用户名: 密码: 验证码:
材料新颖磁机制和电子结构的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋电子学的应用需要高效率的自旋极化电子(自旋电流)源,像半金属CrO_2要在液氦温度下才可以产生96%的自旋极化,基于自旋霍尔效应的电流在杂质散射,通过自旋光电效应注入自旋流等方法也存在高温耗散的问题。而传统的磁性金属虽然能在室温下产生自旋极化流,但因为和半导体的能带与阻抗都不匹配,自旋流注入到半导体的过程中极容易耗散。所以人们就考虑综合半导体和磁性金属特点的稀磁半导体作为自旋注入源。ZnO掺杂Mn作为一种可能获得室温铁磁性的稀磁半导体,在实验中有着各种各样的结果,而纯粹的第一性原理计算则全都是反铁磁。(Zn,Mn)O的磁性来源和机制到底是什么?作为非铁磁化合物也可能具有磁矩的代表,CaB_6铁磁性机制一直困惑着大家,为何各种实验和理论都没能清晰地解释磁矩产生的原因?半导体工艺的主要材料硅中能否实现自旋极化?在极端条件下的稀磁半导体会有哪些性质?这些问题都非常值得进行细致地研究。
     随着当代计算机技术的发展,基于第一性原理的研究已经成为凝聚态物理的重要方面。本论文即用密度泛函的第一性原理方法研究了凝聚态物理中一些体系新颖的磁性产生机制及电子结构的特征。具体内容包括ZnO体系共掺杂实现铁磁性、sp电子体系产生磁性的机制、ZnSe体系高压相变电子结构变化及C_(80)内掺稀土等元素的电子结构。论文第一章为背景介绍,第二章是理论方法和模型介绍,第三章是共掺杂引起ZnO体系铁磁性的研究,第四章是CaB_6体系磁性来源的研究,第五章是高浓度B掺杂的无定形硅磁性研究,第六章是Zn_(1-x)Mn_xSe(x=0,0.25)高压相变及其电子结构研究,第七章是内嵌富勒烯M_3N@C_(80)(M=Sc,Y,and lanthanides)电子态的研究,最后第八章给出总结和展望。每章的具体内容如下。
     第一章简要介绍了稀磁半导体在自旋电子学中的重要作用,作为可能出现室温铁磁性的Mn掺杂ZnO稀磁半导体的研究进展,不含铁磁离子化合物磁性研究以及稀磁材料的高压相变及电子结构。
     第二章简要介绍了密度泛函理论以及势与波函数的处理等。
     第三章介绍了共掺杂引起ZnO体系铁磁性的研究。利用第一性原理计算,我们阐述了(Zn,Mn)O共参其它阳离子增强铁磁性的机制。参入的Li和Cu倾向于靠近Mn原子,并且通过RKKY以及超交换作用增加了体系的铁磁性。Li和Cu导入的空穴态是非局域态。这些分布在整个空间的非局域态是铁磁离子相互作用的媒介。共参其它离子的方法为自旋电子学中稀磁半导体的器件设置开拓了新思路。
     第四章介绍了CaB_6体系磁性来源的研究。通过第一性原理计算,我们发现了硼空位和杂质的综合作用导致了CaB_6的弱铁磁性。硼空位最近邻的硼产生了很强的局域态,这些局域态刚好处于费米面之上。杂质导致CaB_6晶格畸变,并带进体系电荷,这两者使得局域态刚好穿过费米面。根据斯托纳定则,穿过费米面的局域态劈裂开来,产生了有0.8-1.2μB的磁矩。
     第五章介绍了高浓度B掺杂的无定形硅磁性研究。我们用第一性原理分子动力学计算方法,首次发现了高浓度硼掺杂的无定形硅有磁矩。计算得到的15种无定形Si_(63)B_1(SiB)中,有6个结构有磁矩。其中,0.993μB磁矩的体系有最低的能量。磁矩来自于三配位的硅。这些三配位的硅都有一个悬挂键,而掺入的B带来空穴,当空穴传递到悬挂键上时,根据斯托纳定则,这个悬挂键就劈裂开来,形成磁矩。这些三配位硅上的磁矩都有50mev左右的磁化能,这样大的磁化能使得这些磁矩可以在室温下留存。
     第六章介绍了Zn_(1-x)Mn_xSe(x=0,0.25)高压相变及其电子结构研究。我们用第一性原理研究了Zn_(1-x)Mn_xSe(x=0,0.25)在高压下的相变和电子结构。我们得到了Zn_(1-x)Mn_xSe从闪锌矿结构转变到氯化钠结构的相变压强,体弹性模量。这些数据和实验结果很吻合。Zn_(0.75)Mn_(0.25)Se沿着相变路径的焓低于非掺杂的ZnSe,这很好地解释了为什么Zn_(0.75)Mn_(0.25)Se有更低的相变压强。Zn 3d和Se4p之间有明显的排斥力,这种排斥力是相变的驱动力。伴随着从闪锌矿到氯化钠的结构相变,Zn_(1-x)Mn_xSe的电子结构也从半导体转变到金属。金属性来自氯化钠结构中Se离子对s电子的束缚性减弱。
     第七章介绍了内嵌富勒烯M_3N@C_(80)(M=Sc,Y,and lanthanides)电子态的研究。我们用第一性原理系统研究了内嵌三族和镧系氮化物富勒烯M_3N@C_(80)。和实验光谱相吻合,大多数的M3_N@C_(80)在费米面下有4个峰的电子态。我们确定了M_3N分子的平面与C_(80)的C_5轴垂直而不是C_3轴。金属原子与N、C原子之间的电荷转移也定量地进行了分析。我们也用LSDA+U的方法研究了镧系金属f电子作为价电子的行为。
     第八章对我们的研究作了总结,并对将来的一些研究作了展望。
It needs efficient spin source for spintronics.For example,half-metal CrO_2 canown 96% spin polarization under the temperature of liquid He.The current based onspin Hall Effect with the scattering of impurities and the method of spin photoelectriceffect can also produce spin current.However these spin current must be kept undervery low temperature.The traditional ferromagnetic metal such as Fe can induce spincurrent at room temperature,but the current is scattered when it goes through the in-terface because of mismatch of energy band and impedance between metals and semi-conductors.Thus people consider so-called diluted magnetic semiconductors (DMS)as one kind of spin resource.Mn doped ZnO could have ferromagnetism at roomtemperature.The experimental results are however,full of contradictions.And allfirst-principles calculations show that (Zn,Mn)O is antiferromagnetic.Then what isthe mechanism of ferromagnetism of (Zn,Mn)O? As one of chemical compounds ownmagnetism,but do not contain transition metal ions,the mechanism of magnetism ofCaB6 puzzles people for a long time.Why could not people find it? Can people findmagmoments in bulk Si? What will happen when DMS under extreme condition,suchas high pressure? These problems are valuable to be studied.
