. H., J. Oh, H. H. Tseng, R. Jammy, and H. Huff, Gate stack technology for nanoscale devices [J], Materials Today, 2006, 9: 32-40.
    [27] Puurunen, R. L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J], Journal of Applied Physics, 2005, 97:52.
    [28] Osten, H. J., A. Laha, M. Czernohorsky, E. Bugiel, R. Dargis, and A. Fissel, Introducing crystalline rare-earth oxides into Si technologies [J], Physica Status Solidi a-Applications and Materials Science, 2008, 205: 695-707.
    [29] Frohlich, K., R. Luptak, E. Dobrocka, K. Husekova, K. Cico, A. Rosova, M. Lukosius, A. Abrutis, P. Pisecny, and J. P. Espinos, Characterization of rare earth oxides based MOSFET gate stacks prepared by metal-organic chemical vapour deposition [C], Symposium on Characterization of High-K Dielectric Materials held at the 2006 E-MRS Spring Meeting, 2006: 1065-1072.
    [30] Caymax, M., S. Van Elshocht, M. Houssa, A. Delabie, T. Conard, M. Meuris, M. M. Heyns, A. Dimoulas, S. Spiga, M. Fanciulli, J. W. Seo, and L. V. Goncharova, HfO2 as gate dielectric on Ge: Interfaces and deposition techniques [C], Symposium on From Strained Silicon to Nanotubes - Novel Channels for Field Effects Devices held at the Spring Meeting of the E-MRS, 2006: 256-260.
    [31] Bai, W. P., N. Lu, and D. L. Kwong, Si interlayer passivation on germanium MOS capacitors with high-kappa dielectric and metal gate [J], Ieee Electron Device Letters, 2005, 26: 378-380.
    [32] Olsen, C. S., P. A. Kraus, K. Z. Ahmed, S. Kher, S. Hung, N. Krishna, J. Chen, L. Date, M. Burey, and J. Campbell, Tunable workfunction with TaN metal gate on HfO2-HfxSiyO dielectrics [C], Symposium on Integration of Advanced Micro-and Nanoelectronic Devices held at the 2004 MRS Spring Meeting, 2004: 155-159.
    [33] Filipescu, M., N. Scarisoreanu, V. Craciun, B. Mitu, A. Purice, A. Moldovan, V. Ion, O. Toma, and M. Dinescu, High-k dielectric oxides obtained by PLD as solution for gates dielectric in MOS devices [C], Symposium on Photon-Assisted Synthesis and Processing of Functional Materials held at the 2006 EMRS Spring Meeting, 2006: 8184-8191.
    [34] Osten, H. J., M. Czernohorsky, R. Dargis, A. Laha, D. Kuhne, E. Bugiel, and A. Fissel, Integration of functional epitaxial oxides into silicon: from high-k application to nanostructures [C], 15th Biennial Conference on Insulating Films on Semiconductors, 2007: 2222-2225.
    [35] Sun, Q. Q., A. Laha, S. J. Ding, D. W. Zhang, H. J. Osten, and A. Fissel, Effective passivation of slow interface states at the interface of single crystalline Gd2O3 and Si(100) [J], Applied Physics Letters, 2008, 92: 3.
    [36] Laha, A., E. Bugiel, J. X. Wang, Q. Q. Sun, A. Fissel, and H. J. Osten, Effect of domain boundaries on the electrical properties of crystalline Gd2O3 thin films [J], Applied Physics Letters, 2008, 93: 3.
    [37] Sun, Q. Q., A. Laha, S. J. Ding, D. W. Zhang, H. J. Osten, and A. Fissel, Observation of near interface oxide traps in single crystalline Nd2O3 on Si(111) by quasistatic C-V method [J], Applied Physics Letters, 2008, 93: 3.
    [38] Shi, Y., Q. Q. Sun, L. Dong, H. Liu, S. J. Ding, and W. Zhang, Improvement of Atomic-Layer-Deposited A12O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation [J], Chinese Physics Letters, 2008, 25: 3954-3956.
    [39] Chen, W., Q. Q. Sun, S. J. Ding, D. W. Zhang, and L. K. Wang, First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide [J], Applied Physics Letters, 2006, 89: 3.
    [40] Sun, Q. Q., W. Chen, S. J. Ding, M. Xu, H. L. Lu, H. C. Lindh-Rengifo, D. W. Zhang, and L. K. Wang, Comparative study of passivation mechanism of oxygen vacancy with fluorine in HfO2 and HfSiO4 [J], Applied Physics Letters, 2007, 90: 3.
    [41] Sun, Q. Q., C. Zhang, L. Dong, Y. Shi, S. J. Ding, and D. W. Zhang, Effect of chlorine residue on electrical performance of atomic layer deposited hafnium silicate [J], Journal of Applied Physics, 2008,103: 4.
    [42] Sun, Q. Q., Y. S. L. Dong, H. Liu, D. A. Shi-Jin, and D. W. Zhang, Impact of germanium related defects on electrical performance of hafnium oxide [J], Applied Physics Letters, 2008, 92: 3.
