用户名: 密码: 验证码:
宽带雷达目标识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(ISAR)图像是目标在距离-多普勒平面上的投影,包含了目标的二维结构信息,基于ISAR图像的目标识别是宽带雷达自动目标识别领域的重要组成部分。极化是描述目标散射特性不可或缺的一部分,极化和宽带高分辨技术相结合是宽带雷达自动目标识别极具潜力的发展方向。因此,本论文围绕ISAR雷达目标识别和极化雷达目标识别这两个问题对干涉ISAR(InISAR)三维成像、干涉ISAR目标识别、多极化雷达高分辨一维距离像(HRRP)识别和基于极化散射矩阵(PSM)的极化雷达目标识别进行了分析和研究。本论文的主要内容概括如下:
     1.分析了干涉ISAR三维成像的原理,利用了目标体上强散射点处信噪比较高的特性,提出了一种新的基于特显点的干涉ISAR成像方法,该方法能有效地解决相位解缠绕问题和在低信噪比传统干涉ISAR成像方法无法正确成像的问题;并且对斜视情况下的干涉ISAR成像问题进行了研究。
     2.对干涉ISAR三维成像中的一些问题进行了分析和研究。第一个问题是干涉ISAR三维成像中的天线布阵方式和基线的设置,包括两种布阵方式、横向分辨率与基线的关系、基线去相关和最优基线;第二个问题是角闪烁,分析了角闪烁产生的机理、特征和解决办法;最后一个问题是超分辨算法在干涉ISAR成像中的应用,给出了两种经典的超分辨干涉ISAR成像方法。
     3.提出基于干涉ISAR像的雷达目标识别方法。给出了干涉ISAR图像的预处理方法,接着使用极化映射提取具有旋转不变性和尺度不变性的特征,最后设计三种分类器对目标进行识别。对影响干涉ISAR成像和识别的四个因素:俯仰角度、目标转速、天线孔径(也称基线)和目标与雷达的距离进行了分析,实验结果验证了理论上的分析。
     4.多极化HRRP包含了比单极化HRRP更多的目标结构特征信息,因此采用多分类器融合多极化信息可以提高雷达目标识别性能。提出了基于度量层的特征加权融合算法和基于决策层的加权投票融合算法,它们使用不同的准则对多极化HRRP进行融合分类,取得了较好的识别性能。
     5.将核方法引入多极化HRRP识别中,提出了两种基于多极化HRRP的核函数,将这两种核函数应用到核主分量分析(KPCA)中提取特征,进而使用分类器对目标进行识别。该方法可以在不丢失极化信息的情况下,将多极化HRRP作为一个整体进行识别,降低了识别算法的复杂度。
     6.针对基于PSM的目标识别中极化特征提取困难的问题,提出了基于核函数的识别方法。定义了两类基于PSM的核函数,将其应用到KPCA中提取特征,对目标进行识别,并取得了良好的识别效果。将提出的两类基于PSM的核函数应用到一种依赖数据的核函数优化中,得到优化的对数据自适应的核函数,提取KPCA特征作为分类器的输入,进而对目标进行分类识别。
Inverse synthetic aperture radar (ISAR) images represent the projection of the target onto the range-Doppler plane, which contain the informative 2-D target structure signatures. The target recognition using radar target ISAR images is an important field of the wideband radar automatic target recognition (RATR). Polarization is an indispensable component of the description of the target electromagnetic characteristic. Wideband polarization RATR has received more and more attentions. This dissertation provides our researches for ISAR and polarization target recognition. Interferometric ISAR (InISAR), InISAR target recognition, multi-polarized high resolution range profile (HRRP) target recognition and polarization scatter matrix (PSM) target recognition have been developed in this dissertation. Details are described as follows.
     1. The theory of InISAR is introduced briefly. Using the characteristic of the higher SNR at stronger pixels, a novel method of InISAR imaging based on the dominant scatterers is proposed. This method can deal with the low signal-to-noise ratio and phase wrapping in InISAR imaging. InISAR imaging in squint model is also researched.
     2. The issues of InISAR 3-D imaging are discussed. The first issue is about the antenna array and the baseline. Two kinds of the antenna array, the relationship of the azimuth resolution to baseline, the baseline decorrelation and the optimal baseline are presented. The second issue is angle glint. The theory and the suppression are analyzed. The applications of super-resolution in InISAR imaging is the last issue. Capon and Relax method are discussed and compared with FFT method.
     3. A method of the InISAR target recognition is proposed. The InISAR preprocessing is presented. The features are extracted from the polar image that is obtained from InISAR image by the polar mapping. The extracted features have invariance with respect to rotation and scale. The effects of the four important parameters (elevation, speed, baseline and range) on imaging and recognition are discussed, the results of four experiments prove the theory analysis.
     4. The multiple-polarized HRRP includes much more target information than single-polarized radar HRRP dose, so using multiple classifiers to combine multiple-polarized information can enhance the radar target recognition performance. Two methods of combining multiple classifiers are proposed, which are the weighted average algorithm and the weighted voting algorithm. Employing the two different combining rules can fuse and classify the multi-polarization radar HRRP. The good recognition performances are achieved.
     5. Aiming at the great quantity of multi-polarized HRRP, the complexity of the data distribution and the recognition algorithm, the methods based on kernel methods are proposed. Two kernel functions based on the multi-polarization HRRP are defined, then two kernel functions are employed to the kernel principal component analysis (KPCA) respectively. The multi-polarized radar HRRP can be recognized as a whole one in the proposed methods, so the complexity of the recognition algorithm is reduced.