     With development of computer science,the first-principles calculations in con-densed matter physics is one of the most important branches.This thesis studiessome new mechanism of producing magnetism and electronic structures of materialsbased on density functional theory.Chapter 1 of this paper is introduction.Chap-ter 2 is the method of calculations.Chapter 3 is origin of the co-dopant induced en-hancement of ferromagnetism in (Zn,Mn)O.Chapter 4 is what produces magnetism inCaB_6.Chapter 5 is about possible magnetic behaviors in amorphous silicon doped withhigh-concentration boron.Chapter 6 is on phase transition and electronic structure ofZn_(1-x)Mn_xSe (x=0,0.25) under high pressure.Chapter 7 is about First-principles inves-tigation on the electronic structures of intercalated fullerenes M_3N@C_(80)(M=Sc,Y,andlanthanides).Chapter 8 is for conclusion.The detailed introductions for each chapterare listed below.
     Chapter 1 of this paper is introduction introduction to DMS and the magnetism ofmaterial containing no transition metal ions.
     Chapter 2 is the method of calculations.
     Chapter 3 is origin of the co-dopant induced enhancement of ferromagnetism in (Zn,Mn)O.Using the density functional calculations,we elucidate the mechanism ofco-dopant induced enhancement of ferromagnetism of (Zn,Mn)O.Li and Cu atomstends to segregate toward Mn atoms and strongly promote the ferromagnetic couplingvia either RKKY or superexchange interaction.The hole states introduced by eitherLi or Cu are rather delocalized and they are efficient in mediating magnetic ordering.These findings shed new light for the design of dilute magnetic semiconductors withco-dopants for spintronic applications.
     Chapter 4 is what produces magnetism in CaB_6.Through systematic density func-tional calculations,we revealed that the weak ferromagnetism in CaB_6 and relatedmaterials stems from the joint effect of boron vacancies and impurities.Each boronvacancy introduces strongly localized gap states around its first neighbor B atom rightabove the Fermi Level.The partial occupation of these gap states caused by either lat-tice distortion or addition charge triggers magnetic instability and the local magneticmoment can be as large as 0.8-1.2μB in various cases.
     Chapter 5 is magnetic moments on silicon atom of high-concentration boron inamorphous Silicon.We first find out magmoments on Si atom in bulk amorphous (a-)Si with high-concentration boron doping in by using first-principles molecular dynamic(MD) calculations.Fifteen a-Si_(63)B_1 (SiB) models have been calculated and six of themhave magnetism.The structure with magmoment of 0.993μ_B has the lowest energy.The magnetism of a-SiB is from one of the threefold coordinated Si atoms.Thesethreefold coordinated Si atoms all have high peaks in density of states (DOS) becauseof the single unsaturated bonds.And the unsaturated bond pins at Fermi level,it is tosay the hole from boron offers to the silicon.The partial DOS peaks then can be splitand have spin polarization based on Stoner criterion.Spin polarized energy of thesethreefold coordinated Si atoms are all around 50 meV and the magmoment can evenexit above room temperature.
