用户名: 密码: 验证码:
基于视觉感知的影像质量评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
影像质量评价旨在寻找精确的计算模型来预测影像视觉质量的变化。影像是利用各种观测系统以不同形式刻画客观世界而获得的视觉实体。它相对于文字和图形所承载的信息更真切、更丰富,正所谓“百闻不如一见”。由于影像数据在采集、压缩、处理、传输和恢复的过程中可能会引入各种失真,这些失真会对后续的影像处理、分析和理解带来困难,不利于人们正确的认识客观世界。因此,需要通过度量影像的视觉失真程度,来设计方法和优化系统,以最少的代价提供最好的视觉质量。
     本文针对影像质量评价的基本问题,探索人类视觉系统和数字信息之间的联系,在图像稀疏表示和特征建模的基础上,为影像处理中由未知因素造成的各种失真构建客观评价方法,以度量影像的失真程度和提供信息的能力,从而为视觉质量评价提供合理依据。主要工作概括如下:
     (1)针对人类视觉系统的生理学和心理学特性,结合基于仿生学的误差可见度模型,从图像的基本结构和几何特征出发,利用原始图像和待测图像的结构差异和几何相似来度量视觉质量的变化。提出了基于人类视觉系统的全参考型图像质量评价测度。实验结果表明,本方法不仅与视觉感知有较好的一致性,而且算法复杂度很低,取得了预期的效果。
     (2)在图像特征提取和稀疏表示的基础上,模拟人类视觉系统的多通道特性,采用多尺度几何分析来获取图像的几何特征。然后利用人类视觉心理物理学的对比敏感度和掩模特性,对图像的几何特征进行感知滤波,进而利用该特征来捕捉由于失真而引起的视觉感知的变化。提出了基于多尺度几何分析的部分参考型图像质量评价测度框架。实验结果表明,利用该框架的各种方法所得到的客观评价结果与主观观测值之间具有很好的一致性,能准确地反映人眼对图像质量的主观感受。
     (3)在自然图像统计特性的基础上,利用计算模型来构建图像特征的一般分布规律,采用轮廓波来刻画图像尺度间、尺度内、和方向间的统计相关性,然后对自然图像模型在轮廓波变换域尺度间的变化进行分析,并结合图像模型的变化来捕获不同程度的失真,最后使用这些变化特征的非线性映射来表征图像质量。提出了基于轮廓波变换域的无参考型图像质量评价测度。该算法适用于不同的图像失真类型,且与视觉感知的一致性较好。
     (4)针对不同失真类型的特点,根据视觉感知与失真过程的密切关系,从人眼对影像的敏感性和敏锐性出发,结合影像的整体结构和内容的局部结构进行分析,利用影像的结构相似性来度量视觉失真的变化。提出了基于失真模型优化的视频质量评价方法。在VQEG视频数据库上进行测试,获得了较好的评价性能。
     (5)深入分析了VQEG视频数据库的优缺点,针对该数据库存在的局限性和网络流媒体发展的紧迫性,结合目前主流视频压缩标准H.264,对大量的内容丰富的视频序列进行各种不同量化尺度以及码率的压缩,并邀请一定数量的非专业人士,利用主观排序方法和自动评分平台对压缩产生的失真序列进行主观打分。完成了面向编码失真的视频质量评价数据库的构建,为视频质量评价研究的深入进行夯实了基础。
     上述研究成果是在实际应用中抽象出的科学问题,涉及到影像处理的基础理论,是从新的角度、基于新的条件和应用进行研究的,富有一定的前瞻性和挑战性,具有极其重要的理论意义和应用价值。本论文在理论上有一些突破,技术上有一定创新,为影像质量评价的发展开辟了新的思路,提供了一些有意义的参考。
The aim of the image and video quality assessment is to find a computational model that can predict the perceptual visual quality automatically. An image is a vision entity that can describe the objective world in different forms by variable observation system. Compared with texts and graphics, the image conveys the information more vividly and affluently. Since images are subject to distortions during acquisition, compression, transmission, processing and reproduction, which will bring difficulties to the subsequent process such as image and video processing, analysis and understanding, It is not conducive to the correct understanding of the objective world. Thus, it is necessary to design or optimize an image and video processing method or system by measuring the degradation of the image and video, so that we can get the perfect visual quality with the least cost.
     In this dissertation, objecting to essential problems of the image and video quality assessment and exploring the relation between human visual system and digital information, objective assessment methods are built to evaluate some distortions by uncertain factors in process of the image and video, which are based on the image sparse representation and feature modeling for measuring visual quality of distorted image and the ability to provide information of the image, The main contributions of this dissertation can be summarized as follows:
     (1) According to the characteristic of the physiology and psychology of human visual system and combining error visibility models based on bottom-up approach, the variation of visual quality is measured by emplying the difference structure and geometrical similarity between reference images and distorted images from the basic structure and geometrical characteristic. A full reference image quality assessment method based on human visual system is proposed. Experimental results illustrate that the proposed has a good consistency with the subjective assessment of human beings, and it can be used to describe the visual perception of the image effectively.
     (2) According to feature extraction and sparse representation of the image and mimicing mutil-channel characteristic of human visual system, multiscale geometric analysis is employed to extract geometrical characteristics of the image. Then these geometrical characteristics are perceptually filtered based on the contrast sensitivity and masking of human visual system. The degradation of perceptual quality can be captured by these filtered features. So a framework of reduced reference image quality assessment based on multiscale geometric analysis is proposed, thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score and demonstrate that the proposed framework has good consistency with subjective perception values and the objective assessment results can well reflect the visual quality of images.