     6. Aiming at the difficulty of the feature extraction from the polarization scatter matrix (PSM), the kernel methods based on PSM are proposed. Two kinds of kernel functions based on PSM are defined, and they are employed to KPCA respectively. The proposed methods achieve good recognition performance. The proposed two kinds of kernel functions based on PSM are employed to the kernel optimization. Using a data-dependent kernel, an optimized kernel is obtained by maximizing the kernel Fisher criterion. The KPCA features are used as the input of the classifier to classify the targets.
引文
[1]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社, 2005.
    [2]张澄波.综合孔径雷达.北京:科学出版社, 1989.
    [3]邢孟道.基于实测数据的雷达成像方法研究.博士研究生学位论文.西安电子科技大学. 2002
    [4] C.C. Chen, H.C. Andrews. Target Motion Induced Radar Imaging. IEEE Trans. on AES. 1980, Vol. 16(1), 2-14.
    [5] C.A.Wiley. Synthetic aperture radar. IEEE Trans. on AES, 1985, Vol. 21(3), 440-443.
    [6] W. G. Carrara, R. S. Goodman, R. M. Majewski. Spotlight synthetic aperture radar: signal processing algorithms. Boston: Artech House, 1995.
    [7]杜兰,刘宏伟,保铮.一种基于距离-多谱勒二维联合的群目标分辨方法.电子学报. 2004, Vol.32 (6), 881-885.
    [8]杜兰,保铮,邢孟道.直升机雷达回波的分析与检测.西安电子科技大学学报. 2003, Vol.30 (5), 574-579.
    [9] Moving and stationary target acquisition and recognition, Program technology review. Denver, CO. Nov. 1996. http://www.mbvlab.wpafb.af.mil/public/MBVDATA.
    [10]姜正林.低分辨ISAR成像及干涉技术应用研究.博士研究生学位论文.西安电子科技大学. 2001
    [11]姜正林,保铮.低分辨雷达成像定标算法性能分析.西安电子科技大学学报, 2000, Vol. 2(6), 677-681.
    [12]余志舜,朱兆达.逆合成孔径雷达横向距离定标.电子学报, 1997, Vol. 25(3), 45-48.
    [13]张群,马长征,张涛等.步进跟踪模式下的单脉冲雷达三维成像技术研究.电子与信息学报. 2001, Vol. 23(9), 912-918.
    [14]陈伯孝,张守宏,马长征.单脉冲三维成像及其在末制导弹雷达中的应用.雷达科学与技术. 2003, Vol. 1(4), 205-209.
    [15]马长征,张守宏.舰船目标单脉冲雷达三维成像技术.电子科学学刊. 2000, Vol. 22(3), 385-391.
    [16]李强.单脉冲雷达目标三维成像与识别研究.博士研究生学位论文.西安电子科技大学.2007
    [17]马长征.雷达目标三维成像技术研究.博士研究生学位论文.西安电子科技大学. 1999。
    [18]张群,马长征,张涛等.干涉式逆合成孔径雷达三维成像技术研究.电子与信息学报, 2001, Vol. 23(9), 890-898.
    [19] G. Y. Wang , X. G. Xia , V. C. Chen . Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers. IEEE Trans. on Image Processing, 2001, Vol. 10(3), 436-447.
    [20] Q. Zhang, T. S. Yeo. Three-Dimensional SAR Imaging of a Ground Moving Target Using the InISAR Technique. IEEE Trans. on Geoscience and RemoteSensing, 2004, Vol. 42(9), 1818-1828.
    [21] J. Fortuny, A. J. Sieber. Three-Dimensional Synthetic Aperture Radar Imaging of a Fir Tree: First Results. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(2), 1006-1014.
    [22] Q. Zhang, T. S. Yeo. Novel Registration Technique for InISAR and InSAR. Proc. IEEE, 2003, 206-208.
    [23]肖志河,戴朝明,巢增明等.旋转目标干涉逆合成孔径三维成像技术.电子学报, 1999, Vol. 27(12), 19-22.
    [24]李丽亚,刘宏伟,纠博,吴顺君.斜视干涉逆合成孔径雷达成像算法.西安交通大学学报, 2008, Vol. 42 (10), 1290-1294
    [25]李丽亚,刘宏伟,纠博,吴顺君.基于多特显点的干涉ISAR横向定标技术.系统工程与电子技术, 2008, Vol. 30 (9), 62-65.
    [26] G. Sinclair. The tranimission and reception of elliptically polarized waves. Proc. IRE, 1950, Feb., Vol. 38, 148-151.
    [27] J. R. Huynen. Phenomenological theory of radar targets. Ph. D. dissertation, Techniacal Univ., Delft, The Netherlands, 1970
    [28] B. K. Aleander, W. M. Borner. On Foundations of Radar Polarimetry. IEEE Trans. AP, 1986, Vol. 34(12), 1395-1404.
    [29] Harold Mott著,林昌禄等译.天线和雷达中的极化,成都:电子科技大学出版社, 1989.
    [30]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社, 1999.
    [31]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社, 2005.
    [32]叶炜,保铮.逆合成孔径雷达自聚焦的新方法-局域特显点综合法.中国科学(E辑), 1997, Vol. 27(5), 424-429.
    [33] W. Ye, T. S. Yeo, Z.Bao. Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol.37, No.5-2, 2487-2494.
    [34] Z. Bao, C. Y. Sun, M. D. Xing. Time-Frequency Approaches to ISAR Imaging of Maneuvering Targets and Their Limitations. IEEE Trans. on Aerospace andElectronic Systems, 2001, Jul., Vol.(3),1091-1099.