     Chapter 6 is phase transition and electronic structure of Zn_(1-x)Mn_xSe (x=0,0.25) under high pressure.High-pressure phase transition and electronic structure ofZn_(1-x)Mn_xSe (x=0,0.25) are studied by using first-principles density functional cal-culations.Pressures at which phase transition from zinc blende to rock salt and bulkmoduli are obtained,both in good agreement with experimental results.The calculatedenthalpies along transition path can well explain the fact that transition pressure ofZn_(0.75)Mn_(0.25)Se is lower than that of undoped ZnSe.Obvious repulsion between Zn/Mn3d and Se 4p is found to be the driving force for the structural transition.The change of electronic structure from semiconductor to metal,accompanying the structural tran-sition,is ascribed to the decrease of constrain of Se atoms to s electrons.
     Chapter 7 is first-principles investigation on the electronic structures of interca-lated fullerenes M_3N@C_(80)(M=Sc,Y,and lanthanides).C_(80) cages with encapsulatedgroupⅢand lanthanide nitrides are systematically studied through density functionalcalculation.Most intercalated fullerenes M_3N@C_(80) exhibit similar spectroscopic fea-tures near Fermi level,in consistent with experimental results.We establish that theplane of Sc3N is perpendicular to the C_5 axis,rather than the C_3 axis as proposed be-fore.The charge transfer from metal atoms toward N and C atoms is quantitativelyanalyzed.The role of 4f states treated as valence states is explored through LSDA+Ucalculation finally.
     Chapter 8 is conclusion and prospect of the thesis.
引文
[1]S.D.Sarma,Am.Sci.89,516 (2001)
    [2]沈顺清,物理37卷,16(2008).
    [3]都有为,功能材料35卷,54(2004).
    [4]詹文山,物理35卷,811(2006).
    [5]王永进,兰中文,余忠,郑飞雁,微纳电子技术,2007卷,304(2007).
    [6]http://www.bjb-van.cas.cn/comm/content3.asp?id=200703070006.
    [7]Y.Ji,G.J.Strijkers,F.Y.Yang,C.L.Chien,J.M.Byers,A.Anguelouch,Gang Xiao,and A.Gupta,Phys.Rev.Lett.86,5585 (2001).
    [8]J.E.Hirsch,Phys.Rev.Lett.83,1834 (1999).
    [9]S.Murakami,N.Nagaosa and S.C.Zhang,Science 301,1348 (2003)
    [10]J.Sinova,D.Culcer,Q.Niu,N.A.Sinitsyn,T.Jungwirth and A.H.MacDonald,Phys.Rev.Lett.92,126603 (2004)
    [11]S.D.Ganichev,V.V.Bel'kov,S.A.Tarasenko,S.N.Danilov,S.Giglberger,Ch.Hoffmann,E.L.Ivchenko,D.Weiss,W.Wegscheider,Ch.Gerl.D.Schuh,J.Stahl,J.De Boeck,G.Borghs and W.Prettl,Nature Physics 2,609 (2006).
    [12]G.Schmidt and L.W.Molenkamp,Physica 10,484 (2001).
    [13]T.Dietl,H.Ohno,F.Matsukura,J.Cibert and D.Ferrand,Science 287,1019(2000).
    [14]S.J.Pearton,C.R.Abernathy,M.E.Overberg,G.T.Thaler,D.P.Norton,N.Theodoropoulou,A.F.Hebard,Y.D.Park,F.Ren,J.Kim and L.A.Boatner,J.Appl.Phys.93,1-13 (2003).
    [15]T.Fukumura,Zhengwu Jin,M.Kawasaki,T.Shono,T.Hasegawa,S.Koshihara and H.Koinuma,Appl.Phys.Lett.78,958 (2000).
    [16]P.Sharma,A.Gupta,K.V.Rao,F.J.Owens,R.Sharma,R.Ahuja,J.M.O.Guillen,B.Johansson and G.A.Gehring,Nature Materials 2,673 (2003).
    [17] W. Xu, Y. X. Zhou, X. Y. Zhang, D. L. Chen, Y. N. Xie, T. Liu, W. S. Yan and S. Q. Wei, Solid State Commun. 141, 374 (2007).
    [18] M. H. F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout and U. V. Waghmare, Phys. Rev. Lett. 94,187204 (2005).
    [19] T. Chanier, M. Sargolzaei, I. Opahle, R. Hayn and K. Koepernik, Phys. Rev. B 73, 134418(2006).
    [20] P. Gopal and N. A. Spaldin, Phys. Rev. B 74,094418 (2006).
    [21] Q. Wang and P. Jena, Appl. Phys. Lett. 84,4170 (2004).
    [22] S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. L. Lee and S. Cho, Appl. Phys. Lett. 80, 4561 (2002).