     (3) On the basis of natural image statistic characteristics and making use of computational model to construct a generalized distribution of image features. Contourlet transform is introduced to decompose images and produce coefficients at difference subbands, relationship of whose coefficients are reflected by the mutual information among scale, direction and adjacent. By analyzing the variance between different scales of the image model and combing the diversification of the model , the variation degree of distortion is measured, and then a nonlinear mapping of the diversification of the features is used as the quality of the distorted image. A no reference image quality metric based on contourlet domain is proposed. This algorithm is demonstrated to be fit for various types of distortion, and is well consistent with the subjective perceptive results.
     (4) According to the features of different types of artifacts and the relation between visual perception and degradation process, we designed a new metric derived from the acuity and sensitivity of human eyes to image quality, analyzing the image global structure and local structure, to determine the degree of visual distortion which is based on the structure similarity of images. The experimental results have good correlation with visual perception. This method is extended to the video quality assessment based on the optimal distortion model. It also gives good performance.
     (5) The strengths and weaknesses of the VQEG video database have been well analyzed. In order to compensate the limitations of the database and catch up with the development of the current streaming media, a new video database is constructed based on the H.264 standard of the advanced video compression. Great deals of videos with rich content are compressed in different quantification scales and bit rates. A number of non-expert persons give the subjective scores for these videos on an automatic platform by subjective sorting methods. The new database offers a good beginning for further video quality assessment research.
     The research results above are scientific problems abstracted from practical application, referred to the basic theory of image and video processing. They are studied from new angles and based on new conditions and application, which are forward-looking and full of challenges and have extremely important theoretical significance and application value. The dissertation have some breakthrough in theory, some innovation in technology and some reference in methodology, it opens up a new way for image and video quality assessment.
引文
[1] Kenneth R. Castleman, Digital Image Processing. The Prentice Hall, Inc., 1996.
    [2] Rafael C. Gpnzalez, Richard E.Woods. Digital Image Processing. Second Edition. The Pearson Education, Inc., 2002.
    [3] T. J. Janssen,“Understanding image quality,”in Proc. IEEE Int. Conf. Image Processing, 2: 7, 2001.
    [4] Marr. D,Vision: A computational Investigation into the human representation and processing of visual information. Freeman. San Francisco. 1982.
    [5] E. Abodou, N.J.Dusaussoy,“Survey of image quality measurement,”in Proc. 1986 ACM Fall joint Computer Conference, Dallas, Texas, Unite States, 71-78, 1986.
    [6] Methodology for the Subjective Assessment of the Quality of Television Pictures, Recommendation ITU-R Rec. BT. 500-11.
    [7] Zhou Wang, Alan C. Bovik and Ligang Lu,“Why is Image Quality Assessment so Difficult?,”in Proc. IEEE Int. Con. Acoustics, Speech, and Signal Processing, 4: 3313-3316, Florida, USA, 2002.
    [8] Ahmet M. Eskicioglu and Paul S. Fisher,“Image quality measures and their performance,”IEEE Trans. Communication, 43(12): 2959-2965, 1995.
    [9] Sakrison, J. L. M. a. D. J.“The effects of a visual fidelity criterion on the encoding of images,”IEEE Trans. Information Theory, 20(4): 525-536, 1974.
    [10] A.B.Watson. Digital Images and Human Vision. The MIT Press, Cambridge, MA, 1993.
    [11] Zhou Wang and Alan C. Bovik, Modern Image Quality Assessment. New York: Morgan and Claypool Publishing Company, 2006.
    [12] A.C. Bovik (Ed.). The Handbook of Image and Video Processing. New York, Elsevier Academic Press, 2005.
    [13] Stefan Winkler, Digital Video Quality Vision.Models.and.Metrics, John Wiley & Sons, Ltd. 2004.
    [14] H. R. Wu, K. R. Rao, Digital Video Image Quality and Perceptual Coding, Taylor and Francis Group, LLC, 2006.
    [15] Alan Chalmers, Scott Daly, Ann McNamara, Karol Myszkowski, Tom Troscianko. Image Quality Metrics. SIGGRAPH 2000.
    [16] Lin Weisi,“Gauging image and video quality in industrial applications,”in Advances of Computational Intelligence in Industrial Systems, 116: 117-137, 2008.
    [17] Tektronix, Inc. Picture Quality Analysis System.http://www.tektronix.com/video audio. 2007.
    [1] Watson A. B.,“Digital images and human vision,”Cambridge MA: MIT Press, 1993.
    [2] Schreiber W. F.,“Fundamentals of electronic imaging systems,”Springer-Verlag, New York, 1993.
    [3] Palmer S. E.“Modern theories of Gestalt perception,”In: Humphreys G W, ed. Understanding Vision. CA: Blackwell, 1992.
    [4] Hartline HK.,“The response of single optic nerve fibers of the vertebrate eye to illumination of the retina,”American Journal of Physiology, 121:400-415, 1938.
    [5] Kuffler S. W.,“Discharge patterns and functional organization of mammalian retina,”Journal of Neurophysiology, 16(1):37-68, 1953.
    [6] Hubel D. H. and Weisel T. N.,“Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,”Journal of Physiology., 160: 106-154, 1962.
    [7] Marr D.,“Vision: a computational investigation into the human representation and processing of visual information,”New York: W. H. Freeman and Company Press, 1982.
    [8] Li Yanjun, Zhang Ke, Vision Bionica Image Guidance Technique and Application, National Defense Industry Press, Beijing, 2006.
    [9] Francis Crick, The Astonishing Hypothesis: The Scientific Search for the Soul, New York: Scribner reprint edition, 1995.
    [10] Westheimer G.,“The eye as an optical instrument,”in K. R. Boff L. Kaufman, and J. P. Thomas, eds., Handbook of Human Perception and Performance, Wiley and sons, New York, 1986.
    [11] Rodieck R. W.,“The primate retina,”Comparative Primate Biology, 4: 203-278, 1986.
