用户名: 密码: 验证码:
自旋电子学材料的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子力学告诉我们,电子具有电荷和自旋双重属性,但过去的研究主要关注了电子的电荷属性,发展了传统的半导体学,人们忽视了电子的自旋属性。近二十年来,人们越来越关注电子的自旋属性,发展了一门新兴的学科—半导体自旋电子学。与传统的半导体器件相比,自旋电子器件有体积小、能耗低、速度快等优点,并且能够发展集半导体性和铁磁性为一体的多功能电子器件,具有很大的潜在应用价值。稀磁半导体和半金属铁磁体是制备自旋电子器件的重要材料,是凝聚态物理和材料物理研究的一个热点。
     计算机模拟与人工实验相比,有费用少和时间少等诸多优点。随着量子力学和固体理论等学科的不断完善,以及计算机性能的飞速发展,借助材料模拟软件模拟预言新材料越来越成熟。本文主要利用基于密度泛函理论的材料模拟软件Wien2k和CASTEP,对金红石TiO2基稀磁半导体、碱土金属氮化物和碳化物、以及半金属铁磁体的表面和界面,进行了磁性和电子结构的计算。
     金红石TiO2基稀磁半导体的研究表明,金红石TiO2掺杂V和Cr都具有铁磁性,并且其居里温度可能在室温或以上;考虑强关联因素时,掺杂体系从半金属性转变到了半导体性;氧空位对金红石TiO2掺杂Cr的电子结构和磁性有很大影响。
     对于碱土金属氮化物,我们的计算发现食盐结构的氮化物MX (M=Ca, Sr, Ba; X=N, P, As)中只有CaN、SrN和BaN具有半金属铁磁性,而闪锌矿结构的MX都具有半金属铁磁性;对于碱土金属碳化物,我们预言到食盐结构的SrC和BaC是半金属铁磁体,或至少能分别以PbS和PbSe为衬底外延生长SrC和BaC半金属铁磁薄膜;我们也预言了外延生长闪锌矿结构的CaC、SrC和BaC半金属薄膜的可能性;另外,居里温度的计算表明,食盐结构的SrC和BaC以及闪锌矿结构的CaC、SrC和BaC的居里温度都远远超过了室温。这使这些半金属体系在自旋电子器件中更加实用。
     闪锌矿结构CaC的(110)、(001)和(111)表面的计算表明,只有(110)面和以C为端面的(111)面维持了半金属铁磁性,这为外延生长CaC半金属薄膜有一定的指导作用;对于CrTe/ZnTe(001)界面,我们发现以Cr和Te为顶面的界面都保持了CrTe块材时的半金属性,但顶面却失去了半金属性。
From the quantum mechanics, we know that the electron has charge and spin properties. Our previous studies mainly focused on the electronic properties of charge, and we developed the traditional semiconductor physics, but we ignored the electronic properties of spin. In the past twenty years, electronic spin has attracted more and more research interest, and a new field of semiconductor spintronics was formed. Compared to the traditional semiconductor devices, the spintronics devices have the advantages of smaller size, lower energy consumption, and quick working speed, and it can also produce new devices combining the electronic spin and charge, the potential application is very great. Diluted magnetic semiconductors and half-metallic ferromagnets are important materials used in spintronics devices, and it is a hot studying field in condensed matter physics and materials physics.
     Computational simulations have the advantage of lower cost and few time compared to artificial experiments. With the continuous improvement of quantum mechanics and solid state theory, and the rapid development of the capability of computers, predicting new functional materials with materials design codes becomes more and more powerful. In this thesis, using the materials design codes of Wien2k and CASTEP, we performed the studies of magnetism and electronic structure on the diluted magnetic semiconductors based on rutile Tio2, the alkaline-earth nitrides and carbides, and the surfaces and interfaces of half-metallic ferromagnets.
     The studies on diluted magnetic semiconductors based on rutile TiO2 indicate that both V- and Cr-doped rutile TiO2 behavior ferromagnetism, and the Curie temperatures are room-temperature or above it; There is a transition from a half-metal to a semiconductor when taking account of the Coulomb correlation interaction of 3d of Ti, V and Cr for these doping systems; in addition, the oxygen vacancy has large effect on the electronic structure and magnetism of Cr-doped rutile TiO2.