    [43] Sun, Q. Q., W. Chen, S. J. Ding, M. Xu, D. W. Zhang, and L. K. Wang, Effects of chlorine residue in atomic layer deposition hafnium oxide: A density-functional-theory study [J], Applied Physics Letters, 2007, 91: 3.
    [1]Locquet,J.P.,C.Marchiori,M.Sousa,J.Fompeyrine,and J.W.Seo,High-K dielectrics for the gate stack [J],Journal of Applied Physics,2006,100:14.
    [2]He,G.,and L.D.Zhang,Current progress of Hf (Zr)-based high-k gate dielectric thin films [J],Journal of Materials Science & Technology,2007,23:433-448.
    [3]Wilk,G.D.,R.M.Wallace,and J.M.Anthony,High-kappa gate dielectrics:Current status and materials properties considerations [J],Journal of Applied Physics,2001,89:5243-5275.
    [4]Son,S.Y.,P.Kumar,J.S.Lee,H.Cho,H.S.Jung,K.J.Min,C.J.Kang,and R.K.Singh,An evaluation of Ti-based metal gate electrodes on Hf-silicate dielectrics for dual-metal-gate applications [J],Electrochemical and Solid State Letters,2008,11:H81-H83.
    [5]Veloso,A.,H.Y.Yu,S.Z.Chang,C.Adelmann,B.Onsia,S.Brus,M.Demand,A.Lauwers,B.J.O'Sullivan,R.Singanamalla,G.Pourtois,P.Lehnen,S.Van Elshocht,K.De Meyer,M.Jurczak,P.P.Absil,and S.Biesemans,Achieving low-V-T Ni-FUSICMOS by ultra-thin Dy203 capping of hafnium silicate dielectrics [J],Ieee Electron Device Letters,2007,28:980-983.
    [6]Mitrovic,I.Z.,O.Buiu,S.Hall,C.Bungey,T.Wagner,W.Davey,and Y.Lu,Electrical and structural properties of hafnium silicate thin films [C],14th Workshop on Dielectrics in Microelectronics (WoDiM 2006),2006:645-648.
    [7]Chiam,S.Y.,W.K.Chim,Y.Ren,C.Pi,J.S.Pan,A.C.H.Huan,S.J.Wang,and J.Zhang,Effects of annealing on the valence band offsets between hafnium aluminate and silicon [J],Journal of Applied Physics,2008,104:6.
    [8]Momida,H.,T.Hamada,Y.Takagi,T.Yamamoto,T.Uda,and T.Ohno,Dielectric constants of amorphous hafnium aluminates:First-principles study [J],Physical Review B,2007,75:10.
    [9]Park,P.K.,and S.W.Kang,Enhancement of dielectric constant in HfO2 thin films by the addition ofA1203 [J],Applied Physics Letters,2006,89:3.
    [10]Gong,Y.P.,A.D.Li,X.Qian,C.Zhao,and D.Wu,Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method [J],Journal of Physics D-Applied Physics,2009,42:5.
    [11]Katarnreddy,R.,R.Inman,G.Jursich,A.Soulet,and C.Takoudis,Nitridation and oxynitridation of Si to control interfacial reaction with HfO2 [J],Thin Solid Films,2008,516:8498-8506.
    [12]Lee,M.S.,C.H.An,K.Park,and H.Kim,Simultaneous Control of the Work Function and Interfacial Oxide Thickness Using Ni/Hf Stacked Electrode on HfO2 [J],Electrochemical and Solid State Letters,2009,12:H120-H122.
    [13]Osten,H.J.,E.Bugiel,M.Czernohorsky,Z.Elassar,O.Kirfel,and A.Fissel,Molecular beam epitaxy of rare-earth oxides [C],Workshop on Rare Earth Oxide Thin Films,2005:101-114.
    [14]Osten,H.J.,D.Kuhne,A.Laha,M.Czernohorsky,E.Bugiel,and A.Fissel,Integration of functional epitaxial oxides into silicon:From high-K application to nancistructures [C],24th North American Conference on Molecular Beam Epitaxy (NAMBE 2006),2006:1039-1043.
    [15]Reiner,J.W.,A.Posadas,M.Wang,T.P.Ma,and C.H.Ahn,Growth and structural properties of crystalline LaAlO3 on Si(001)[C],IEEE International Symposium on Advanced Gate Stack Technology (ISAGST),2008:36-38.
    [16]Sousa,M.,C.Rossel,C.Marchiori,H.Siegwart,D.Caimi,J.P.Locquet,D.J.Webb,R.Germann,J.Fompeyrine,K.Babich,J.W.Seo,and C.Dieker,Optical properties of epitaxial SrHfO3 thin films grown on Si [J],Journal of Applied Physics,2007,102:6.
    [17]Fissel,A.,Z.Elassar,O.Kirfel,E.Bugiel,M.Czemohorsky,and H.J.Osten,Interface formation during molecular beam epitaxial growth of neodymium oxide on silicon [J],Journal of Applied Physics,2006,99:6.