    [12] James A. F.,“Elements of early for computer graphics,”IEEE Computer Graphics and Applications, 21(5):22-23, 2001.
    [13] Rodieck R. W.,“Quantitative analysis of cat retinal ganglion cell response to visual stimuli,”Vision Research., 5: 583-601, 1965.
    [14] Troy J. B.,“Modeling the receptive fields of mammalian retinal ganglion cells,”in R. Shapley and D. M. K. Lam, eds., Contrast Sensitivity, MIT Press, Cambridge, 1993.
    [15] Donner K. and Hemila S.,“Modeling the spatio-temporal modulation response of ganglion cells with difference-of-Gaussians receptive fields: relation to photoreceptor response kinetics,”Visual Neuroscience, 13: 173-186, 1996.
    [16] Tiandi Shou, Brain Mechanisms of Visual Information Processing, Shanghai Science and Education Press, Shanghai, 1997.
    [17] Skottun B. C., DeValois R. L., Grosof D. H., Movshon J. A., Albrecht D. G., and Bonds A. B.,“Classifying simple and complex cells on the basis of response modulation,”Vision Research.,31: 1079-1086, 1991.
    [18] Li Z.,“A neural model of contour in integration in the primary visual cortex,”Neural computation, 10: 903-940, 1998.
    [19] Olson S.,Grossberg S.,“A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance,”Neural networks, 11:189-208, 1998.
    [20] Thomas T. Norton, James E. Bailey and David A. Corliss, Psychophysical Measurement of Visual Function, Butterworth-Heinemann, Boston, 2002.
    [21] Winkler S, Vision Models and Quality Metrics for Processing Applications, Dr thesis. Diplom-Ingenieur der Elektrotechnik, Technische University Wien de nationality autrichienne, 2000.
    [22] Schreiber W. F., Fundamentals of Electronic Imaging Systems, Springer-Verlag, New York, 1993.
    [23] Michelson A. A., Studies in Optics, Chicago, IL: Univ. Chicago Press, 1927.
    [24] Peli E., et al.,“Contrast sensitivity to patch stimuli: Effects of spatial bandwidth and temporal presentation,”Spatial Vision, 7: 1-14, 1993.
    [25] Campbell F. and Robson J.,“Application of fourier analysis to the visibility of gratings,”Journal of Physiology, 197:551-566, 1968.
    [26] Legge G. E. and Foley J. M.,“Contrast masking in human vision,”Journal of the Optical Society of America, 70(12):1458-1471, 1980.
    [27] Legge G. E.,“A power law for contrast discrimination,”Vision Research, 21: 457-467, 1981.
    [28] Switkes E., Bradley A and Valois K D,“Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,”Journal of the Optical Society of America, 5(7):1149-1162, 1988.
    [29] Breitmeyer B. G., Visual Masking: An Integrative Approach, New York: Oxford University Press, 1984.
    [30] Kelly D. H.,“Visual response to time-dependent stimuli,”Journal of Optical Society of America, 51: 422-429, 1961.
    [1] Zhou Wang and Alan C. Bovik,“Mean Squared Error: Love It or Leave It?- A new look at signal fidelity measures”, IEEE Signal Processing Magazine. 98-117, Jan. 2009.
    [2] Ismail. Avcibas, Bülent. Sankur, and Khalid. Sayood,“Statistical evaluation of image quality measures,”Journal of Electronic Imaging, 11(2): 206-213, 2002.
    [3] Ahmet M. Eskicioglu and Paul S. Fisher,“Image quality measures and their performance,”IEEE Trans. Communication, 43(12): 2959-2965, 1995.
    [4] J. L. Mannos and D. J. Sakrison.“The effects of a visual fidelity criterion on the encoding of images,”IEEE Trans. Information Theory, 20(4): 525-536, 1974.
    [5] Scott Daly,“The Visible Difference Predictor: An Algorithm for the Assessment of Image Fidelity,”in Digital Images and Human Vision, A. B. Watson, ed. Cambridge, MA: The MIT Press, 179-206, 1993.
    [6] Jeffrey Lubin,“A Visual Discrimination Mode for Image System Design and Evaluation,”in Visual Models for Target Detection and Recognition, E. Peli, ed. Singapore, World Scientific, 207-220, 1995.
    [7] R. J. Safranek and J.D. Johnston.“A perceptually tuned sub-band image coder with image dependent quantization and post-quantization data compression,”in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, 1945-1948, 1989.
    [8] P. C. Teo and D. J. Heeger,“Perceptual image distortion,”in Proc. SPIE, Human Vision, Visual Processing, and Digital Display V, 2179: 127-141, San Jose, CA, 1994.
    [9] Andrew B. Watson,“DCT Quantization Matrices Visually Optimized for Individual Images,”in Proc. SPIE Human vision, Visual Processing and Digital Display IV, 1913(14): 202-216, Bellingham, WA, USA, 1993.
    [10] A. B. Watson, G. Y. Yang, J. A. Solomon, and J. Villasenor.“Visibility of wavelet quantization noise,”IEEE Trans. Image Processing, 6(8): 1164-1175, 1997.
    [11] A. P. Bradley,“A wavelet difference predictor,”IEEE Trans. Image Processing, 8(5): 717-730, 1999.
    [12] Makoto Miyahara, Kazunori Kotani, and Ralph V. Algazi,“Objective Picture Quality Scale for Image Coding,”IEEE Trans. Communications, 46(9): 1215-1225, 1998.
    [13] Niranjan Damera-Venkata, Thomas D. Kite, Wilson S. Geisler, Brian L. Evans,and Alan Conrad Bovik,“Image Quality Assessment Based on a Degradation Model,”IEEE Trans. Image Processing, 4(4): 636-650, 2000.