     For alkaline-earth nitrides, our calculations show that only CaN, SrN and BaN are half-metallic in all the rock-salt MX (M= Ca, Sr, Ba; X= N, P, As), but all the zinc-blende MX behavior half-metallic characteristic. For alkaline-earth carbides, we predict that rock-salt SrC and BaC are half-metallic ferromagnets, or at least the corresponding half-metallic ferromagnetic films can be grown on the semiconductor substrates of PbS and PbSe, respectively. We also predict the possibility of the epitaxial growth of zinc-blende CaC, SrC and BaC half-metallic films on appropriate semiconductor substrates; In addition, above room-temperature Curie temperatures are find for these alkaline-earth carbides, which makes them more promising candidates for the practical applications of spintronics devices.
     The calculations of the surfaces of zinc-blende CaC (110), (001) and (111) indicate that only the (110) surface and the C-terminate (111) surface maintain the half-metallic ferromagnetism as shown in bulk CaC, which is helpful for the epitaxial growth of zinc-blende CaC half-metallic ferromagnetic films; For the CrTe/ZnTe(001) interface, we find that both the Cr-terminate and Te-terminate CrTe/ZnTe(001) interfaces preserve the half-metallicity as shown in bulk zinc-blende CrTe, but the topmost surfaces lost the half-metallicity.
引文
[1] H. Ohno. Making Nonmagnetic Semiconductors Ferromagnetic. Science 281, 951 (1998)
    [2] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, et al. Spintronics: A Spin-Based Electronics Vision for the Future. Science 294, 1488 (2001)
    [3] I. Zutic, J. Fabian, S. D. Sarma. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).
    [4] C. Felser, G. H. Fecher, and B. Balke, Spintronics: A Challenge for Materials Science and Solid-State Chemistry. Angew. Chem. Int. Ed. 46, 668 (2007).
    [5] H. Ohno, F. Matsukura, Y. Ohno. Semiconductor Spin Electronics. JSAP International, 5, 4, (2002).
    [6] M. N. Baibich, J. M. Broto, A. Fert, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61, 2472 (1988).
    [7] G. Binasch, P. Grünberg, F. Saurenbach, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1988).
    [8] B. Dieny, V. S. Speriosu, S. S. Parkin, et al. Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297 (1991)
    [9] N.A. Gershenfeld, I.L. Chuang. Bulk Spin-Resonance Quantum Computation. Science 275, 350 (1997).
    [10] J.K. Furdyna, J. Kossut, DMSs, Semiconductor and Semimetals, vol. 25, Academic Press, New York, 1988.
    [11] H. Munekata, H. Ohno, S. von Molnar, et al. Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 63, 1849 (1989).
    [12] H. Ohno, H. Munekata, T. Penney, et al. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664 (1992).
    [13] H. Ohno, A. Shen, F. Matsukura, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363 (1996).
    [14] G.A. Medvedkin, T. Ishibashi, T. Nishi, et al. Room temperature ferromagnetism innovel diluted magnetic semiconductor Cd1-xMnxGeP2. Jpn. J. Appl. Phys., Part 2 39, L949 (2000).
    [15] S. Choi, G. -B. Cha, S. C. Hong, et al. Room-temperature ferromagnetism in chalcopyrite Mn-doped ZnSnAs2 single crystals. Solid State Commun. 122, 165 (2002).
    [16] P. Sharma, A. Gupta, K.V. Rao, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Na. Mater. 24, 673 (2003).
    [17] Y. Matsumoto, M. Murakami, T. Shono, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science 291, 854 (2001).
    [18] R. Q. Wu, G. W. Peng, L. Liu, et al. Ferromagnetism in Mg-doped AlN from ab initio study. Appl. Phys. Lett. 89, 142501 (2006).
    [19] H. Pan, J. B. Yi, L. Shen, et al. Room-Temperature Ferromagnetism in Carbon-Doped ZnO. Phys. Rev. Lett. 99, 127201 (2007).
    [20] H. Pan, Y.P. Feng, Q.Y. Wu, et al. Magnetic properties of carbon doped CdS: A first-principles and Monte Carlo study. Phys. Rev. B 77, 125211 (2008).
    [21] D. H. Kim, J. S. Yang, K. W. Lee, et al. Formation of Co nanoclusters in epitaxial Ti0.96Co0.04O2 thin films and their ferromagnetism. Appl. Phys. Lett. 81, 2141 (2002).