    [18]Gottlob,H.D.B.,T.Echtermeyer,T.Mollenhauer,J.K.Efavi,M.Schmidt,T.Wahlbrink,M.C.Lemme,H.Kurz,M.Czernohorsky,E.Bugiel,H.J.Osten,and A.Fissel,CMOS integration of epitaxial Gd2O3 high-k gate dielectrics [C],International Semiconductor Device Research Symposium (ISDRS 2005),2005:979-985.
    [19]Gottlob,H.D.B.,T.Echtermeyer,M.Schmidt,T.Mollenhauer,J.K.Efavi,T.Wahlbrink,M.C.Lemme,M.Czernohorsky,E.Bugiel,A.Fissel,H.J.Osten,and H.Kurz,0.86-nm CET gate stacks with epitaxial Gd2O3 high-k dielectrics and FUSINiSi metal electrodes [J],Ieee Electron Device Letters,2006,27:814-816.
    [20]Fissel,A.,H.J.Osten,and E.Bugiel,Towards understanding epitaxial growth of alternative high-K dielectrics on Si(001):Application to praseodymium oxide [J],Joumal of Vacuum Science & Technology B,2003,21:1765-1772.
    [21]Hunter,M.E.,M.J.Reed,N.A.E1-Masry,J.C.Roberts,and S.M.Bedair,Epitaxial Y2O3 films grown on Si(111)by pulsed-laser ablation [J],Applied Physics Letters,2000,76:1935-1937.
    [22]Lin,T.D.,M.C.Hang,C.H.Hsu,J.Kwo,and M.Hong,MBE grown high-quality Gd2O3/Si(111)hetero-structure [C],14th International Conference on Molecular Beam Epitaxy (MBE XIV),2006:386-389.
    [23]Laha,A.,A.Fissel,E.Bugiel,and H.J.Osten,Epitaxial multi-component rare earth oxide for high-K application [C], Symposium on Synthesis, Processing and Characterization of Nanoscale Functional Oxide Films held at the EMRS 2006 Conference, 2006: 6512-6517.
    [24] Osten, H. J., E. Bugiel, O. Kirfel, M. Czernohorsky, and A. Fissel, MBE growth and properties of epitaxial metal oxides for high-k dielectrics [C], 13th International Conference on Molecular Beam Epitaxy (MBE XII), 2004:18-24.
    [25] Osten, H. J., E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, and A. Fissel, Topics in Applied Physics [M],Springer, New York, 2007.
    [26] Czernohorsky, M., E. Bugiel, H. J. Osten, A. Fissel, and O. Kirfel, Impact of oxygen supply during growth on the electrical properties of crystalline Gd2O3 thin films on Si(001) [J], Applied Physics Letters, 2006, 88: 152905.
    [27] Fissel, A., D. Kuhne, E. Bugiel, and H. J. Osten, Cooperative solid-vapor-phase epitaxy: An approach for fabrication of single-crystalline insulator/Si/insulator nanostructures [J], Applied Physics Letters, 2006, 88.
    [28] Laha, A., H. J. Osten, and A. Fissel, Impact of Si substrate orientations on electrical properties of crystalline Gd2O3 thin films for high-K application [J], Applied Physics Letters, 2006, 89: 3.
    [29] Laha, A., E. Bugiel, J. X. Wang, Q. Q. Sun, A. Fissel, and H. J. Osten, Effect of domain boundaries on the electrical properties of crystalline Gd2O3 thin films [J], Applied Physics Letters, 2008, 93: 3.
    [30] Schroder, D. K., Semiconductor Material and Device Characterization [M],Wiley,New York, 1998.
    [31] Nicollian, E. H., and J. R. Brews, MOS Physics and Technology [M],Wiley,New York, 1982.
    [32] Sun, Q. Q., A. Laha, S. J. Ding, D. W. Zhang, H. J. Osten, and A. Fissel, Effective passivation of slow interface states at the interface of single crystalline Gd2O3 and Si(100) [J], Applied Physics Letters, 2008, 92: 3.
    [33] Sun, Q. Q., A. Laha, S. J. Ding, D. W. Zhang, H. J. Osten, and A. Fissel, Observation of near interface oxide traps in single crystalline Nd2O3 on Si(111)by quasistatic C-V method [J],Applied Physics Letters,2008,93:3.
    [34]Cohen,N.L.,R.E.Paulsen,and M.H.White,Observation and Characterization of near-Interface Oxide Traps with C-V Techniques [J],Ieee Transactions on Electron Devices,1995,42:2004-2009.
    [1]Pae,S.,M.Agostinelli,M.Brazie,R.Chau,G.Dewey,T.Ghani,M.Hattendorf,J.Hicks,J.Kavalieros,K.Kuhn,M.Kuhn,J.Maiz,M.Metz,K.Mistry,C.Prasad,S.Ramey,A.Roskowski,J.Sandford,C.Thomas,J.Thomas,C.Wiegand,and J.Wiedemer,BTI reliability of 45 nm high-k plus metal-gate process technology [J],2008 Ieee International Reliability Physics Symposium Proceedings-46th Annual,2008:352-357.