    [35] Z. Bao, G. Y. Wang, L. Luo. Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets. Optical Engineering, 1998, May, Vol.37(5).
    [36] L. C.Graham. Synthetic Interferometer Radar for Topographic Mapping. Proc. of IEEE, 1974, June, vol. 62(6), 763-768.
    [37] R. M. Goldstein, H. A. Zebker, and C. L. Werner. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping. Radio Science, 1988, July-August, vol. 23(4), 713-720.
    [38] A. K. Gabriel, R. M. Goldstein. Crossed Orbit Interferometry: Theory and Experimental Results From SIR-B. Int. J. Remote Sensing, 1988, vol. 9(5), 857-872.
    [39] F. K. Li, R.M. Goldstein. Studies of Multibaseline Spaceborme Interferometric Synthetic Aperture Radars. IEEE Trans. on GRS, 1990, Jan., vol. 28(1), 88-97.
    [40]穆冬.干涉合成孔径雷达成像技术研究.南京航空航天大学博士学位论文,2001.
    [41] G. Fornaro, G. Franceschetti, R. Lanari. Interferometric SAR Phase Unwrapping Using Green's Formulation. IEEE Trans. on Geoscience and Remote Sensing, 1996, Vol. 34(3), 720-727.
    [42] M. Costantini, A. Farina, F. Zirilli. A Fast Phase Unwrapping Algorithm for SAR Interferometry. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(1), 452-460.
    [43] G. W. Davidson, R. Bamler. Multiresolution Phase Unwrapping for SAR Interferometry. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(1), 163-174.
    [44] C. W. Chen, H. A. Zebker. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized. IEEE Trans. on Geoscience and Remote Sensing, 2002, Vol. 40(8), 1709-1809.
    [45] S. Musman, D. Kerr, C. Bachmann. Automatic recognition of ISAR ship images. IEEE Trans. Aerospace Electron. Syst., 1996, vol. 32(4), 1392–1404.
    [46] K. Rosenbach, J. Schiller. Construction and Test of a Classifier forNon-Cooperative Air-Target Identification based on 2-D-ISAR Images. Proceedings of IRS'98 International Radar Symposium. Sep. 1998. 1023-1033.
    [47] A. Maki et al. ISAR Image Analysis by Subspace Method: Automatic Extraction and Identification of Ship Profile. IEEE Radar 2001, 523-528.
    [48] A. Maki et al. Automatic Ship Identification in ISAR Imagery: An On-line System using CMSM. IEEE Radar 2002, 206-211.
    [49] K. Yamamoto, M. Iwamoto, T. Kirimoto. A New Algorithm to Calculate the Reference Image of Ship Targets for ATR Using ISAR. MTS, 2601-2607
    [50] K. T. Kim, D. K. Seo, H. T. Kim. Efficient classification of ISAR images. IEEE Trans. on antennas and propagation, 2005, Vol. 53(5), 1611-1621.
    [51] S. H. Bickel. Some Invariant Properties of the Polarization Scattering Matrix. Proc. of IEEE, 1965, Vol. 53(8), 1070-1072.
    [52] O.Lowenschuss. Scattering matrix application. Proc. of IEEE, 1965(8), 988-992.
    [53] F. Kuhl, R.Covell. Object identification by multiple observation of the scattering matrix. Proc. IEEE, 1110-1115.
    [54]肖顺平,庄钊文,王雪松.基于多维极化特征空间的雷达目标识别.现代雷达, 1995, Vol. 17(4), 1-8.
    [55]肖顺平,郭桂蓉,王雪松.基于极化频率稳定度的目标识别.现代雷达, 1995, Vol. 17(5), 1-7.
    [56]肖顺平,郭桂蓉,庄钊文,王雪松.基于含参最小二乘估计曲线拟合的极化雷达目标识别方法.电子学报, 1997, Vol. 25(3), 32-36.
    [57] E. M. Kennaugh. Polarization properties of radar reflections. Dept of Elec Eng Ohio State Univ., Columbus, OH, ZRADC Cont., No. AF28(099)-90, project Rept. 389-12(AD2494), March 1952
    [58] J. R. Huynen. A new approach to radar cross-section measurements. IRE Internal Conv., Rec.,Pt. 5 1962
    [59]肖顺平,郭桂蓉,王雪松.非对称极化散射矩阵的目标识别方法研究.系统工程与电子技术, 1996, Vol. 18(8), 24-33.
    [60]肖顺平,郭桂蓉,庄钊文,王雪松.基于本征极化的飞机目标识别.国防科技大学学报, 1995, Vol. 17(4), 43-50.
    [61]肖顺平,庄钊文,王雪松.基于极化不变量的飞机目标识别.红外与毫米波学报, 1996, Vol. 15(4), 439-444.
    [62]肖顺平,庄钊文,王雪松,郭桂蓉.目标动态极化结构特征提取识别.电子学报, 1998, Vol. 26(3), 48-52.
    [63] J. L. Eaves, E. K. Reedy编.现代雷达原理.卓荣邦,杨士毅等译.北京:电子工业出版社, 1991.
    [64] L. A. Morgan. A feasibility study of RCS matrix signature for target classification. RADC Rep. RADC-TR 8050, 1980.
    [65] E. M. Kennaugh. Polarization dependence of RCS-A geometrical interpretation. IEEE Trans. AP, 1981, Vol. 29(2), 412-413.
    [66] W. L. Cameron, et al. Feature motivated polarization scattering matrix decomposition. Proc. IEEE Int. Radar Conf., Arlington, VA, 1990, 549-557.