    [23] W. B. Mi, H. L. Bai, H. Liu and C. Q. Sun, J. Appl. Phys. 101, 023904 (2007).
    [24] H. L. Yan, X. L. Zhong, J. B. Wang, G. J. Huang, S. L. Ding, G. C. Zhou and Y. C. Zhou, Appl. Phys. Lett. 90, 082503 (2007).
    [25] W. S. Yan, Z. H. Sun, Q. H. Liu, Z. R. Li, Z. Y. Pan, J. Wang, S. Q. Wei, D. Wang, Y. X. Zhou and X. Y. Zhang, Appl. Phys. Lett. 91, 062113 (2007).
    [26] K. Ueda, H. Tubata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
    [27] W. Prellier, A. Fouchet, B. Mercey, C. Simon, and B. Raveau, Appl. Phys. Lett. 82, 3490 (2003).
    [28] C. Liu, F. Yun, and H. Morko, J. Mater. Sci. Mater. Electron., 16, 555 (2005).
    [29] K. Sato and H. Katayama-Yoshida, Semicond. Sci. and Technol. 17, 367 (2002).
    [30] M. S. Park and B. I. Min, Phys. Rev. B 68, 224436 (2003).
    [31] A. Walsh, J.L.F. Da Silva and S.H. Wei, Phye. Rev. Lett. 100, 256401 (2008).
    [32] H. T. Lin, T. S. Chin, and J. C. Shih, Appl. Phys. Lett. 85, 621 (2004).
    [33] X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, B. Xiao and L. X. Song, Appl. Phys. Lett. 88 252503 (2006).
    [34] O. D. Jayakumar, I. K. Gopalakrishnan, K. Shashikala, S. K. Kulshreshtha and C. Sudakar, Appl. Phys. Lett. 89, 202507 (2006).
    [35] M. Venkatesan, P. Stamenov, L. S. Dorneles, R. D. Gunning, B. Bernoux, and J. M. D. Coey, Appl. Phys. Lett. 90, 242508 (2007).
    [36] Y. H. Lin, J. N. Cai, C. W. Nan, M. Kobayashi and J. L. He, J. Appl. Phys. 99, 056107 (2006).
    [37] T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. Davydov, L. S. Kashevarova and A. V. Rakhmanina, Nature 440, 707 (2006).
    [38] H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Jin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99,127201 (2007).
    [39] D. Yu, E. M. Lupton, M. Liu, W. Liu and F. Liu, Nano Res. 1, 56 (2008).
    [40] D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H. R. Ott, S. B. Oseroff, R. G. Goodrich, and G. Zysler, Nature 397,412 (1999).
    [41] C. O. Rodriguez, R. Weht and W. E. Pickett, Phys. Rev. Lett. 84, 3903 (2000).
    [42] M. E. Zhitomirsky, T. M. Rice and V. I. Anisimov, Nature 402, 251 (1999).
    [43] D. Ceperley, Nature 397, 386 (1999).
    [44] L. Balents and C. M. Varma, Phys. Rev. Lett. 84,1264 (2000).
    [45] V. Barzykin and Lev P. Gorkov, Phys. Rev. Lett. 84, 2207 (2000).
    [46] T. Jarlborg, Phys. Rev. Lett. 85,186 (2000).
    [47] K. Matsubayashi, M. Maki, T. Tsuzuki, T. Nishioka and N. K. Sato , Nature 420, 143 (2002).
    [48] K. Maiti, V. R. R. Medicherla, S. Patil and R. S. Singh, Phys. Rev. Lett. 99,266401 (2007).
    [49] R. Monnier and B. Delley, Phys. Rev. Lett. 87, 157204 (2001).
    [50] S. Massidam, A. Continenza, T. M. de Pascale and R. Monnier, Z. Phys. B 102, 83 (1997).
    [51] H. J. Tromp, P. van Gelderen, P. J. Kelly, G. Brocks and P. A. Bobbert, Phys. Rev. Lett. 87,016401 (2001).
    [52] M. E. Zhitomirsky and T. M. Rice, Phys. Rev. B 62 , 1492 (2000).
    [53] S. E. Lofland, B. Seaman, K. V. Ramanujachary, Hur, Nanjing and S. W. Cheong, Phys. Rev. B 67, 020410 (2003).
    [54] T. Terashima, C. Terakura, Y. Umeda, N. Kimura, H. Aoki and S. Kunii, J. Phys. Soc. Jpn. 69, 2423 (2000).
    [55] G. Oritz, M. Harri and P. Ballone, Phys. Rev. Lett. 82, 5317 (1999).
    [56] D. D. Salvador, E. Napolitani, S. Mirabella, G. Bisognin, G. Impellizzeri, A. Camera and F. Priolo, Phys. Rev. Lett 97, 255902 (2006).