    [2]Boyd,S.,D.Dornfeld,N.Krishnan,and M.Moalem,Environmental challenges for 45-nm and 32-nm node CMOS logic [J],Proceedings of the 2007 IEEE International Symposium on Electronics & the Environment,Conference Record,2007:102-105.
    [3]Puurunen,R.L.,Surface chemistry of atomic layer deposition:A case study for the trimethylaluminum/water process [J],Journal of Applied Physics,2005,97.
    [4]Lee,F.,S.Marcus,E.Shero,G.Wilk,J.Swerts,J.W.Maes,and T.Blomberg,Atomic layer deposition:An enabling technology for microelectronic device manufacturing [J],2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference,2007:291-297.
    [5] Paivasaari, J., J. Niinisto, P. Myllymaki, C. Dezelah, C. H. Winter, M. Putkonen, M. Nieminen, and L. Niinisto, Atomic layer deposition of rare earth oxides [J], Rare Earth Oxide Thin Films: Growth, Characterization , and Applications,2007,106: 15-32.
    [6] Kuse, R., M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, Effect of precursor concentration in atomic layer deposition of A12O3 [J], Journal of Applied Physics, 2003, 94: 6411-6416.
    [7] Kim, J., K. Chakrabarti, J. Lee, K. Y. Oh, and C. Lee, Effects of ozone as an oxygen source on the properties of the A12O3 thin films prepared by atomic layer deposition [J], Materials Chemistry and Physics, 2003, 78: 733-738.
    [8] Gosset, L. G, J. F. Damlencourt, O. Renault, D. Rouchon, P. Holliger, A. Ermolieff, I. Trimaille, J. J. Ganem, F. Martin, and M. N. Semeria, Interface and material characterization of thin A12O3 layers deposited by ALD using TMA/H2O [J], Journal of Non-Crystalline Solids, 2002, 303: 17-23.
    [9] Hiltunen, L., H. Kattelus, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, P. Soininen, and M. Tiitta, Growth and Characterization of Aluminum-Oxide Thin-Films Deposited from Various Source Materials by Atomic Layer Epitaxy and Chemical Vapor-Deposition Processes [J], Materials Chemistry and Physics, 1991, 28: 379-388.
    [10] Ritala, M., K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara, and J. Keinonen, Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources [J], Science, 2000, 288: 319-321.
    [11] Fedorenko, Y, J. Swerts, J. W. Maes, E. Tois, S. Haukka, C. G Wang, G Wilk, A. Delabie, W. Deweerd, and S. De Gendt, Atomic layer deposition of hafnium silicate from HfC14, SiC14, and H2O [J], Electrochemical and Solid State Letters, 2007,10: H149-H152.
    [12] Kang, J. K., and C. B. Musgrave, Mechanism of atomic layer deposition of SiO2 on the silicon (100)-2xl surface using SiCl4 and H2O as precursors [J], Journal of Applied Physics, 2002, 91: 3408-3414.
    [13] Klaus, J. W., A. W. Ott, J. M. Johnson, and S. M. George, Atomic layer controlled growth of SiO2 films using binary reaction sequence chemistry [J], Applied Physics Letters, 1997, 70: 1092-1094.
    [14] Park, H. B., M. J. Cho, J. Park, S. W. Lee, C. S. Hwang, J. P. Kim, J. H. Lee, N. I. Lee, H. K. Kang, J. C. Lee, and S. J. Oh, Comparison of HfO2 films grown by atomic layer deposition using HfC14 and H2O or 0-3 as the oxidant [J], Journal of Applied Physics, 2003, 94: 3641-3647.
    [15] Wilk, G D., and D. A. Muller, Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition [J], Applied Physics Letters, 2003, 83: 3984-3986.
    [16] Lin, Y. S., R. Puthenkovilakam, and J. P. Chang, Dielectric property and thermal stability of HfO2 on silicon [J], Applied Physics Letters, 2002, 81: 2041-2043.
    [17] Cho, M., H. B. Park, J. Park, S. W. Lee, C. S. Hwang, G H. Jang, and J. Jeong, High-k properties of atomic-layer-deposited HfO2 films using a nitrogen-containing Hf[N(CH3)(2)](4) precursor and H2O oxidant [J], Applied Physics Letters, 2003, 83: 5503-5505.
    [18] Kukli, K., M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskela, Atomic layer deposition of hafnium dioxide films from hafnium tetrakis(ethylmethylamide) and water [J], Chemical Vapor Deposition, 2002, 8: 199-204.
    [19] Kukli, K., M. Ritala, J. Lu, A. Harsta, and M. Leskela, Properties of HfO2 thin films grown by ALD from hafnium tetrakis(ethylmethylamide) and water [J], Journal of the Electrochemical Society, 2004,151: F189-F193.
    [20] Ghiraldelli, E., C. Pelosi, E. Gombia, G Chiavarotti, and L. Vanzetti, ALD growth, thermal treatments and characterisation of A12O3 layers [J], Thin Solid Films, 2008, 517: 434-436.
    [21] Shahrjerdi, D., D. I. Garcia-Gutierrez, E. Tutuc, and S. K. Banerjee, Chemical and physical interface studies of the atomic-layer-deposited A12O3 on GaAs substrates [J], Applied Physics Letters, 2008, 92.