    [67] S. R. Cloude, E. Pottier. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans on GRS, 1996, Vol. 34(2), 498-518.
    [68] E. Krogager. Decomposition of the Radar Target Scattering Matrix with Application to High Resolution Target Imaging. Nat. Telesystems Conf., Atlanta, 1991, 77-82.
    [69] F. Xu, Y. Q. Jin. Deroientation Theory of Polarimetric Scattering Target and Application to Terrain Surface Classification. IEEE Trans. on GRS, 2005, Vol. 43(10), 2351-2364.
    [70]李盾等.基于极化分解的目标识别方法研究.国防科技大学学报, 1999, Vol. 21(6), 44-47.
    [71]李莹,任勇,山秀明.基于目标分解的极化雷达飞机识别法.清华大学学报, 2001, Vol. 41(7), 32-35.
    [72]肖怀铁,郭雷,付强,等.宽带多极化雷达目标模糊匹配识别方法.系统工程与电子技术, 2005, Vol. 27(5), 770-773.
    [73]何松华,肖怀铁,孙文峰,等.高距离分辨率极化雷达目标匹配识别研究.电子学报, 1999, Vol. 27(3), 110-112.
    [74] H. J. Li, R. Y. Lane. Utilization of multiple polarization data for aerospace target identification. IEEE Trans. on Antennas and Propagation, 1995, Vol. 43(12),1436-1440.
    [75]曹向海,刘宏伟,吴顺君.多极化多特征融合的雷达目标识别研究.系统工程与电子技术, 2008, Vol. 30(2), 261-264.
    [1]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社, 2005.
    [2]张澄波.综合孔径雷达.北京:科学出版社, 1989
    [3] C. C. Chen, H. C. Andrews. Target Motion Induced Radar Imaging. IEEE Trans. on AES, 1980, January, Vol. 16(1), 2-14.
    [4]姜正林,保铮.低分辨雷达成像定标算法性能分析.西安电子科技大学学报, 2000, Vol. 2(6), 677-681.
    [5]余志舜,朱兆达.逆合成孔径雷达横向距离定标.电子学报, 1997, Vol. 25(3), 45-48.
    [6]马长征.雷达目标三维成像技术研究.博士研究生学位论文.西安电子科技大学. 1999。
    [7]姜正林.低分辨ISAR成像及干涉技术应用研究.博士研究生学位论文.西安电子科技大学. 2001
    [8]张群.干涉式目标三维成像及其三维运动补偿技术.博士研究生学位论文.西安电子科技大学. 2001
    [9]张群,马长征,张涛等.步进跟踪模式下的单脉冲雷达三维成像技术研究.电子与信息学报, 2001, Vol. 23(9), 912-918.
    [10]陈伯孝,张守宏,马长征.单脉冲三维成像及其在末制导弹雷达中的应用.雷达科学与技术, 2003, Vol. 1(4), 205-209.
    [11]马长征,张守宏.舰船目标单脉冲雷达三维成像技术.电子科学学刊, 2000, Vol. 22(3), 385-391.
    [12]张群,马长征,张涛等.干涉式逆合成孔径雷达三维成像技术研究.电子与信息学报, 2001, Vol. 23(9), 890-898.
    [13] G. Y. Wang, X. G. Xia, V. C. Chen. Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers. IEEE Trans. on Image Processing, 2001, Vol. 10(3), 436-447.
    [14] Q. Zhang, T. S. Yeo. Three-Dimensional SAR Imaging of a Ground Moving Target Using the InISAR Technique. IEEE Trans. on Geoscience and Remote Sensing, 2004, Vol. 42(9), 1818-1828.
    [15] J. Fortuny, A. J. Sieber. Three-Dimensional Synthetic Aperture Radar Imaging of a Fir Tree: First Results. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(2), 1006-1014.
    [16] Q. Zhang, T. S. Yeo. Novel Registration Technique for InISAR and InSAR. Proc. IEEE, 2003, 206-208.
    [17]肖志河,戴朝明,巢增明等.旋转目标干涉逆合成孔径三维成像技术.电子学报, 1999, Vol. 27(12), 19-22.
    [18]王毛路,李少洪.步进频率单脉冲二维成像仿真及用于识别的研究.航空学报, 2001, Vol. 22(sup), S112-114.
    [19]李丽亚,刘宏伟,纠博,吴顺君.斜视干涉逆合成孔径雷达成像算法.西安交通大学学报, 2008, 42 (10), 1290-1294
    [20]李丽亚,刘宏伟,纠博,吴顺君.基于多特显点的干涉ISAR横向定标技术.系统工程与电子技术, 2008, Vol. 30 (9), 62-65.
    [21] L. C. Graham. Synthetic Interferometer Radar for Topographic Mapping. Proc. of IEEE, 1974, June, vol. 62(6), 763-768.
    [22] R. M. Goldstein, H. A. Zebker, C. L. Werner. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping. Radio Science, 1988, July-August, vol. 23(4), 713-720.
    [23] A. K. Gabriel, R. M. Goldstein. Crossed Orbit Interferometry: Theory and Experimental Results from SIR-B. Int. J. Remote Sensing, 1988, vol. 9(5),857-872.
    [24] F. K. Li, R.M. Goldstein. Studies of Multibaseline Spaceborme Interferometric Synthetic Aperture Radars. IEEE Trans. on GRS, 1990, Jan., vol. 28(1), 88-97.
    [25]穆冬.干涉合成孔径雷达成像技术研究.南京航空航天大学博士学位论文, 2001.