    [14] Aleksandr Shnayderman, Alexander Gusev, and Ahmet M. Eskicioglu,“An SVD-Based Grayscale Image Quality Measure for Local and Global Assessment,”IEEE Trans. Image Processing, 15(2): 422-429, 2006.
    [15] Damon M. Chandler, and Sheila S. Hemami,“A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images,”IEEE Trans. Image Processing, 16(9): 2284-2298, 2007.
    [16] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli,“Image Quality?Assessment: From Error Visibility to Structural Similarity,”IEEE Trans. Image Processing, 13(4): 600-612, 2004.
    [17] X. B. Gao, T. Wang, and J. Li, A content-based image quality metric. D. Slezak et al. (Eds.): RSFDGrC2005, Lecture Notes in Artificial Intelligence, LNAI 3642, 231-240, 2005.
    [18] Hamid R. Sheikh, Alan C. Bovik, and Gustavo D. Veciana,“An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics,”IEEE Trans. Image Processing, 14(12): 2117-2128, 2005.
    [19] Hamid R. Sheikh, and Alan C. Bovik,“Image Information and Visual Quality,”IEEE Trans. Image Processing, 15(2): 430-444, 2006.
    [20] Chun-Hsien Chou and Yun-Chin Li,“A Perceptually Tuned Subband Image Coder Based on the Measure of Just-Noticeable-Distortion Profile,”IEEE Trans. Circuits and Systems for Video Technology, 5(6): 467-476, 1995.
    [21] Shanika A. Karunasekera and Nick G. Kingsbury,“A Distortion Measure for Blocking Artifacts in Images Based on Human Visual Sensitivity,”IEEE Trans. Image Processing, 4(6): 713-724, 1995.
    [22] Hamid R. Sheikh, Muhammad F. Sabir and Alan C. Bovik,“A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms,”IEEE Trans. Image Processing, 15(11): 3440-3451, 2006.
    [23] Xuelong Li, Wen Lu, Dacheng Tao, Xinbo Gao. An Novel Image Quality Assessment Metric based on Frequency Structure Analysis, IEEE International Conference on Systems, Man, and Cybernetics, Singapore, 12-15 October 2008, pp. 2246-2251.
    [24] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 2nd Ed., 1998..
    [25] M .Masry, S. Hemami, and Y. Sermadevi,“A scalable wavelet-based video distortion metric and applications,”IEEE Trans. Circuits and Systems for Video Technology, 16(2): 260-273, 2006.
    [26] I. Lee, J. Kim, and Y. Kim,“Wavelet transform image coding using human visual system,”IEEE Asia-Pacific Conference on Circuits and Systems, 619-623, 1994.
    [27] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli,“The SSIM index for image quality assessment,”http://www.cns.nyu.edu/?lcv/ssim, 2003.
    [28] Wen Lu, Dacheng Tao, Xinbo Gao, Xuelong Li, A New Image Quality Assessment Metrics based on Human Visual System, IEEE International Workshop on Multimedia Analysis and Processing, St. Thomas, US Virgin Island, USA. IMAP 2008 Workshop at ICCCN 2008.
    [29] L. Gaudart, T. Grebassa, J. P.Petrakian,“Wavelet transform in human visual channels,”Applied Optics, 32(22): 4119-4126, 1993.
    [30] M. Miloslavski, Yo-Sung Ho,“Zerotree wavelet image coding based on the human visual system models,”IEEE Asia-Pacific Conference on Circuits and Systems, pp.57-60, Chiangmai, Thailand: 1998.
    [31] J. N. Marcus, R. Julien, K. Murat,“Wavelet-based color image compression: exploiting the contrast sensitivity,”IEEE Trans. Image Processing, 12(1): 58-70, 2003.
    [32] H. R. Sheikh, Z. Wang, A C Bovikand and L K Cormack,“Image and video quality assessment research at LIVE,”http://live.ece.utexas.edu/rese-arch/quality/,2003.
    [33] VQEG,“Final report from the video quality experts group on the validation of objective models of video quality assessment,”http://www.vqeg.org/ , 2000.
    [1] Zhou Wang and Alan C. Bovik, Modern Image Quality Assessment. New York: Morgan and Claypool Publishing Company, 2006.
    [2] Video Quality Expert Group, RRNR-TV Group Test Plan Draft Version. http://www.vqeg.org, 2007.
    [3] T. M. Kusuma and H. J. Zepernick,“A reduced-reference perceptual quality metric for in-service image quality assessment,”in Proc. Joint First Workshop on Mobile Future and IEEE Symposium on Trends in Communications, 71-74, 2003.
    [4] I. P. Gunawan and M. Ghanbari,“Image quality assessment based on harmonics gain/loss information,”in Proc. IEEE Int. Conf. on Image Processing, 1: 29-32, 2005.
    [5] Zhou Wang and E. P. Simoncelli“Reduced-reference image quality assessment using a wavelet-domain natural image statistic model,”Human Vision and Electronic Imaging X. Proc., 5666(1): 149-159, 2005.
    [6] Zhou Wang, Guixing Wu, Sheikh, Hamid R. Sheikh, Eero P. Simoncelli, En-Hui Yang, and Alan C. Bovik,“Quality-aware images,”IEEE Trans. Image Processing, 15(6): 1680-1689, 2006.
    [7] Sha Wang, Dong Zheng, Jiying Zhao, Wa James Tam, and Filippo Speranza,“An image quality evaluation method based on digital watermarking,”IEEE Trans. Circuits and Systems for Video Technology, 17(1): 98-105, 2007.
    [8] Mathieu Carnec, Patrick Le Callet, Dominique Barba,“Objective quality assessment of color images based on a generic perceptual reduced reference,”Image Communication, 23(4): 239-256, 2008.