    [22] Shi, Y., Q. Q. Sun, L. Dong, H. Liu, S. J. Ding, and W. Zhang, Improvement of Atomic-Layer-Deposited A12O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation [J], Chinese Physics Letters, 2008, 25: 3954-3956.
    [23] Tallarida, M., K. Karavaev, and D. Schmeisser, The initial atomic layer deposition of HfO2/Si(001) as followed in situ by synchrotron radiation photoelectron spectroscopy [J], Journal of Applied Physics, 2008,104.
    [24] Sammelselg, V., R. Rammula, J. Aarik, A. Kikas, K. Kooser, and T. Kaambre, XPS and AFM investigation of hafnium dioxide thin films prepared by atomic layer deposition on silicon [J], Journal of Electron Spectroscopy and Related Phenomena, 2007,156: 150-154.
    [25] Chen, T. C, C. Y. Peng, C. H. Tseng, M. H. Liao, M. H. Chen, C. I. Wu, M. Y. Chern, P. J. Tzeng, and C. W. Liu, Characterization of the ultrathin HfO2 and Hf-silicate films grown by atomic layer deposition [J], Ieee Transactions on Electron Devices, 2007, 54: 759-766.
    [26] Kang, M. G, and H. H. Park, Surface preparation and effective contact formation for GaAs surface [J], Vacuum, 2002, 67: 91-100.
    [27] Hinkle, C. L., A. M. Sonnet, E. M. Vogel, S. McDonnell, G J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, and R. M. Wallace, Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation [J], Applied Physics Letters, 2007,91: 163512.
    [28] Xuan, Y, H. C. Lin, and P. D. Ye, Simplified surface preparation for GaAs passivation using atomic layer-deposited high-kappa dielectrics [J], IEEE Transactions on Electron Devices, 2007, 54: 1811-1817.
    [29] Lu, J., L. Haworth, P. Hill, D. I. Westwood, and J. E. Macdonald, Nitridation of the GaAs(001) surface: Thermal behavior of the (3x3) reconstruction and its evolution [J], Journal of Vacuum Science & Technology B, 1999, 17: 1659-1665.
    [30] Medvedev, Y. V, Thermodynamic Stability of GaAs Sulfur Passivation [J], Applied Physics Letters, 1994, 64: 3458-3460.
    [31] Scimeca, T., Y. Muramatsu, M. Oshima, H. Oigawa, and Y. Nannichi, Temperature-Dependent Changes on the Sulfur-Passivated GaAs (111)a, (100), and (111)B Surfaces [J], Physical Review B, 1991, 44: 12927-12932.
    [32]Sugahara,H.,M.Oshima,H.Oigawa,H.Shigekawa,and Y.Nannichi,Synchrotron Radiation Photoemission Analysis for (Nh4)2sx-Treated Gaas [J],Journal of Applied Physics,1991,69:4349-4353.
    [33]Hill,W.A.,and C.C.Coleman,A Single-Frequency Approximation for Interface-State Density Determination [J],Solid-State Electronics,1980,23:987-993.
    [34]Cheng,C.C.,C.H.Chien,G.L.Luo,C.K.Tseng,H.C.Chiang,C.H.Yang,and C.Y.Chang,Improved electrical properties of Gd2O3/GaAs capacitor with modified wet-chemical clean and sulfidization procedures [J],Journal of the Electrochemical Society,2008,155:G56-G60.
    [35]Shahrjerdi,D.,D.I.Garcia-Gutierrez,T.Akyol,S.R.Bank,E.Tutuc,J.C.Lee,and S.K.Banerjee,GaAs metal-oxide-semiconductor capacitors using atomic layer deposition of HfO2 gate dielectric:Fabrication and characterization [J],Applied Physics Letters,2007,91:193503.
    [36]Lu,H.L.,L.Sun,S.J.Ding,M.Xu,D.W.Zhang,and L.K.Wang,Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment [J],Applied Physics Letters,2006,89:152910.
    [37]Yang,J.K.,M.G.Kang,and H.H.Park,Chemical and electrical characterization of Gd2O3/GaAs interface improved by sulfur passivation [J],Journal of Applied Physics,2004,96:4811-4816.
    [38]Yang,J.K.,M.G.Kang,and H.H.Park,Characteristics of interfacial bonding distribution of Gd2O3-GaAs structure [J],Vacuum,2002,67:161-167.
    [1]Liu,D.,and J.Robertson,Passivation of oxygen vacancy states and suppression of Fermi pinning in HfO2 by La addition [J],Applied Physics Letters,2009,94.
    [2]Akiyama,K.,W.Wang,W.Mizubayashi,M.Ikeda,H.Ota,T.Nabatame,and A.Toriumi,Roles of oxygen vacancy in HfO2/ultra-thin SiO2 gate stacks-Comprehensive understanding of V-FB roll-off [J],2008 Symposium on Vlsi Technology,2008:61-62.