    [26]张群.干涉式逆合成孔径雷达三维成像的角闪烁抑制.西安电子科技大学学报, 2000, Vol. 27(增刊) , 30-34.
    [27]罗斌凤,张群,袁涛等. InISAR三维成像中的ISAR像失配准分析及其补偿方法.西安电子科技大学学报, 2003, Vol. 30(6), 739-743.
    [28] Q. Zhang, T. S. Yeo, G. Du, et al. Estimation of Three-Dimensional Motion Parameters in Interferometric ISAR Imaging. IEEE Trans. on Geoscience and Remote Sensing, 2004, Vol. 42(2), 292-300.
    [29]李强,张守宏,张焕颖等.基于差波束逆合成孔径雷达成像的角运动参数估计方法.西安交通大学学报, 2006, Vol. 40(12),1414-1418.
    [30] G. Fornaro, G. Franceschetti, R. Lanari. Interferometric SAR Phase Unwrapping Using Green's Formulation. IEEE Trans. on Geoscience and Remote Sensing, 1996, Vol. 34(3), 720-727.
    [31] M. Costantini, A. Farina, F. Zirilli. A Fast Phase Unwrapping Algorithm for SAR Interferometry. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(1), 452-460.
    [32] G. W. Davidson, R. Bamler. Multiresolution Phase Unwrapping for SAR Interferometry. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(1), 163-174.
    [33] C. W. Chen, H. A. Zebker. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized. IEEE Trans. on Geoscience and Remote Sensing, 2002, Vol. 40(8), 1709-1809.
    [34]叶炜,保铮.逆合成孔径雷达自聚焦的新方法-局域特显点综合法.中国科学(E辑), 1997, Vol. 27(5), 424-429.
    [35] B. D. Steinberg. Microwave Imaging of Aircraft. Proc.IEEE, 1988, Dec., Vol. 76(12), 1578-1592.
    [36] W. Ye, T. S.Yeo, Z. Bao. Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus. IEEE Trans. on Geoscience and Remote Sensing, Vol.37, No.5-2, 2487-2494.
    [37] D. E. Wahl, P. H. Eichel, D.C.Ghigtia, C.V.Jakowatz. Phase Gradient Autofocus-Robust Tool for High Resolution SAR Phase Correction. IEEE Trans. on AES, July, 1994, Vol. 30(3), 827-835.
    [38] M. T. Heath.科学计算导论.第2版.北京:清华大学出版社, 2001,105-113.
    [39] R. C.Gonzalez, R E.Woods. Digital Image Processing. Second Edition, New York: Prentice-Hall, 2003, 672-675.
    [1] G. Y. Wang, X. G. Xia, V. C. Chen. Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers. IEEE Trans. on Image Processing, 2001, Vol. 10(3), 436-447.
    [2] Q. Zhang, T. S. Yeo. Three-Dimensional SAR Imaging of a Ground Moving Target Using the InISAR Technique. IEEE Trans. on Geoscience and Remote Sensing, 2004, Vol. 42(9), 1818-1828.
    [3]马长征,张守宏.匀加速旋转目标ISAR成像的横向分辨率.西安电子科技大学学报, 1999, Vol. 26(3), 254-256.
    [4] R. M. Goldstein, H. A. Zebker, C. L. Werner. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping. Radio Science, 1988, July-August, vol. 23(4), 713-720.
    [5] A. K. Gabriel, R. M. Goldstein. Crossed Orbit Interferometry: Theory and Experimental Results From SIR-B. Int. J. Remote Sensing, 1988, vol. 9(5), 857-872.
    [6] F. K. Li, R. M. Goldstein. Studies of Multibaseline Spaceborme Interferometric Synthetic Aperture Radars. IEEE Trans. on GRS, 1990, Jan., vol. 28(1), 88-97.
    [7]穆冬.干涉合成孔径雷达成像技术研究.博士研究生学位论文,南京航空航天大学, 2001
    [8] H. A. Zebker, J. Villasenor. Decorrelation in Interferometric Radar Echoes, IEEE Trans. on GRS, 1992, Vol. 30(5), 950-959.
    [9] J. Gatelli, A. M. Guarnieri, et al. The Wavenumber Shift in SAR Interferometry. IEEE Trans. on GRS, 1994, July, vol. 32(4), 855-865.
    [10]张秋玲,冯宏川,王岩飞.分布式卫星INSAR的相关性分析.数据采集与处理, 2005, Vol. 20(1), 70-74.
    [11]徐华平,周荫清,李春升.星载干涉SAR中的基线问题.电子学报, 2003, Vol. 31(3), 437-439.
    [12]李真芳,黄源宝,保铮等.利用分布式InSAR进行地形高程测量性能分析.系统工程与电子技术, 2003, Vol. 25(6), 697-700.
    [13]胡庆东,毛士艺,洪文.干涉合成孔径雷达系统的最优基线.系电子学报, 1999, Vol. 27(5), 93-95.
    [14]陈杰,周荫清,李春升.分布式星载干涉SAR基线设计与性能分析.电子学报, 2004, Vol. 32(12), 1974-1977.
    [15]穆冬,朱力,倪晋麟.干涉SAR的基线干损核极限基线分析.现代雷达, 2003, Vol. 7,4-6.
    [16]张群.干涉式逆合成孔径雷达三维成像的角闪烁抑制.西安电子科技大学学报, 2000, Vol. 27(增刊), 30-34.
    [17]张涛,张群,马长征等.基于高分辨距离像的角闪烁抑制方法.西安电子科技大学学报, 2001, Vol. 28(3), 296-300.