    [57] S. Mirabella, D. D. Salvador, E. Bruno, E. Napolitani, E. F. Pecora, S. Boninelli and F. Priolo, Phys. Rev. Lett 100, 155901 (2006).
    [58] A. Mujica, A. Rubio, A. Munoz, and R. J. Needs, Rev. Mod. Phys. 75, 863 (2003).
    [59] S. Ves, K. Strossner, W. Gebhardt, and M. Cardona, Solid State Commun. 57, 335 (1986).
    [60] P. Maheswaranathan and R. J. Sladek, Phys. Rev. B 41, 12076 (1990).
    [61] D. Varshney, P. Sharama, N. Kaurav, and R. K. Singh, Bull. Mater. Sci. 28, 651 (2005).
    [62] M. Kofferlein, H. Karzel, W. Potzel, W. Schiessl, M. Steiner, G. M. Kalvius, D. W. Mitchell, and T. P. Das, Hyperfine Interactions 93,1505 (1994).
    [63] A. K. Arora and T. Sakuntala, Phys. Rev. B 52,11052 (1995).
    [64] C. M. Lin, D. S. Chuu, J. A. Xu, E. Huang, W. C. Chou, J. Z. Hu, and J. H. Pei, Phys. Rev. B 58,16(1998).
    [65] C. S. Yang, C. S. Ro, W. C. Chou, C. M. Lin, D. S. Chuu, J. Hu, E. Huang, and J. Xu, J. Appl. Phys. 85, 8092 (1999).
    [66] C. M. Lin and D. S. Chuu, Physica B 304, 221 (2001).
    [67] C. M. Lin and D. S. Chuu, J. Appl. Phys. 101, 103535 (2007).
    [68] R. Gangadharan, V. Jayalakshmi, J. Kaliselvi, S. Mohan, R. Murugan, and B. Palanivel, J. Alloys Compd. 359,22 (2003).
    [69] M. S. Miao and W. R. L. Lambrecht, Phys. Rev. Lett. 94,225501 (2005). [70] I. Hamdi, M. Aouissi, A. Qteish, and N. Meskini, Phys. Rev. B 73,174114 (2006). [71] M. Cote, O. Zakharov, A. Rubio, and M. L. Cohen, Phys. Rev. B 55,13025 (1997). [72] I. Gorczyca and N. E. Christensen, Phys. Rev. B 48, 17202 (1993). [73] J. E. Jaffe, R. Pandey, and M. J. Seel, Phys. Rev. B 47, 6299 (1993).
    [1] M. Born, and K.Huang, Dyanmical Theory of Crystal Lattice, Oxford: Oxford University Press, (1954).
    [2] DR. Hartree, Proc. Cam. Phil. Soc. 24, 89 (1928)
    [3] V. Fock, Z. Physik. 61, 126 (1930).
    [4] P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964).
    [5] W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).
    [6] Y. Wang, and J. P.Perdew, Phys. Rev. B 44, 13298 (2001).
    [7] V. Anisimov, F. Aryasetiawan and A. Lichtenstein, J. Phys.: Condens. Matter, 9, 767 (1997).
    [8] F. Z. Bloch, Phys, 52 555 (1928).
    [9] D. Vanderbilt, Phys. Rev. B 41, 13298 (2001).
    [10] K. Laasonen, R. Car. C. Lee, and Vanderbilt, Phys. Rev. B 43, 6796 (1991).
    [11] K. Laasonen, A. Pasquarello, r. Car. C. Lee, and D. Vanderbilt, Phys. Rev. B 47, 10142(1993).
    [12] P. E. Bl(?)chl, Phys. Rev. B 50, 17953 (1994).
    [13] G.Kresse, D. Jouber, Phys. Rev. B 59, 1758 (1999).
    [14] N. A. W. Holzwarth, G. E. Matthews, r. B. Dunning, a. r. Tackett, and Y. Zeng, Phys. Rev. B 55, 2005 (1997).
    [15] M. Schl(?)ter, J. R. Cheikowsky, S.G. Louie, and M.L. Cohen, Phys. Rev. B 12, 4200 (1975).
    [16] J. R. Chelikowsky, and L. Cohen, Phys. Rev. B 13, 826 (1976).
    [17] G. P. Kerper, S. G. Louie, and M. L. Cohen, Phys. Rev. B 17, 706 (1978).
    [18] M. Schl(?)ter, and M. L. Cohen, Phys. Rev. B 17,716 (1978).
    [19] I. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. B 17,769 (1978).
    [20] H. Hellmann, Einfuhrung in die Quantumchemic (Deuticke, Leipzig 1937).
    [21] R. P. Feynman, Phys. Rev. 56, 340 (1939).
    [1] S. J. Pearton, C. R. Abemathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, J. Appl. Phys. 93,1-13 (2003).
    [2] T. Fukumura, Zhengwu Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara and H. Koinuma, Appl. Phys. Lett. 78, 958 (2000).