    [22] S. A. Chambers,a) T. Droubay, C. M. Wang, et al. Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257 (2003).
    [23] J.-Y. Kim, J.-H. Park, B.-G. Park, et al. Ferromagnetism Induced by Clustered Co in Co-Doped Anatase TiO2 Thin Films. Phys. Rev. Lett. 90, 017401 (2003).
    [24] P. A. Stampe, R. J. Kennedy, Y. xin, et al. Investigation of the cobalt distribution in the room temperature ferromagnet TiO2:Co. J. Appl. Phys. 93, 7864 (2003).
    [25] S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, et al. Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase. Appl. Phys. Lett. 79, 3467 (2001).
    [26] S. R. Shinde, S. B. Ogale, S. D. Sarma, et al. Ferromagnetism in laser deposited anatase Ti1àxCoxO2àd films. Phys. Rev. B 67, 115221 (2003).
    [27] A. Manivannan, G. Glaspell, M. S. Seehra. Controlled transformation of paramagnetism to room-temperature ferromagnetism in cobalt-doped titaniumdioxide, J. Appl. Phys. 94, 6994 (2003).
    [28] Z. Wang, J. Tang, Y. Chen, et al. Room-temperature ferromagnetism in manganese doped reduced rutile titanium dioxide thin films, J. Appl. Phys. 95, 7384 (2004).
    [29] H.-Q. Song, L.-M. Mei, S.-S. Yan, et al. Microstructure, ferromagnetism, and magnetic transport of Ti1?xCoxO2 amorphous magnetic semiconductor. J. Appl. Phys. 99, 123903 (2006).
    [30] M. S. Park, S. K. Kwon, B. I. Min. Electronic structures of doped anatase TiO2: Ti1-xMxO2 (M=Co, Mn, Fe, Ni). Phys. Rev. B 65, 161201(R) (2002).
    [31] H. Weng, X. Yang, J. Dong, et al. Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles. Phys. Rev. B 69, 125219 (2004).
    [32] L.A. Errico, M. Renteria, M. Weissmann. Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2?δ. Phys. Rev. B 72, 184425 (2006).
    [33] H. J. Zhu, M. Ramsteiner, H. Kostial, et al. Room-Temperature Spin Injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).
    [34] R. A. de Groot, F. M. Mueller, P. G. van Engen, et al. New Class of Materials: Half-Metallic Ferromagnets. Phys. Rev. Lett. 50, 2024 (1983).
    [35] B. R. K. Nanda, I. Dasgupta. Electronic structure and magnetism in half-Heusler compounds. J Phys.: Condens.Matter 15, 7307 (2003).
    [36] S. Picozzi, A. Continenza, A. J. Freeman. Co2MnX (XAn =Si, Ge, Sn) Heusler compounds: ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B 66, 094421 (2002).
    [37] I. Galanakis. Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B 71, 012413 (2005).
    [38] S. Wurmehl, G.H. Fecher, H.C. Kandra, et al. Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment. Appl. Phys. Lett. 88, 032503 (2006).
    [39] H. van Leuken and R. A. de Groot. Half-Metallic Antiferromagnets. Phys. Rev. Lett. 74, 1171 (1995).
    [40] S.P. Lewis, P.B. Allen, T. Sasaki. Band structure and transport properties of CrO2. Phys. Rev. B 55, 10253 (1997).
    [41] F.J. Jedema, A.T. Filip, B.J. van Wees. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature (London) 410, 345 (2001).
    [42] Y. Ji, G. J. Strijkers, F. Y. Yang, et al. Determination of the Spin Polarization of Half-Metallic CrO2 by Point Contact Andreev Reflection. Phys. Rev. Lett. 86, 5585 (2001).
    [43] Z. Szotek, W. M. Temmerman, A. Svane, et al. Electronic structure of half-metallic double perovskites. Phys. Rev. B 68, 104411 (2003).
    [44] P. K. de Boer, H. van Leuken, R. A. de Groot, et al. Electronic structure of La0.5Ca0.5MnO3. Solid State Commun. 102, 621 (1997).
    [45] R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, et al. Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science 282, 85 (1998).
    [46] J.-H.Park, E. Vescovo, H.-J. Kim. Direct evidence for a half-metallic ferromagnet. Nature 392, 794 (1998).