    [18] J. Li, P. Stoica. An Adaptive Filtering Approach to spectral Estimation and SAR Imaging. IEEE Trans.SP, 1996, Vol. 44(6), 1469-1484.
    [19] J. Li, P. Stoica. Efficient Mixed-Spectrum Estimation with Applications to Target Feature Extraction. IEEE Trans.SP, 1996, Vol. 44(2), 281-295.
    [20] Z. Q. Bi, J. li, Z. S. Liu. Super Resolution SAR Imaging via Parametric Spectral Estimation Methods. IEEE Trans.AES, 1999, Vol. 35(1), 267-281.
    [21] R. B. Wu, J. Li, Z. S. Liu. Super Resolution Time Delay Estimation via MODE-WRELAX. IEEE Trans AES, 1999, Vol. 35(1), 294-307.
    [22] G. Thomas, S. D. Cabrera. Signal separation and synthesis from modified superresolution short-time Fourier transforms. SPIE, 1995, Vol.2562, 76-87.
    [23] T. J. Abatzoglou. Superresolution signal processing and its application. SPIE, 1995, Vol.2562, 88-98.
    [24] I. J. Gupta. High-resolution Radar Imaging Using 2-D Linear Prediction. IEEE Trans. Antennas and Propagation, 1994, Vol. 42(1), 31-37.
    [25] Y. B. Hua. High resolution imaging of continuously moving target using stepped frequency radar. Signal Processing, 1994, Vol. 35(1), 33-40.
    [26] M. D. Sacchi, T. J. Ulrych, C. J. Walker. Interpolation and Extrapolation Using a High-Resolution Discrete Fourier Transform. IEEE Trans. Signal Processing, 1998, Vol. 46(1), 31-38.
    [27] S. R. DeGraff. SAR Imaging via Modern 2-D Spectral Estimation Methods.IEEE Trans. Image Processing, 1998, Vol. 7(5), 729-761.
    [28]马长征,张守宏.超分辨在单脉冲三维成像中的应用.西安电子科技大学学报, 1999, Vol. 26(3), 379-382.
    [29]张群,马长征,张守宏.机动目标三维成像中调频信号超分辨方法.应用科学学报, 2000, Vol. 18(2), 114-116.
    [1]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社,北京, 2005.
    [2] S. Musman, D. Kerr, C. Bachmann. Automatic Recognition of ISAR Ship Images. IEEE Trans. AES. 1996, Vol. 32(4). 1392-1403.
    [3] K. Rosenbach, J. Schiller. Construction and Test of a Classifier for Non-Cooperative Air-Target Identification based on 2-D-ISAR Images. Proceedings of IRS'98 International Radar Symposium, 1998, Sep., 1023-1033.
    [4] A. Maki, et al. ISAR Image Analysis by Subspace Method: Automatic Extraction and Identification of Ship Profile. IEEE Radar 2001, 523-528.
    [5] A. Maki, et al. Automatic Ship Identification in ISAR Imagery: An On-line System using CMSM. IEEE Radar 2002, 206-211.
    [6]李丽亚,刘宏伟,纠博,吴顺君.基于多特显点的干涉ISAR横向定标技术.系统工程与电子技术, 2008, Vol. 30 (9), 62-65.
    [7]马长征.雷达目标三维成像技术研究.博士研究生学位论文.西安电子科技大学, 1999.
    [8] R. C. Gonzalez, R E. Woods. Digital Image Processing. Second Edition. New York: Prentice-Hall, 2003, 672-675.
    [9]边肇祺,张学工等.模式识别.第2版,北京,清华大学出版社, 2000.
    [10] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification, Second Edition, John Wiley & Sons, 2001.
    [11] C. M. Pun, M. C. Lee. Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans. Pattern Anal. Mach. Intell., 2003, Vol. 25(5), 590–603.
    [12] K. T. Kim, D. K. Seo, H. T. Kim. Efficient classification of ISAR images. IEEE Trans. on Antennas and Propagation, 2005, Vol. 53(5), 1611-1621.
    [13] J. You, H. A. Cohen. Classification and segmentation of rotated and scaled textured images using texture tuned masks. Pattern Recognition, 1993, vol. 26, 245–258.
    [14] F. S. Cohen, Z. Fan, M. A. Patel. Classification of rotated and scaled textured images using Gaussian Markov random field model. IEEE Trans. Pattern Anal. Mach. Intell., 1991, Vol. 13(2), 192–202.
    [15] R. L. Kashyap and A. Khotanzad. A model-based method for rotation invariant texture classification. IEEE Trans. Pattern Anal. Mach. Intell., 1986, Vol. 8(7), 472–481.
    [16] Liya Li, Weiming Yuan, Hongwei Liu, et al. Radar automatic target recognition based on InISAR images, Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on 5-9 Nov. 2007 Page(s), 497- 502.
    [17]李丽亚,刘宏伟,曹向海,吴顺君.基于InISAR像的目标识别方法.电子信息学报, 2009, Vol.30 (9), 2089-2093.
    [1]廖学军.基于高分辨距离像的雷达目标识别.博士研究生学位论文.西安电子科技大学, 1999.
    [2]裴炳南.高分辨雷达自动目标识别方法研究.博士研究生学位论文.西安电子科技大学, 2002.
    [3]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学, 2007.
    [4]袁莉.基于高分辨距离像的雷达目标识别方法研究.博士研究生学位论文.西安电子科技大学, 2007.
    [5]刘宏伟,杜兰,袁莉,保铮.雷达高分辨距离像目标识别研究进展.电子与信息学报. 2005, Vol. 27(8), 1328-1334.