    [3] K. Ueda, H. Tubata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001). [4] W. Prellier, A. Fouchet, B. Mercey, C. Simon, and B. Raveau, Appl. Phys. Lett. 82, 3490 (2003).
    [5] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, Nature Materials 2, 673 (2003).
    [6] C. Liu, F. Yun, and H. Morko? J. Mater. Sci., Mater. Electron., 16, 555 (2005).
    [7] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).
    [8] K. Sato and H. Katayama-Yoshida, Semicond. Sci. and Technol. 17, 367 (2002).
    [9] M. S. Park and B. I. Min, Phys. Rev. B 68, 224436 (2003).
    [10] M. H. F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout and U. V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005).
    [11] T. Chanier, M. Sargolzaei, I. Opahle, R. Hayn and K. Koepemik, Phys. Rev. B 73, 134418(2006).
    [12] P. Gopal and N. A. Spaldin, Phys. Rev. B 74,094418 (2006).
    [13] A. Walsh, J.L.F. Da Silva and S.H. Wei, Phye. Rev. Lett. 100, 256401 (2008).
    [14] H. T. Lin, T. S. Chin, and J. C. Shih, Appl. Phys. Lett. 85, 621 (2004).
    [15] X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, B. Xiao and L. X. Song, Appl. Phys. Lett. 88 252503 (2006).
    [16] O. D. Jayakumar, I. K. Gopalakrishnan, K. Shashikala, S. K. Kulshreshtha and C. Sudakar, Appl. Phys. Lett. 89, 202507 (2006).
    [17] M. Venkatesan, P. Stamenov, L. S. Dorneles, R. D. Gunning, B. Bernoux, and J. M. D. Coey, Appl. Phys. Lett. 90, 242508 (2007).
    [18] Y. H. Lin, J. N. Cai, C. W. Nan, M. Kobayashi and J. L. He, J. Appl. Phys. 99, 056107 (2006).
    [19] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [20] P. E. Bliichl, Phys. Rev. B 50,17953 (1994).
    [21] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [22] Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
    [23] V. Anisimov, F. Aryasetiawan and A. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
    [24] L. Bergqvist, O. Eriksson, J. Kudrnovsky, V. Drchal, P. Korzhavyi, and I. Turek, Phys. Rev. Lett. 93, 137202 (2004).
    [25] L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
    [1] D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H. R. Ott, S. B. Oseroff, R. G. Goodrich, and G. Zysler, Nature 397,412 (1999).
    [2] C. O. Rodriguez, R. Weht and W. E. Pickett, Phys. Rev. Lett. 84, 3903 (2000).
    [3] M. E. Zhitomirsky, T. M. Rice and V. I. Anisimov, Nature 402, 251 (1999).
    [4] D. Ceperley, Nature 397, 386 (1999).
    [5] L. Balents and C. M. Varma, Phys. Rev. Lett. 84,1264 (2000).
    [6] V. Barzykin and Lev P. Gorkov, Phys. Rev. Lett. 84, 2207 (2000).
    [7] T. Jarlborg, Phys. Rev. Lett. 85,186 (2000).
    [8] K. Matsubayashi, M. Maki, T. Tsuzuki, T. Nishioka and N. K. Sato , Nature 420, 143 (2002).
    [9] K. Maiti, V. R. R. Medicherla, S. Patil and R. S. Singh, Phys. Rev. Lett. 99,266401 (2007).
    [10] R. Monnier and B. Delley, Phys. Rev. Lett. 87, 157204 (2001).
    [11] S. Massidam, A. Continenza, T. M. de Pascale and R. Monnier, Z. Phys. B 102, 83 (1997).
    [12] H. J. Tromp, P. van Gelderen, P. J. Kelly, G. Brocks and P. A. Bobbert, Phys. Rev. Lett. 87, 016401 (2001).
    [13] M. E. Zhitomirsky and T. M. Rice, Phys. Rev. B 62, 1492 (2000).
    [14] S. E. Lofland, B. Seaman, K. V. Ramanujachary, Hur, Nanjing and S. W. Cheong, Phys. Rev. B 67,020410 (2003).
    [15] T. Terashima, C. Terakura, Y. Umeda , N. Kimura, H. Aoki and S. Kunii, J. Phys. Soc. Jpn. 69, 2423 (2000).
    [16] G. Oritz, M. Harri and P. Ballone, Phys. Rev. Lett. 82, 5317 (1999).
    [17] E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24, 864 (1981); M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B 26,4571 (1982).
    [18] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996); G. Kresse and J. Furthmuller, Comput. Mat. Sci. 6, 15 (1996).
    [19] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [20] P. E. Bliichl, Phys. Rev. B 50, 17953 (1994).
    [21] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [1] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [2] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [3] Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
    [4] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [5] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [6] Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
    [7] V. Anisimov, F. Aryasetiawan and A. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
    [8] D. D. Salvador, E. Napolitani, S. Mirabella, G. Bisognin, G. Impellizzeri, A. Camera and F. Priolo, Phys. Rev. Lett 97, 255902 (2006).