    [3]Cho,E.,B.Lee,C.K.Lee,S.Han,S.H.Jeon,B.H.Park,and Y.S.Kim,Segregation of oxygen vacancy at metal-HfO2 interfaces [J],Applied Physics Letters,2008,92.
    [4]Broqvist,P.,A.Alkauskas,and A.Pasquarello,Band alignments and defect levels in Si-HfO2 gate stacks:Oxygen vacancy and Fermi-level pinning [J],Applied Physics Letters,2008,92.
    [5]Cho,D.Y.,J.M.Lee,S.J.Oh,H.Jang,J.Y.Kim,J.H.Park,and A.Tanaka,Influence of oxygen vacancies on the electronic structure of HfO2 films [J], Physical Review B, 2007, 76.
    [6] Umezawa, N., Effects of barium incorporation into HfO2 gate dielectrics on reduction in charged defects: First-principles study [J], Applied Physics Letters, 2009, 94.
    [7] Sun, Q. Q., C. Zhang, L. Dong, Y. Shi, S. J. Ding, and D. W. Zhang, Effect of chlorine residue on electrical performance of atomic layer deposited hafnium silicate [J], Journal of Applied Physics, 2008,103.
    [8] Umezawa, N., K. Shiraishi, Y. Akasaka, A. Oshiyama, S. Inumiya, S. Miyazaki, K. Ohmori, T. Chikyow, T. Ohno, K. Yamabe, Y. Nara, and K. Yamada, Chemical controllability of charge states of nitrogen-related defects in HfOxNy: First-principles calculations [J], Physical Review B, 2008, 77.
    [9] Shi, N., and R. Ramprasad, Local dielectric permittivity of HfO2 based slabs and stacks: A first principles study [J], Applied Physics Letters, 2007, 91.
    [10] Kresse, G, and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J], Physical Review B, 1996,54: 11169.
    [11] Kresse, G, and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J], Computational Materials Science, 1996, 6: 15.
    [12] Kresse, G, and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method [J], Physical Review B, 1999, 59: 1758.
    [13] Perdew, J. P., J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, Molecules, Solids, and Surfaces - Applications of the Generalized Gradient Approximation for Exchange and Correlation [J], Physical Review B, 1992, 46: 6671.
    [14] Perdew, J. P., and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy [J], Physical Review B, 1992, 45: 13244.
    [15] Van de Walle, C. G, and J. Neugebauer, First-principles calculations for defects and impurities: Applications to Ⅲ-nitrides [J], Journal of Applied Physics, 2004,95:3851-3879.
    [16]Wei Chen,Qing-Qing Sun,Shi-Jin Ding,David Wei Zhang,and Li-Kang Wang,First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide [J],Applied Physics Letters,2006,89:152906.
    [17]Foster,A.S.,F.L.Gejo,A.L.Shluger,and R.M.Nieminen,Vacancy and interstitial defects in hafnia [J],Physical Review B,2002,65:174117.
    [18]Wang,S.J.,J.W.Chai,Y.F.Dong,Y.P.Feng,N.Sutanto,J.S.Pan,and A.C.H.Huan,Effect of nitrogen incorporation on the electronic structure and thermal stability of HfO2 gate dielectric [J],Applied Physics Letters,2006,88.
    [19]Uedono,A.,K.Ikeuchi,T.Otsuka,K.Shiraishi,K.Yamabe,S.Miyazaki,N.Umezawa,A.Hamid,T.Chikyow,T.O.M.Muramatsu,R.Suzuki,S.Inumiya,S.Kamiyama,Y.Akasaka,Y.Nara,and K.Yamada,Characterization of HfSiON gate dielectrics using monoenergetic positron beams [J],Journal of Applied Physics,2006,99.
    [20]Watanabe,H.,S.Kamiyama,N.Umezawa,K.Shiraishi,S.Yoshida,Y.Watanabe,T.Arikado,T.Chikyow,K.Yamada,and K.Yasutake,Role of nitrogen incorporation into Hf-based high-k gate dielectrics for termination of local current leakage paths [J],Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2005,44:L1333-L1336.
    [21]Lee,C.,J.Park,M.J.Cho,S.H.Hong,C.S.Hwang,H.J.Kim,and J.Jeong,Dopant penetration behavior of B-doped P+ polycrystalline-Si0.73Ge0.27/Al2O3 or AIN-Al2O3/n-Si metal insulator semiconductor capacitors [J],Electrochemical and Solid State Letters,2006,9:G84-G86.
    [22]Song,S.C.,Z.B.Zhang,and B.H.Lee,Effects of boron diffusion in pMOSFETs with TiN-HfSiO gate stack [J],IEEE Electron Device Letters,2005,26:366-368.
    [23]Lai,C.S.,W.C.Wu,J.C.Wang,and T.Chao,Characterization of CF4-plasma fluorinated HfO2 gate dielectrics with TaN metal gate [J],Applied Physics Letters,2005,86:222905.
    [24]Seo,K.I.,R.Sreenivasan,P.C.McIntyre,and K.C.Saraswat,Improvement in high-k (HfO2/SiO2)reliability by incorporation of fluorine [J],IEEE Electron Device Letters,2006,27:821.