    [6] S. P. Jacobs. Automatic target recognition using high-resolution radar range profiles. Ph. D. Dissertation. Washington University. 1999.
    [7] L. Du, H. W. Liu, Z. Bao, M. D. Xing. Radar HRRP target recognition based on higher order spectra. IEEE transactions on Signal Processing, 2005, Vol. 53(7), 2359-2368.
    [8] L. Du, H. W. Liu, Z. Bao, J.Y. Zhang. A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Trans. on Signal Processing. 2006, Vol.54 (6), 2226-2238.
    [9]肖怀铁,郭雷,付强,等.宽带多极化雷达目标模糊匹配识别方法.系统工程与电子技术, 2005, Vol. 27(5), 770-773.
    [10]何松华,肖怀铁,孙文峰,等.高距离分辨率极化雷达目标匹配识别研究.电子学报, 1999, Vol. 27(3), 110-112.
    [11] H. J. Li, R. Y. Lane. Utilization of multiple polarization data for aerospace target identification. IEEE Trans. on Antennas and Propagation, 1995, Vol. 43(12), 1436-1440.
    [12]曹向海,刘宏伟,吴顺君.多极化多特征融合的雷达目标识别研究.系统工程与电子技术, 2008, Vol. 30(2), 261-264.
    [13] L. Xu, A. Krzyzak, Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. on Systems, Man, and Cybernetics, 1992, Vol. 22(3), 418-435.
    [14] G. Fumera, F. Roli. A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, Vol. 27(6), 942-955.
    [15] S. Prasad, L. M. Bruce. Decision fusion with confidence-based weight assignment for hyperspectral target recognition. IEEE Trans. on Geoscience and Remote Sensing, 2008, Vol. 46(6), 1448-1455.
    [16] J. Sun, H. Li. Listed companies’financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 2008, Vol. 35(3), 818-827.
    [17]陈渤.基于核方法的雷达高分辨距离像目标识别技术研究.博士研究生学位论文.西安电子科技大学, 2008.
    [18] John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge Univerisity Press, 2004.
    [19] B. Sch?lkopf, S. Mika, C. J. C. Burges, et al. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Networks, 1999, Vol. 10, 1000-1017.
    [20] V. Roth, V. Steinhage. Nonlinear discriminant analysis using kernel functions, in Advances in Neural Information Precessing Systems 12, S.A. Solla, T.K. Leen, and K.-R. Muller, Eds. 2000, 568-574, MIT Press.
    [21] G. Baudat, F. Anouar. Generalized discriminant analysis using a kernel approach, Neural Computation, 2000, Vol.12 (10), 2385-2404.
    [22] N. Cristianini, J. Kandola, A. Elisseeff, J. Shawe-Taylor. On kernel target alignment, in: Advances in Neural Information Processing Systems (NIPS’01), MIT Press, Cambridge, MA, 2001, 367-373.
    [23] G. Lanckriet, N. Cristianini, P. Bartlett, et al. Learning the kernel matrix with semidefinte programming, J. Mach. Learn. Res., 2004, Vol. 5, 27-72.
    [24] O. Bousquet, D. Herrmann. On the complexity of learning the kernel matrix, in: Advances in Neural Information Processing Systems (NIPS’03), MIT Press, Cambridge, MA, 2003.
    [25] T. Hertz, A. B. Hillel, D. Weinshall. Learning a kernel function for classification with small training samples, in: Proceedings of the International Conference on Machine Learning, Pittsburgh, PA, USA, 2005.
    [26] B. Chen, H.W. Liu, Z. Bao. Kernel Subclass Discriminant Analysis. Neurocomputing, 2007, Vol. 71, 455-458.
    [27] B. Chen, H. W. Liu, Z. Bao. Large Margin Feature Weighting via Linear Programming. IEEE Transactions on Knowledge and Data Engineering. In revision.
    [28] H. W. Liu, Z. Bao, Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel, LNCS 3174 (I), 2004, 531-535.
    [29]陈渤,刘宏伟,保铮.一种融合核优化算法.西安电子科技大学学报, 2007, Vol. 34(4), 509-513.
    [30]马建华,刘宏伟,保铮.利用核匹配追踪算法进行雷达高分辨距离像识别.西安电子科技大学学报, 2005, 32(1), 84-88.
    [31] E. Radoi, B. Hoeltzener, F. Pellen. Improving the Radar Target Classification Results by Decision Fusion. Proc. IEEE 2003, 162-165.
    [32] A. Zywechm, R. E. Bogner. Coherent averaging of range profiles. Proceedings of IEEE International Radar Conference, 1995, 456-461.
    [33] R. A. Mitchell, R. Dewall. Overview of high range resolution radar target identification. In Proceedings of Automatic Target Recognition Working Group, 1994.
    [34] R. Williams, J. Westerkamp, et al, Automatic target recognition of time critical moving targets using 1D high range resolution (HRR) radar. IEEE AES Magazine, 2000, April, 37-43.
    [35] P. Bharadwaj, P. Runkle, L. Carin, et al, Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits. IEEE Trans. AES, 2001, Vol. 37(2), 595-606.
    [36] M. Tipping, C. M. Bishop. Probabilistic Principal Component Analysis, J. Royal Statistical Soc. B, 1999, Vol. 21(3), 611-622.
    [37] B. Sch?lkopf, C. J. C. Burges, A. J. Smola. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, Vol.10, 1299-1319.