    [9] S. Mirabella, D. D. Salvador, E. Bruno, E. Napolitani, E. F . Pecora, S. Boninelli and F. Priolo, Phys. Rev. Lett 100, 155901 (2006).
    [10] O. Renner and J. Zemek, Czech. J. Phys. B 23,1273 (1973).
    [11] S. Kugler, L. Pusztai, L. Rosta, P. Chieux and R. Bellssent, Phys. Rev. B 48, 7685 (1993).
    [12] R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. B 34, 5343 (1986).
    [13] Q. Paz, A. J. R. da Silva, J. J. Saenz, and E. Artacho, Surf. Sci. 482,458 (2001).
    [1] A. Mujica, A. Rubio, A. Munoz, and R. J. Needs, Rev. Mod. Phys. 75,863 (2003).
    [2] S. Ves, K. Strossner, W. Gebhardt, and M. Cardona, Solid State Commun. 57, 335 (1986).
    [3] P. Maheswaranathan and R. J. Sladek, Phys. Rev. B 41,12076 (1990).
    [4] D. Varshney, P. Sharama, N. Kaurav, and R. K. Singh, Bull. Mater. Sci. 28, 651 (2005).
    [5] M. K(?)fferlein, H. Karzel, W. Potzel, W. Schiessl, M. Steiner, G. M. Kalvius, D. W. Mitchell, and T. P. Das, Hyperfine Interactions 93, 1505 (1994).
    [6] A. K. Arora and T. Sakuntala, Phys. Rev. B 52,11052 (1995).
    [7] C. M. Lin, D. S. Chuu, J. A. Xu, E. Huang, W. C. Chou, J. Z. Hu, and J. H. Pei, Phys. Rev. B 58,16 (1998).
    [8] C. S. Yang, C. S. Ro, W. C. Chou, C. M. Lin, D. S. Chuu, J. Hu, E. Huang, and J. Xu, J. Appl. Phys. 85, 8092 (1999).
    [9] C. M. Lin and D. S. Chuu, Physica B 304, 221 (2001).
    [10] C. M. Lin and D. S. Chuu, J. Appl. Phys. 101,103535 (2007).
    [11] R. Gangadharan, V. Jayalakshmi, J. Kaliselvi, S. Mohan, R. Murugan, and B. Palanivel, J. Alloys Compd. 359,22 (2003).
    [12] M. S. Miao and W. R. L. Lambrecht, Phys. Rev. Lett. 94, 225501 (2005).
    [13] I. Hamdi, M. Aouissi, A. Qteish, and N. Meskini, Phys. Rev. B 73,174114 (2006).
    [14] M. Cote, O. Zakharov, A. Rubio, and M. L. Cohen, Phys. Rev. B 55,13025 (1997).
    [15] I. Gorczyca and N. E. Christensen, Phys. Rev. B 48, 17202 (1993).
    [16] J. E. Jaffe, R. Pandey, and M. J. Seel, Phys. Rev. B 47, 6299 (1993).
    [17] R. M. Martin, 'Electronic Structure: Basic Theory and practical methods', Cambridge University Press, 2004.
    [18] G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    [19] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [20] Y. Wang and J. P. Perdew, Phys. Rev. B 44,13298 (1991).
    [21] D. R. Yoder-Short, U. Debska, and J. K. Furdyna, J. Appl. Phys. 58,4056 (1985).
    [22] K. Sato and H. Katayama-Yoshida, Semicond. Sci. and Technol. 17, 367 (2002).
    [23] F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
    [24] M. S. Miao and W. R. L. Lambrecht, Phys. Rev. B 68, 092103 (2003).
    [25] J. Cai and N. X. Chen, Phys. Rev. B 75, 174116 (2007).
    [26] M. Catti, Phys. Rev. Lett. 87, 035504 (2001).
    [27] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, I. Miotkowski, A. K. Ramdas, and Ching-Hua Su, Phys. Rev. B 68, 033206 (2003).
    [1] H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).
    [2] D. S. Bethune, R. D. Johnson, J. R. Salem, M. S. de Vries, and C.S. Yannoni, Nature 366,123 (1993).
    [3] S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft, E. Hadju, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fisher, A. L. Balch, and H. C. Dora, Nature (London) 401, 55 (1999).
    [4] L. Dunsch, M. Krause, J. Noack, and P. Georgi, J. Phys. Chem. Solids 65, 309 (2004).
    [5] L. H. Gan and R. Yuan, ChemPhysChem 7, 1306 (2006).
    [6] S. F. Yang, M. Kalbac, A. Popov, and L. Dunsch, ChemPhysChem, 7, 1990 (2006).
    [7] S. Stevenson, J. P. Phillips, J. E. Reid, M. M. Olmstead, S. P. Rath, and A. L. Balch, Chem. Commun. 2814 (2004).