    [47] L. Kronik, M. Jain, J. R. Chelikowsky. Electronic structure and spin polarization of MnxGa1-xN. Phys. Rev. B 66, 041203(R) (2002).
    [48] J. Hong, R.Q. Wu. Magnetic ordering and x-ray magnetic circular dichroism of Co doped ZnO. J. Appl. Phys. 97, 063911 (2005).
    [49] S. Picozzi, T. Shishidou, A. J. Freeman, et al. First-principles prediction of half-metallic ferromagnetic semiconductors: V- and Cr-doped BeTe. Phys. Rev. B 67, 165203 (2003).
    [50] H. Akinaga, T. Manago, M. Shirai. Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy. Jpn. J. Appl. Phys. 39, L1118 (2000).
    [51] Y.-Q. Xu, B.-G. Liu, D.G. Pettifor. Half-metallic ferromagnetism of MnBi in the zinc-blende structure. Phys. Rev. B 66, 184435 (2002).
    [52] J.-C. Zheng, J. W. Davenport. Ferromagnetism and stability of half-metallic MnSb and MnBi in the strained Predictions from full potential and pseudopotential zinc-blende structure: calculations. Phys. Rev. B 69, 144415 (2004).
    [53] B.-G. Liu. Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B 67, 172411 (2003).
    [54] W.-H. Xie, Y.-Q. Xu, B.-G. Liu, et al. Half-Metallic Ferromagnetism and StructuralStability of Zincblende Phases of the Transition-Metal Chalcogenides. Phys. Rev. Lett. 91, 037204 (2003).
    [55] I. Galanakis, P. Mavropoulos. Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B 67, 104417 (2003).
    [56] J. E. Pask, L. H. Yang, C. Y. Fong, et al. Six low-strain zinc-blende half metals: An ab initio investigation. Phys. Rev. B 67, 224420 (2003).
    [57] S.J. Luo, K.L. Yao. Electronic structure of the organic half-metallic magnet 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4, 5-dihydro-1H-imidazol-1-oxyl 3-N-oxide. Rev. B 67, 214429 (2003).
    [58] W.E. Pickett, J.S. Moodera. Half Metallic Magnets. Phys. Today, 54, 39 (2001).
    [59]方俊鑫,陆栋主编.固体物理学.上海科学技术出版社,2002.
    [60]戴道生,钱昆明著.铁磁学,科学出版社,1987.
    [61]钟文定著.铁磁学.科学出版社,1992.
    [62]谢希德、陆栋主编,固体能带理论.复旦大学出版社,1998.
    [63]李正中著.固体理论.高等教育出版社,1985。
    [64] A. Nagy. Density functional theory and application to atoms and molecules. Physics Reports 298, 1 (1998).
    [65] P. Blaha, K. Schwartz, J. Luitz, WIEN2k, 2001, Wien2k, Vienna University of Technology, 2002, ISBN 3-9501031-1-2, improved and updated Unix version of the original copyrighted Wien-code, which was published by P. Blaha, K. Schwarz, P. Sorantin, et al. Comput. Phys. Commun. 59, 399 (1990).
    [66] M.D. Segall, P.J.D. Lindan, M.J. Probert, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 14, 2717 (2002).
    [67] G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).
    [68] M. Brandbyge, J.-L. Mozos, P. Ordejón, et al. Density-functional method for nonequilibrium electron transport Phys. Rev. B 65, 165401 (2002).
    [69] www.pwscf.org
    [70] V.P. Zhukov, M. Usuda, E.V. Chulkov, et al. Dielectric functions and quasi-particle lifetimes in Ag: full-potential LMTO and LAPW GW approaches Journal of ElectronSpectroscopy and Related Phenomena. 129, 127 (2003).
    [71] R.E. Cohen. Periodic slab LAPW computations for ferroelectric BaTiO3. J. Phys. Chem. Solids. 57, 1393 (1996).
    [72] U. Diebold. The surface science of titanium dioxide. Surface Science Reports. 48, 53 (2003).
    [73] S.-D. Mo, W.Y. Ching. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 51, 13023 (1995).
    [74] W. K. Park, R. J. Ortega-Hertogs, J.S. Moodera, et al. Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature. J. Appl. Phys. 91, 8093 (2002).
    [75] N.H. Hong, W. Prellier, J. Sakai, et al. Fe- and Ni-doped TiO2 thin films grown on LaAlO3 and SrTiO3 substrates by laser ablation. Appl. Phys. Lett. 84, 2850 (2004).