    [38] F. R. Bach, M. I. Jordan. Kernel Independent Component Analysis. Journal of Machine Learning Research, 2002, Vol. 3, 1-48.
    [39] B. Chen, H.W. Liu, Z. Bao. PCA and Kernel PCA for Radar High Range Resolution Profiles Recognition. IEEE International Radar Conference inArlington, Virginia USA, 2005, 528-533.
    [40] B. Scholkopf. Support vector learning. Oldenbourg Verlag, Munich, 1997.
    [41] B. Scholkopf, C. J. C. Burges, A. J. Smola. Advances in Kernel Methods—Support Vector Learning, MIT Press, Cambridge, MA, 1999.
    [42] C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, 1995, Vol. 20, 273-297.
    [43] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, Vol. 2, 121–167.
    [44] B Chen, H. W. Liu, Z. Bao. Speeding up SVM in Test Phase: Application to Radar HRRP ATR. The Proc. of ICONIP’06, Hongkong, China, 2005.
    [45] M. P. S. Brown, W. N. Grundy, D. Lin, et al. Knowledge-based analysis of microarray gene expression data using support vector machines. Proc. Nat. Academy Sci., 2000, Vol. 97(1), 262–267.
    [1]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社, 1999.
    [2]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社, 2005.
    [3] J. R. Huynen. Phenomenological theory of radar targets. Ph. D. dissertation, Techniacal Univ., Delft, The Netherlands, 1970.
    [4] G. Sinclair. The tranimission and reception of elliptically polarized waves. Proc. IRE, 1950, Feb., Vol. 38,148-151.
    [5] S. H. Bickel. Some Invariant Properties of the Polarization Scattering Matrix. Proc. of IEEE, 1965, Vol. 53(8), 1070-1072.
    [6]肖顺平,庄钊文,王雪松.基于极化不变量的飞机目标识别.红外与毫米波学报, 1996, Vol. 15(4), 439-444.
    [7] W. L. Cameron, et al. Feature motivated polarization scattering matrix decomposition. Proc. IEEE Int. Radar Conf., Arlington, VA, 191, 549-557
    [8] S. R. Cloude, E. Pottier. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans on GRS, 1996, Vol. 34(2), 498-518.
    [9] E. Krogager. Decomposition of the Radar Target Scattering Matrix with Application to High Resolution Target Imaging. Nat. Telesystems Conf., Atlanta, 1991, 77-82.
    [10]李莹,任勇,山秀明.基于目标分解的极化雷达飞机识别法.清华大学学报, 2001, Vol. 41(7), 32-35.
    [11] F. Xu, Y. Q. Jin. Deroientation Theory of Polarimetric Scattering Target and Application to Terrain Surface Classification. IEEE Trans. on GRS, 2005, Vol. 43(10), 2351-2364.
    [12]李盾等.基于极化分解的目标识别方法研究.国防科技大学学报, 1999, Vol. 21(6), 44-47.
    [13] John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge Univerisity Press, 2004.
    [14] H. W. Liu, Z. Bao. Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel, LNCS 3174 (I), 2004, 531-536.
    [15]陈渤,刘宏伟,保铮.一种融合核优化算法.西安电子科技大学学报, 2007, Vol. 34(4), 509-513.
    [16]陈渤.基于核方法的雷达高分辨距离像目标识别技术研究.博士研究生学位论文.西安电子科技大学, 2008.
    [17] B. Scholkopf, S. Mika, C. J. C. Burges, et al. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Networks, 1999, Vol. 10(5), 1000–1016.
    [18] D. Haussler. Convolution kernels on discrete structures. UC Santa Cruz, Tech. Rep. UCSC-CRL-99-10, July 1999.
    [19] G. Lanckriet, N. Cristianini, P. Bartlett, et al. Learning the kernel matrix with semidefinte programming, J. Mach. Learn. Res., 2004, Vol. 5, 27-72.
    [20] T. Hertz, A. B. Hillel, D. Weinshall. Learning a kernel function for classification with small training samples. Proceedings of the International Conference on Machine Learning, Pittsburgh, PA, USA, 2006.
    [21] B. Chen, H. W. Liu, Z. Bao. An Efficient Kernel Optimization Method for Radar High-resolution Range Profile Recognition. EURASIP Journal on Applied Signal Processing. Vol. 2007, Article ID 49597, 10 pages, 2006.
    [22] B. Chen, H. W. Liu, Z. Bao. A Kernel Optimization Method Based on the Localized Kernel Fisher. Pattern Recognition, 2008, Vol. 41(3), 1098-1109.
    [23] B. Chen, H. W. Liu, Z. Bao. Optimizing the Data-dependent Kernel under a Unified Kernel Optimization Framework. Pattern Recognition, 2008, Vol. 41(6), 2107-2119.
    [24] B. Sch?lkopf, C. J. C. Burges, A. J. Smola. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, Vol.10, 1299-1319.
    [25] F. R. Bach, M. I. Jordan. Kernel Independent Component Analysis. Journal of Machine Learning Research, 2002, Vol. 3, 1-48.
    [26] B. Chen, H.W. Liu, Z. Bao. PCA and Kernel PCA for Radar High Range Resolution Profiles Recognition. IEEE International Radar Conference in Arlington, Virginia USA, 2005, 528-533.
    [27] H. L. Xiong, M. N. S. Swamy, M. Omair Ahmad. Optimizing the kernel in the empirical feature space. IEEE Trans. Neural Networks, 2005, Vol. 16(2), 460-474.
    [28] L. Xu, A. Krzyzak, Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. on Systems, Man, and Cybernetics, 1992, Vol. 22(3), 418-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700