    [8] M. Krause and L. Dunsch, Angew. Chem. Int. Ed. 44,1557 (2005).
    [9] J. Lu, R. F. Sabirianov, W. N. Mei, Y. Gao, C. G. Duan, and X. C. Zeng, J. Phys. Chem. B 110,23637(2006).
    [10] M. Wolf, K. H. Muller, Y. Skourski, D. Eckert, P. Georgi, M. Krause, and L. Dunsch, Angew. Chem. Int. Ed. 44, 3306 (2005).
    [11] M. Wolf, K. H. Muller, D. Eckert, Y. Skourski, P. Georgi, R. Marczak, M. Krause, and L. Dunsch, J. Magn. Magn. Mat. 290/291, 290 (2005).
    [12] T. Zuo, C. M. Beavers, J. C. Duchamp, A. Campbell, H. C. Dora, M. M. Olmstead, and A. L. Balch, J. Am. Chem. Soc. 129, 2035 (2007).
    [13] S. F. Yang and L. Dunsch, J. Phys. Chem. B 109, 12320 (2005).
    [14] H. Shiozawa, H. Rauf, T. Pichler, D. Grimm, X. Liu, M. Knupfer, M. Kalbac, S. Yang, L. Dunsch, B. B (?) chner, and D. Batchelor, Phys. Rev. B 72,195409 (2005).
    [15] S. F .Yang and L. Dunsch, Chem. Eur. J. 12,413 (2006).
    [16] S. Yang, S. I. Troyanov, A. A. Popov, M. Krause, and L. Dunsch, J. Am. Chem. Soc. 128, 16733 (2006).
    [17] M. M. Olmstead, A. de Bettencourt-Dias, J. C. Dunchamp, S. Stevenson, H. C. Dorn, and A. L. Balch, J. Am. Chem. Soc. 122, 12220 (2000).
    [18] M. Krause, X. Liu, J. Wong, T. Pichler, M. Knupfer, and L. Dunsch, J. Phys. Chem. A 109,7088 (2005).
    [19] M. Krause, J. Wong, and L. Dunsch, Chem. Eur. J. 11, 706 (2005).
    [20] X. Liu, M. Krause, J. Wong, T. Pichler, L. Dunsch, and M. Knupfer, Phys. Rev. B 72, 085407 (2005).
    [21] S. Stevenson, H. M. Lee, M. M. Olmstead, C. Kozikowski, P. Stevenson, and A. L. Balch, Chem. Eur. J. 8,4528 (2002).
    [22] T. Cai, L. Xu, M. R. Anderson, Z. Ge, T. Zuo, X. Wang, M. M. Olmstead, A. L. Balch, H. W Gibson, and H. C. Dorn, J. Am. Chem. Soc. 128, 8581 (2006).
    [23] E. B. Iezzi, J. C. Duchamp, K. R. Flelcher, T. E. Glass, and H. C. Dorn, Nano Lett. 2, 1187(2002).
    [24] M. Krause, H. Kuzmany, P. Georgi, L. Dunsch, K. Vietze, and G. Seifert, J. Chem. Phys. 115,6596(2001).
    [25] K. Kobayashi, Y. Sano, and S. Nagase, J. Comput. Chem. 22, 1353 (2001).
    [26] L. Alvarez, T. Pichler, P. Georgi, T. Schwieger, H. Peisert, L. Dunsch, Z. Hu, M. Knupfer, J. Fink, P. Bressler, M. Mast, and M. S. Golden, Phys. Rev. B 66,035107 (2002).
    [27] J. M. Campanera, C. Bo, M. M. Olmstead, A. L. Balch, and J. M. Poblet, J. Phys. Chem. A 106, 12356 (2002).
    [28]J.C.Duchamp,A.Demortier,K.R.Fletcher,D.Dorn,E.B.Iezzi,T.Glass,and H.C.Dorn,Chem.Phys.Lett.375,655 (2003).
    [29]M.Krause and L.Dunsch,ChemPhysChem 5,1445 (2004).
    [30]Y.Iiduka,O.Ikenaga,A.Sakuraba,T.Wakahara,T.Tsuchiya,Y.Maeda,T.Nakahodo,T.Akasaka,M.Kako,N.Mizorogi,and S.Nagase,J.Am.Chem.Soc.127,9956 (2005).
    [31]G.Kresse and D.Joubert,Phys.Rev.B 59,1758 (1999).
    [32]P.E.Bl(o|¨)chl,Phys.Rev.B 50,17953 (1994).
    [33]Y.Wang and J.P.Perdew,Phys.Rev.B 44,13298 (1991).
    [34]A.I.Liechtenstein,V.I.Anisimov and J.Zaane,Phys.Rev.B 52,R5467 (1995).
    [35]N.E.Brese and M.O'Keeffe,Complexes,Clusters and Crystal Chemistry (Springer,Berlin,1992).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700