    [9] I. P. Gunawan and M. Ghanbari, Reduced-reference video quality assessment using discriminative local harmonic strength with motion consideration. IEEE Trans. Circuits and System for Video Technology, 18(1): 71-83, 2008.
    [10] Minh. N. Do, Directional Multiresolution Image Representations. Ph.D. thesis, EPFL, Lausanne, Switzerland, 2001.
    [11] Justin K. Romberg, Multiscale Geometric Image Processing. PhD thesis, Rice University, 2003.
    [12] Licheng Jiao,Biao Hou,Shuang Wang and Fang Liu,Image Multiscale Geometric Analysis: Theory and Applications. Xidian University Press, 2008.
    [13] B. A. Olshausen, D. J. Field,“Emergence of simple-cell receptive field properties by learning a sparse code for natural image,”Nature, 381:607-609, 1996.
    [14] S. Carlsson,“Sketch based coding of grey level images,”Signal Processing, 15(1):57-83, 1988.
    [15] M. Stephane,“A theory for signal decomposition: the wavelet representation,”IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7): 67-93, 1989.
    [16] Emmanuel J. Candès, Ridgelets: Theory and Applications, Ph.D. Thesis, Department of statistics, Stanford University, 1998.
    [17] Jean-Luc Starck, Emmanuel J. Candès, and David L. Donoho,“The Curvelet transform forimage denoising,”IEEE trans. Image Processing, 11(6): 670-684, 2002.
    [18] Pennec E Le, Mallat S, Sparse geometric image representations with Bandelet,
    [19] Minh N. Do and Martin Vetterli,“The Contourlet transform: an Efficient directional multiresolution image representation,”IEEE Trans. Image Processing, 14(12): 2091-2106, 2005.
    [20] Peter J. Burt and Edward H. Adelson,“The Laplacian pyramid as a compact image code,”IEEE Trans. Communication, 31(4): 532-540, 1983.
    [21] Roberto H. Bamberger and Mark J. T. Smith,“A filter bank for the directional decomposition of images: theory and design,”IEEE Trans. Signal Processing, 40(4): 882-893, 1992.
    [22] Duncan D.-Y. Po and Minh N. Do,“Directional multiscale modelings of images using the contourlet transform,”IEEE trans. Image Processing, 15(6): 1610-1620, 2006.
    [23] Ramin Eslami and Hayder Radha,“Wavelet-based Contourlet transform and its application to image coding,”in Proc. IEEE Int. Conf. on Image Processing, 3189-3192, 2004.
    [24] Ramin Eslami and Hayder Radha,“New Image Transforms Using Hybrid Wavelets and Directional Filter Banks: Analysis and Design,”in Proc. IEEE Int. Conf. on Image Processing, 11-14, 2005.
    [25] Ramin Eslami and Hayder Radha,“A new family of nonredundant transforms using hybrid wavelets and directional filter banks,”IEEE Trans. Image Processing, 16(4): 1152-1167, 2007.
    [26] Wen Lu, Xinbo Gao, Dacheng Tao, Xuelong Li,“A Wavelet-based image quality assessment method,”International Journal of Wavelets, Multiresolution and Information Processing,.6(4): 541-551, 2008.
    [27] Xinbo Gao, Wen Lu, Xuelong Li, Dacheng Tao,“Wavelet-based contourlet in quality evaluation of digital images,”Neurocomputing, 72(12): 378-385, 2008.
    [28] Wen Lu, Xinbo Gao, Dacheng Tao, and Xuelong Li,“An image quality assessment metric based on contourlet,”in Proc. IEEE Int. Conf. on Image Processing, 12-15, 2008.
    [29] Xuelong Li, Dacheng Tao, Xinbo Gao, Wen Lu,“A natural image quality evaluation metric based on HWD,”Signal Processing, 89(4): 548-555, 2009.
    [30] Xinbo Gao, Wen Lu, Dacheng Tao, Xuelong Li,“Image quality assessment based on Multiscale Geometric Analysis,”IEEE Trans. Image Processing, in Press, 2009.
    [31] Brian A. Wandell, Foundations of Vision. Sinauer Associates, Inc., Sunderland MA, first edition, 1995.
    [32] Bowonkoon Chitprasert and Kamisetty R. Rao,“Human visual weighted progressive image transmission,”IEEE Trans. Communications, 38(7): 1040-1044, 1990.
    [33] Michael Miloslavski and Yo-Sung Ho,“Zerotree Wavelet image coding based on the human visual system model,”in proc. IEEE Asia-Pacific Conf. Circuits and Systems, pp. 57-60, 1998.
    [34] Marcus J. Nadenau, Julien Reichel and Murat Kunt,“Wavelet-based color image compression:exploiting the contrast sensitivity,”IEEE Trans. Image Processing, 12(1): 58-70, 2003.
    [35] James L. Mannos and David J. Sakrison,“The effect of visual fidelity criterion on the encoding of images,”IEEE Trans. Information Theory, 20(2): 525-536, 1974.
    [36] Xiaohui Zhang, Weisi Lin and Ping Xue,“Just-noticeable difference estimation with pixels in images,”Journal of Visual Communication and Image Representation, 19(1): 30-41, 2008.
    [37] Hamid R. Sheikh, Zhou Wang, Lawrence Cormack, and Alan C. Bovik. (2003) LIVE Image Quality Assessment Database. [Online]. Available: http://live.ece.utexas.edu/research/quality.
    [38] Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II VQEG, Aug. 2003 [Online]. Available: http://www.vqeg.org/.
    [39] Dacheng Tao, Xuelong Li, Xindong Wu, and Stephen J. Maybank,“General tensor discriminant analysis and Gabor features for gait recognition,”IEEE Trans. Pattern Analysis and Machine Intelligence, 29(10): 1700-1715, 2007.