    [76] N.H. Hong, J. Sakai, W. Prellier. Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. TRev. B 70, 195204 (2004).
    [77] N.H. Hong, A. Ruyter, F. Gervais, et al. Magnetic structure of V:TiO2 and Cr:TiO2 thin films from magnetic force microscopy measurements. J. Appl. Phys. 97, 10D323 (2005).
    [78] K.J. Kim, Y.R. Park, G.Y. Ahn, et al. Ferromagnetic properties of anatase Ti1?xFexO2?δthin films. Appl. Phys. Lett. 99, 08M120 (2006).
    [79] H. Peng, J. Li, S.-S. Li, et al. First-principles study of the electronic structures and magnetic properties of 3d transition. metal-doped anatase TiO2. J. Phys.: Condens. Matter. 20, 125207 (2008).
    [80] S. Duhalde, M. F. Vignolo, and F. Golmar. Appearance of room-temperature ferromagnetism in Cu-doped TiO2?δfilms. Phys. Rev. B 72, 161313(R) (2005).
    [81] J. Chen, P. Rulis, L. Ouyang, et al. Vacancy-enhanced ferromagnetism in Fe-doped rutile TiO2. Phys. Rev. B 74, 235207 (2006).
    [82] H.J. Meng, D.L. Hou, L.Y. Jia, et al. Role of oxygen vacancies on ferromagnetism in Fe-doped TiO2 thin films. J. Appl. Phys. 102, 073905 (2007).
    [83] L. Sangaletti, M.C. Mozzati2, P. Galinetto. Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO2 single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu). J. Phys.: Condens. Matter. 18, 7643 (2006)
    [84] Z.M. Tian, S.L. Yuan, S.J. Yuan, et al. Effect of annealing conditions on the magnetism of Vanadium-doped TiO2 powders. Solid State Commun. (In press).
    [85] V. I. Anisimov, F. Aryasetiawan, A .I. Lichtenstein. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter. 9, 767 (1997).
    [86] K. Terakura, T. Oguchi, A. R. Williams, et al. Band theory of insulating transition-metal monoxides: Band-structure calculations. Phys. Rev. B 30, 4734 (1984).
    [87] V. Perebeinos, T. Vogt. Jahn-Teller transition in TiF3 investigated using density-functional theory. Phys. Rev. B 69, 115102 (2004).
    [88] A. Liebsch, H. Ishida, G. Bihlmayer. Coulomb correlations and orbital polarization in the metal-insulator transition of VO2. Phys. Rev. B 71, 085109 (2005).
    [89] R. W. Godby, M. Schlüter, L. J. Sham. Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B 36, 6497 (1987)
    [90] V.I. Anisimov, J. Zaanen, O.K. Andersen. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)
    [91] C.H. Chien, S.H. Chiou, G.Y. Guo, et al. Electronic structure and magnetic moments of 3d transition metal-doped ZnO. J. Magn. Magn. Mater. 282, 275 (2004).
    [92] N.H. Hong, A. Ruyter, W. Prellier, et al. Room temperature ferromagnetism in anatase Ti0.95Cr0.05O2 thin films: Clusters or not? Appl. Phys. Lett. 85, 6212 (2004).
    [93] M. Geshi, K. Kusakabe, H. Tsukamoto, et al. Zinc-blende CaP, CaAs and CaSb as half-metals: A new route to magnetism in calcium compounds. Preprint cond-mat/0402641
    [94] K. Kusakabe, M. Geshi, H. Tsukamoto, et al. New half-metallic materials with an alkaline earth element. J. Phys.: Condens. Matter. 16, S5369 (2004).
    [95] M. Geshi, K. Kusakabe, H. Tsukamoto, et al. A new ferromagnetic material excluding transition metals: CaAs in a distorted zinc-blende structure. ICPS-27 Proc. 772 (New York: AIP) p 327.
    [96] M. Sieberer, J. Redinger, S. Khmelevskyi, et al. Ferromagnetism in tetrahedrally coordinated compounds of I/II-V elements: Ab initio calculations. Phys. Rev. B 73,024404 (2006).
    [97] K.L. Yao, J.L. Jiang, Z.L. Liu, et al. First principle prediction of half-metallic ferromagnetism in zinc-blende MBi (M = Ca, Sr, Ba). Phys. Lett. A 359, 326 (2006).