    [25]Tseng,H.H.,P.J.Tobin,E.A.Hebert,S.Kalpat,M.E.Ramon,L.Fonseca,Z.X.Jiang,J.K.Schaeffer,R.I.Hegde,D.H.Triyoso,D.C.Gilmer,W.J.Taylor,C.C.Capasso,O.Adetutu,D.Sing,J.Conner,E.Luckowski,B.W.Chan,A.Haggag,S.Backer,R.Noble,M.Jahanbani,Y.H.Chiu,and B.E.White,Defect passivation with fluorine in a TaxCy/High-K gate stack for enhanced device threshold voltage stability and performance [M],Book Name.
    [26]Xie,R.L.,M.B.Yu,M.Y.Lai,L.Chan,and C.X.Zhu,High-k gate stack on germanium substrate with fluorine incorporation [J],Applied Physics Letters,2008,92.
    [27]Fan,K.M.,C.S.Lai,H.K.Peng,S.J.Lin,and C.Y.Lee,Improvements on interface reliability and capacitance dispersion of fluorinated ALD-Al2O3 gate dielectrics by CF4 plasma treatment [J],Journal of the Electrochemical Society,2008,155:G51-G55.
    [28]Wilk,G.D.,R.M.Wallace,and J.M.Anthony,High-kappa gate dielectrics:Current status and materials properties considerations [J],Journal of Applied Physics,2001,89:5243-5275.
    [29]Milman,V.,B.Winkler,J.A.White,C.J.Pickard,M.C.Payne,E.V.Akhmatskaya,and R.H.Nobes,Electronic structure,properties,and phase stability of inorganic crystals:A pseudopotential plane-wave study [J],International Journal of Quantum Chemistry,2000,77:895-910.
    [1]Akbar,M.S.,J.C.Lee,N.Moumen,and J.Peterson,Optimization of precursor pulse time in improving bulk trapping characteristics of atomic-layer-deposition HfO2 gate oxides [J],Applied Physics Letters,2006,88:082901.
    [2]Ferrari,S.,G.Scarel,C.Wiemer,and M.Fanciulli,Chlorine mobility during annealing in N-2 in ZrO2 and HfO2 films grown by atomic layer deposition [J],Journal of Applied Physics,2002,92:7675-7677.
    [3]Van Elshocht,S.,B.Brijs,M.Caymax,T.Conard,T.Chiarella,S.De Gendt,B.De Jaeger,S.Kubicek,M.Meuris,B.Onsia,O.Richard,I.Teerlinck,J.Van Steenbergen,C.Zhao,and M.Heyns,Deposition of HfO2 on germanium and the impact of surface pretreatments [J],Applied Physics Letters,2004,85:3824-3826.
    [4]Zhang,Q.C.,N.Wu,D.M.Y.Lai,Y.Nikolai,L.K.Bera,and C.X.Zhu,Germanium incorporation in HfO2 dielectric on germanium substrate [J],Journal of the Electrochemical Society,2006,153:G207-G210.
    [5]Suzuki,K.,H.Tashiro,Y.Morisaki,and Y.Sugita,Diffusion coefficient of B in HfO2 [J],IEEE Transactions on Electron Devices,2003,50:1550-1552.
    [6]Liu,J.,H.C.Wen,J.P.Lu,and D.L.Kwong,Improving gate-oxide reliability by TiN capping layer on NiSiFUSI metal gate [J],IEEE Electron Device Letters,2005,26:458-460.
    [7]Kim,W.K.,S.W.Rhee,N.I.Lee,J.H.Lee,and H.K.Kang,Atomic layer deposition of hafnium silicate films using hafnium tetrachloride and tetra-n-butyl orthosilicate [J],Journal of Vacuum Science & Technology A,2004,22:1285-1289.
    [8]Ganem,J.J.,I.Trimaille,I.C.Vickridge,D.Blin,and F.Martin,Study of thin hafnium oxides deposited by atomic layer deposition [J],Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2004,219-20:856-861.
    [9]Sreenivasan,R.,P.C.McIntyre,H.Kim,and K.C.Saraswat,Effect of impurities on the fixed charge of nanoscale HfO2 films grown by atomic layer deposition [J],Applied Physics Letters,2006,89:112903
    [10]Sun,Q.Q.,w.Chen,S.J.Ding,M.Xu,D.W.Zhang,and L.K.Wang,Effects of chlorine residue in atomic layer deposition hafnium oxide:A density-functional-theory study [J],Applied Physics Letters,2007,91.
    [11]Sayan,S.,T.Emge,E.Garfunkel,X.Y.Zhao,L.Wielunski,R.A.Bartynski,D.Vanderbilt,J.S.Suehle,S.Suzer,and M.Banaszak-Holl,Band alignment issues related to HfO2/SiO2/p-Si gate stacks [J],Journal of Applied Physics,2004,96:7485-7491.
    [12]Sun,Q.Q.,C.Zhang,L.Dong,Y.Shi,S.J.Ding,and D.W.Zhang,Effect of chlorine residue on electrical performance of atomic layer deposited hafnium silicate [J],Journal of Applied Physics,2008,103.