    [40] Dacheng Tao, Xuelong Li, Xindong Wu, and Stephen J. Maybank,“Human carrying status in visual surveillance,”in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 1670-1677, 2006.
    [41] Dacheng Tao, Xuelong Li, Xindong Wu, and Stephen J. Maybank,“Supervised tensor learning,”Knowledge and Information Systems (Springer), 2007.
    [1] Zhou Wang, Hamid R. Sheikh, and Alan C. Bovik,“No-reference perceptual quality assessment of JPEG compressed images,”in Proc. IEEE Int. Conf. Image Processing, 1: 477-480, 2002.
    [2] Alan C. Bovik, L. Shizhong,“DCT-domain blind measurement of blocking artifacts in DCT-coded images,”in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 3: 1725-1728, 2001.
    [3] Y. Yanwei, L. Zhengding, L. Hefei, et al.,“No-reference perceptual quality assessment of JPEG images using general regression neural network,”Lecture Notes in Computer Science, 3972: 638-645, 2006.
    [4] R. V. Babu, A. Perkis,“An HVS-based no-reference perceptual quality assessment of JPEG coded images using neural networks,”in Proc. IEEE Int. Conf. Image Processing, 1: 433-436. 2005.
    [5] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi,“Perceptual blur and ringing metrics: application to JPEG2000,”Signal Processing: Image Communication, 19(2): 163-172, 2004.
    [6] Hamid R. Sheikh, Alan C. Bovik, and L. Cormack,“No-reference quality assessment using natural scene statistics: JPEG 2000,”IEEE Trans. Image Processing, 14(11): 1918-1927, 2005.
    [7] T. Hanghang, L. Mingjing, Z. Hongjiang, et al.,“No-reference quality assessment for JPEG2000 comopressed images,”in Proc. IEEE Int. Conf. Image Processing, 5: 3539-3542, 2004.
    [8] L. Huitao,“A training-based no-reference image quality assessment algorithm,”in Proc.IEEE Int. Conf. Image Processing, 2004, Vol. 5, pp. 2973-2976.
    [9] R. V. Babu, A. S. Bopardikar, A. Perkis, et al.,“No-reference metrics for video streaming applications,”International Packet Video Workshop, 2004.
    [10] M. Francesco, P. Cristian, D. G. Daniele,“A human visual system model for no-reference digital video quality estimation,”in Proc. of SPIE-IS&T Electronic Imaging, in: Image Quality and System Performance II, R. Rene, M. Yoichi. ed., 2005.
    [11] P. Campisi, M. Carli, G. Giunta, et al.,“Blind quality assessment system for multimedia communications using tracing watermarking,”IEEE Trans. Signal Processing, 51(4): 966-1002, 2003.
    [12] Zhou Wang, Alan C. Bovik, and Brian L. Evans,“Blind Measurement of Blocking Artifacts in Images,”in Proc. IEEE Int. Conf. Image Processing, 3: 981-984, Vancouver, Canada, 2000.
    [13] Xin Li,“Blind Image Quality Assessment,”in Proc. IEEE Int. Conf. Image Processing, 1: 449-452, New York, 2002.
    [14] J. Caviedes and J. Jung,“No-Reference Metric for a Video Quality Control Loop,”in Proc. World Multiconference on Systemics, cybernetics, and Informatics, 290-295, Orlando FL, 2001.
    [15] Paolo Gastaldo and Rodolfo Zunino,“No-Reference Quality Assessment of JPEG Images by Using CBP Neural Networks,”in Proc. IEEE Int. Symposium on Circuits and Systems, 5: 772-775, Vancouver, Canada, 2004.
    [16] EePing Ong, Weisi Lin, Zhongkaiig Lu, Xiaokang Yang, Susir Yao, Feng Pan, Lijilrn Jiarrg, and Fulvio Moscheni,“A no-reference quality metric for measuring image blur,”7th InternationalSymposium on Signal Processing and Its Application, Paris, France, July 1-4, 2003.
    [17] E.P. Simoncelli and B. Olshausen. Natural image statistics and neural representation.Ann. Review of Neuroscience, 24: 1193-1216, 2001.
    [18] R. W. Buccigrossi, E. P. Simoncelli,“Image compression via joint statistical characterization in the wavelet domain,”IEEE Trans. Image Processing, 8(12): 1688-1701, 1999.
    [19] E. P. Simoncelli, D. J. Heeger,“Representing retinal image speed in visual cortex,”Nature Neuroscience, 4(5): 461-462, 2001.
    [20] E. P. Simoncelli,“Statistical modeling of photographic images,”in Handbook of Image and Video Processing, 2nd Edition, ed. Alan C. Bovik, Academic Press, 431-441, 2005.
    [21] G. J. Burton, N. D. Haig, and I. R. Moorhead,“A self-similar stack model for human and machine vision,”Biological Cybernetics, 53(6): 397-403, 1986.
    [22] D. J. Field,“Relations between the statistics of natural images and the response properties of cortical cells,”Journal of Optical Society of American, 4(12): 2379-2394, 1987.
    [23] S. C. Zhu, et al.,“Prior learning and gibbs reaction diffusion,”IEEE Trans. Pattern Analysis and Machine Intelligence, 19(11): 1236-1250, 1997.
    [24] A. Turiel, N. Parga, D. L. Ruderman, and T. W. Cronin,“Multiscaling and information content of natural color images,”Physical Review E, 62(1): 1138-1148, 2000.
    [25] Ann B. Lee, Kim S. Pedersen, and David Mumford,“The nonlinear statistics of high-contrast patches in natural images,”Tech. Rep. 01-3, APPTS, 2001.