    [98] O. Volnianska, P. Jakubas, P. Bogus?awski. Magnetism of CaAs, CaP, and CaN half-metals. J. Alloys Compounds. 423, 191 (2006).
    [99] E. Betranhandy, S. F. Matar. Ab initio investigation of the nitrofluoride SiNF. Phys. Rev. B 72, 205108 (2005).
    [100] A.L. Rosa, J. Neugebauer. First-principles calculations of the structural and electronic properties of clean GaN (0001) surfaces. Phys. Rev. B 73, 205346 (2006).
    [101] J. H. Zhao, F. Matsukura, K. Takamura, et al. Room-temperature ferromagnetism in zincblende CrSb grown by molecular-beam epitaxy. Appl. Phys. Lett. 79, 2776 (2001).
    [102] J. J. Deng, J. H. Zhao,a_ J. F. Bi, et al. Growth of thicker zinc-blende CrSb layers by using (In,Ga) As buffer layers. J. Appl. Phys. 99, 093902 (2006).
    [103] L. Kahal, A. Zaoui, M. Ferhat. Magnetic properties of CrSb: A first-principle study. J. Appl. Phys. 101, 093912 (2007).
    [104] M. Mizuguchi, H. Akinaga, T. Manago, et al. Epitaxial growth of zinc-blende CrAs/GaAs multilayer. J. Appl. Phys. 91, 7917 (2002).
    [105] M. Mizuguchi, H. Akinaga, T. Manago, et al. Epitaxial growth of zinc-blende CrAs/GaAs multilayer. J. Appl. Phys. 91, 7917 (2002).
    [106] CRC Handbook of Chemistry and Physics, edited by R. C. Weast (CRC,Boca Raton, FL, 1989), p. E-109.
    [107] A. R. Williams, J. Kubler, C. D. Gelatt. Cohesive properties of metallic compounds: Augmented-spherical-wave calculations. Phys. Rev. B 19, 6094 (1979).
    [108] L. M. Sandratskii, P. Bruno. Electronic structure, exchange interactions, and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As. Phys. Rev. B 67, 214402 (2003).
    [109] E. Sasioglu, L. M. Sandratskii, P. Bruno. Exchange interactions and temperature dependence of magnetization in half-metallic Heusler alloys. Phys. Rev. B 72, 184415 (2005).
    [110] E. Sasioglu, L. M. Sandratskii, P. Bruno. Above-room-temperature ferromagnetismin half-metallic Heusler compounds NiCrP, NiCrSe, NiCrTe, and NiVAs: A first-principles study. J. Appl. Phys. 98, 063523 (2005).
    [111] E. Sasioglu, I. Galanakis, L.M. Sandratskii. Stability of ferromagnetism in the half-metallic pnictides and similar compounds: a first-principles study. J. Phys.: Condens. Matter. 17, 3915 (2005).
    [112] CRC Handbook of Chemistry and Physics, edited by R. C. Weast (CRC,Boca Raton, FL, 1989), p. E-106-107.
    [113] W. Rieger, E. Parthe. Acta Crystallogr. 22, 919 (1967).
    [114] I. Galanakis. Surface properties of the half- and full-Heusler alloys. J. Phys.: Condens. Matter. 14, 6329 (2002).
    [115] I. Galanakis. Surface half-metallicity of CrAs in the zinc-blende structure. Phys. Rev. B 66, 012406 (2002).
    [116] G. Rahman, S. Cho, S.C. Hong. Magnetism of zinc blende CrP(0 0 1) surface. J. Magn. Magn. Mater. 310, 2192 (2007).
    [117] J. II. Lee, Y. Ryun, Y.-R. Jang. First-principles study on the half-metallicity of zinc-blende CrP(110) surface. Surf. Sci. 600, 1608 (2006).
    [118] Y. Ryun, J. II. Lee, Y.-R. Jang. First-principles study on half-metallicity at surface and interface of zinc-blende CrS/GaAs (001). J. Appl. Phys. 99, 08J101 (2006).
    [119] R.Q. Wu, L. Liu, G.W. Peng, et al. First principles study on the interface of CrSb/GaSb heterojunction. J. Appl. Phys. 99, 093703 (2006).
    [120] CRC Handbook of Chemistry and Physics, edited by R. C. Weast (CRC,Boca Raton, FL, 1989), p. E-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700