    [13]Lee,M.L.,E.A.Fitzgerald,M.T.Bulsara,M.T.Currie,and A.Lochtefeld,Strained Si,SiGe,and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors [J],Journal of Applied Physics,2005,97:011101.
    [14] Frank, M. M., H. Shang, S. Rivillon, F. Amy, C. L. Hsueh, V. Paruchuri, R. T. Mo, M. Copel, E. P. Gusev, M. A. Gribelyuk, and Y. J. Chabal, High-kappa gate dielectrics on silicon and germanium: Impact of surface preparation [J], Ultra Clean Processing of Silicon Surfaces Vii, 2005,103-104: 3-6.
    [15] Takagi, S., Understanding and Engineering of Carrier Transport in Advanced MOS Channels [J], Sispad: 2008 International Conference on Simulation of Semiconductor Processes and Devices, 2008: 9-12.
    [16] Delabie, A., D. P. Brunco, T. Conard, P. Favia, H. Bender, A. Franquet, S. Sioncke, W. Vandervorst, S. Van Elshocht, M. Heyns, M. Meuris, E. Kim, P. C. Mclntyre, K. C. Saraswat, J. M. LeBeau, J. Cagnon, S. Stemmer, and W. Tsai, Atomic Layer Deposition of Hafnium Oxide on Ge and GaAs Substrates: Precursors and Surface Preparation [J], Journal of the Electrochemical Society, 2008,155: H937-H944.
    [17] Matsubara, H., T. Sasada, M. Takenaka, and S. Takagi, Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation [J], Applied Physics Letters, 2008, 93.
    [18] Rivillon, S., Y. J. Chabal, F. Amy, and A. Kahn, Hydrogen passivation of germanium (100) surface using wet chemical preparation [J], Applied Physics Letters, 2005, 87.
    [19] Bai, W. P., N. Lu, and D. L. Kwong, Si interlayer passivation on germanium MOS capacitors with high-kappa dielectric and metal gate [J], Ieee Electron Device Letters, 2005, 26: 378-380.
    [20] Lu, N., W. Bai, A. Ramirez, C. Mouli, A. Ritenour, M. L. Lee, D. Antoniadis, and D. L. Kwong, Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric [J], Applied Physics Letters, 2005, 87.
    [21] Cheng, C. C, C. H. Chien, G L. Luo, C. H. Yang, M. L. Kuo, J. H. Lin, C. K. Tseng, and C. Y. Chang, Study of thermal stability of HfOxNy/Ge capacitors using postdeposition annealing and NH3 plasma pretreatment [J], Journal of the Electrochemical Society, 2007,154: G155-G159.
    [22] Wu, N., Q. C. Zhang, C. X. Zhu, C. C. Yeo, S. J. Whang, D. S. H. Chan, M. F. Li, B.J.Cho,A.Chin,D.L.Kwong,A.Y.Du,C.H.Tung,and N.Balasubramanian,Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate [J],Applied Physics Letters,2004,84:3741-3743.
    [23]Sun,Q.Q.,Y.S.L.Dong,H.Liu,D.A.Shi-Jin,and D.W.Zhang,Impact of germanium related defects on electrical performance of hafnium oxide [J],Applied Physics Letters,2008,92.
    [24]Maszara,W.P.,Fully silicided metal gates for high-performance CMOS technology:A review [J],Journal of the Electrochemical Society,2005,152:G550-G555.
    [25]Zhao,P.,M.J.Kim,B.E.Gnade,and R.M.Wallace,Dopant effects on the thermal stability of FUSINiSi [J],Microelectronic Engineering,2008,85:54-60.
    [26]Sim,J.H.,H.C.Wen,J.P.Lu,and D.L.Kwong,Dual work function metal gates using full nickel silicidation of doped poly-Si [J],IEEE Electron Device Letters,2003,24:631-633.
    [27]Song,S.C.,Z.B.Zhang,and B.H.Lee,Effects of boron diffusion in pMOSFETs with TiN-HfSiO gate stack [J],IEEE Electron Device Letters,2005,26:366-368.
    [28]Maikap,S.,J.H.Lee,R.Mahapatra,S.Pal,Y.S.No,W.K.Choi,S.K.Ray,and D.Y.Kim,Effects of interfacial NH3/N2O-plasma treatment on the structural and electrical properties of ultra-thin HfO2 gate dielectrics on p-Si substrates [J],Solid-State Electronics,2005,49:524-528.
    [29]Song,S.C.,Z.B.Zhang,C.Huffman,J.H.Sim,S.H.Bae,P.D.Kirsch,P.Majhi,R.Choi,N.Moumen,and Y.H.Lee,Highly manufacturable advanced gate-stack technology for sub-45-nm self-aligned gate-first CMOSFETs [J],Ieee Transactions on Electron Devices,2006,53:979-989.
    [30]Sun,Q.Q.,L.Dong,Y.Shi,H.Liu,S.J.Ding,and D.W.Zhang,Atomic scale study of the degradation mechanism of boron contaminated hafnium oxide [J],Applied Physics Letters,2008,92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700