    [26] D. J. Field,“Relations between the statistics of natural images and the response properties of cortical cells,”Journal of Optical Society of American, 4(12): 2379-2394, 1987.
    [27] Stephane Mallat,“A theory for multiresolution signal decomposition: the wavelet representation,”IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7): 674-693, 1989.
    [28] Dave Donoho,“Can recent developments in harmonic analysis explain the recent findings in natural scene statistics,”Network: Computation in Neural Systems, 12(3): 371-393, 2001.
    [29] Minh N. Do, M. Vetterli,“The contourlet transform: an efficient directional multiresolution image representation,”IEEE Trans. Image Processing, 14(12): 2091-2106, 2005.
    [30] Duncan D.-Y. Po, Minh N. Do,“Directional multiscale modeling of images using the contourlet transform,”IEEE Trans. Image Processing, 15(6): 1610-1620, 2006.
    [31] Hamid R. Sheikh, Zhou Wang, Lawrence Cormack, and Alan C. Bovik. (2003) LIVE Image Quality Assessment Database. [Online]. Available: http://live.ece.utexas.edu/research/quality.
    [32] (2000) Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment. VQEG. [Online]. Available: http://www.vqeg.org/
    [33] J. Portilla, et al.,“Image denoising using scale mixture of Gaussian in the wavelet domain,”IEEE Trans. Image Processing, 23(11): 1338-1351, 2003.
    [1] P. Corriveau, J.Lubin, JC Pearson, et al.,“Video quality experts group: current results and future direction,”in Proc. SPIE Visual Communication and Image Processing, 4067: 742-753, 2000.
    [2] K.R. Rao, The Transform and Data Compression Handbook. CRC Press, Baton Rouge, 2001.
    [3] Y.Wang and Q. Zhu,“Error control and concealment for video communication: a review,”in Proc. of the IEEE, 86(5): 974-997, 1998.
    [4] Y. Wang, S. Wenger, J. Wen, et al.,“Error resilient video coding techniques: real-time video communications over unreliable networks,”IEEE Signal Processing Magazine, 17(4):61-82, 2000.
    [5] ATIS Technical Report T1.TR.PP.74, Objective Video Quality Measurement Using a Peak-Signal-to-Noise-Ratio (PSNR) Full Reference Technique, 2001.
    [6] A.M.Eskicioglu and P.S.Fisher,“Image quality measures and their performance,”IEEE Trans. Communications, 43(12): 2959-2965, 1995.
    [7] F. X. J. Lukas and Z. L. Budrikis,“Picture quality prediction based on a visual model,”IEEE Trans. Communications, 30(7): 1679-1692, 1982.
    [8] X, Tong, D. Heeger, and C. J.van den Branden Lambrecht,“Video quality evaluation using ST-CLELAB,”in Proc. SPIE, 3644: 185-196, San Jose, CA, Jan.23-29, 1999.
    [9] B.A. Wandell, Foundations of Vision, Sinauer Associates, 1995.
    [10] C.J.van den Branden Lambrecht, Perceptual Models and Architectures for Video Coding Applications, Ph.D. thesis,école Polytechnique Fédérale de Lausanne, Switzerland, 1996.
    [11] C.J.van den Branden Lambrecht and O. Verscheure,“Perceptual quality measure using a spatio-temporal model of the human visual system,”in Proc. SPIE, 2668: 450-461, San Jose, CA, Jan. 28-Feb. 2, 1996.
    [12] S.Winkler,“A perceptual distortion metric for digital color video,”in Proc. SPIE, 3644:175-184, San Jose, CA, 1999.
    [13] A.B.Watson and J.A.Solomon,“Model of visual contrast gain control and pattern masking,”J.Opt. Soc. Am. A, 14(9): 2379-2391, 1997.
    [14] M. A. Masry and S. S. Hemami,“A metric for continuous quality evaluation of compressed video with severe distortions,”Signal Processing: Image Communication, 19(1): 133-146, 2004.
    [15] A.B.Watson, J.Hu, and J.F.McGowanⅢ,“DVQ: A digital video quality metric based on human vision,”J.Electronic Imaging, 10(1): 20-29, 2001.
    [16] A.P.Hekstra et al.,“PVQM- a perceptual video quality measure,”Signal Processing: ImageCommunication, 17(10): 781-798, 2002.
    [17] Z.Wang, L.Lu, and A.C.Bovik,“Video quality assessment based on structural distortion measurement,”Signal Processing: Image Communication, 19(2): 121-132, 2004.
    [18] Athanasios Leontaris, Pamela C. Cosman, and Amy R. Reibman,“Quality evaluation of motion-compensated edge artifacts in compressed video,”IEEE Trans. Image Processing, 16(4): 943-956, 2007.
    [19] H.R.Wu and M. Yuen,“A generalized block-edge impairment metric for video coding,”IEEE Signal Processing Letters, 4(11):317-320, 1997.
    [20] S. Wolf and M. H. Pinson,“Spatial-temporal distortion metrics for in-service quality monitoring of any digital video system,”in Proc. SPIE, 3845:266-277, Boston, MA, 1999.
    [21] Fang Meng, Xiuhua Jiang, Hui Sun and Shuang Yang,“Objective perceptual video quality measurement using a foveation-based reduced reference algorithm,”in Proc. IEEE International Conference on Multimedia & Expo, 308-311, 2007.
    [22] Y.Horita, T.Miyata, I.P.Gunawan, T.Murai, and M.Ghanbari,“Evaluation model considering static-temporal quality degradation and human memory for SSCQE video quality,”in Proc. SPIE, 5150:1601-1611, Lugano, Switzerland, 9-11, 2003.
    [23] Patrick Le Callet, Christian Viard-Gaudin, and Dominique Barba,“A convolutional neural network approach for objective video quality assessment,”IEEE Trans. Neural Networks, 17(5): 1316-1327, 2006.
    [24] Mark Masry, Sheila S. Hemami, and Yegnaswamy Sermadevi,“A scalable wavelet-based video distortion metric and applications,”IEEE Trans. Circuits and Systems for Video Technology, 16(2): 260-273, 2006.
    [25] Irwan P. Gunawan and Mohammed Ghanbari,“Reduced-reference video quality assessment using discriminative local harmonic strength with motion consideration,”IEEE Trans. Circuits and Systems for Video Technology, 18(1): 71-83, 2008.
    [26] V.Baroncini and A.Pierotti,“Single-ended objective quality assessment of DTV,”in Proc. SPIE, 3845:244-253, Boston, MA, Sep. 19-22, 1999.
    [27] F.X.Coudoux, M.G.Gazalet, C.Derviaus, and P.Corlay,“Picture quality measurement based on block visibility in discrete cosine transform coded video sequences,”J. Electronic Imaging, 10(2): 498-510, 2001.
    [28] P.Gastaldo, R.Zunino, and S.Rovetta,“Objective assessment of MPEG-2 video quality,”J. Electronic Imaging, 11(3): 365-374, 2002.
    [29] J.Caviedes and F.Oberti,“No-reference quality metric for degraded and enhanced video,”in Proc. SPIE, 5150:621-632, Lugano, Switzerland, 2003.
    [30] Mylène C. Q. Farias, Marco Carli and Sanjit K. Mitra,“Objective video quality metric basedon data hiding,”IEEE Trans. on Consumer Electronics, 51(3): 983-992, 2005.
    [31] Paolo Gastaldo, Stefano Rovetta, and Rodolfo Zunino,“Objective Quality Assessment of MPEG-2 Video Streams by Using CBP Neural Networks,”IEEE Tran. Neural Networks, 13(4): 939-947, 2002.
    [32] Z. Wang, et al.,“Image quality assessment: from error visibility to structural similarity,”IEEE Trans. Image Processing, 13(4): 600-612, 2004.
    [33] X. B. Gao, T. Wang, and J. Li, A content-based image quality metric. D. Slezak et al. (Eds.): RSFDGrC2005, Lecture Notes in Artificial Intelligence, LNAI 3642, 231-240, 2005.
    [34] M. Yuen and H. R. Wu,“A survey of hybrid MC/DPCM/DCT video coding distortion. Signal Processing,”70(30): 247-278, 1998.
    [35] ITU-R Rec. BT.500-11. Methodology for the subjective assessment of the quality of television pictures, 2002.
    [36] M. Miyahara, K. Kotani, and V. R. Algazi,“Objective picture quality scale (PQS) for image coding,”IEEE Trans. Communication, 46(9): 1215-1226, 1998.
    [37] Xiaohui Zhang, Weisi Lin, Ping Xue,“Just-noticeable difference estimation with pixels in images,”Journal of Visual Communication and Image Representation, 19(1): 30-41, 2008.
    [38] Hamid R. Sheikh, Alan C. Bovik, and Gustavo D. Veciana,“An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics,”IEEE Trans. Image Processing, 14(12): 2117-2128, 2005.
    [39] Hamid R. Sheikh, Zhou Wang, Lawrence Cormack, and Alan C. Bovik. LIVE Image Quality Assessment Database. [Online]. Available: http://live.ece.utexas.edu/research/quality, 2003.
    [40] VQEG, Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment. http://www.vqeg.org/, 2000.
    [1] ITU-R BT.500-11, Methodology for the subjective assessment of the quality of television pictures.
    [2] ITU-T P.910, Subjective video quality assessment methods for multimedia applications.
    [3] ITU-T P.911, Subjective audiovisual quality assessment methods for multimedia applications.
    [4] ITU-R Recommendation BT.601-4, Encoding parameters of digital television for studios.
    [5] ITU-T Recommendation P.800, Methods for subjective determination of transmission quality.
    [6] ITU-R Recommendation BT.500-9, Methodology for the subjective assessment of the quality of television pictures.
    [7] Video Quality Research Home Page. Available: http://www.its.bldrdoc.gov/vqeg/.
    [8] VQEG,“Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment,”Phase I VQEG, 2000. Available: http://www.vqeg.org/.
    [9] VQEG,“Subjective Test Plan”, Version 3, 2003. Available: http://www.vqeg.org/.
    [10] VQEG,“Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment,”Phase II VQEG, 2003. Available: http://www.vqeg.org/.
    [11] ITU-T J.144, Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference. 2004.
    [12] ITU-T J.149, Method for specifying accuracy and cross-calibration of video quality metrics. 2004.
    [13] P. Corriveau, et al.,“Video quality experts group: Current results and future directions”, in Proc. SPIE Visual Comm. and Image Processing, 4067, 2000.
    [14] VQEG,“RRNR-TV Group Test Plan”, Draft Version 1.4, 2000.
    [15] VQEG,“Final Report of MM Phase I Validation Test”, Version 2.6, 2008.
    [16] VQEG,“Test Plan for Evaluation of Video Quality Models for Use with High Definition TV Content”,Draft Version 3.0, 2009.
    [17] VQEG,“Hybrid Perceptual/Bitstream Group Test Plan”, Draft Version 1.3, 2009.
    [18] Thomas Wiegand, Gary J. Sullivan, Gisle Bj?ntegaard, Ajay Luthra,“Overview of the H.264/AVC Video Coding Standard,”IEEE Trans. circuits and systems for video technology, 13(7): 560-577, 2003.
    [19] Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC, in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, 2003.
    [20] S. Wolf and M. H. Pinson,“Spatial-temporal distortion metrics for in-service qualitymonitoring of any digital video system,”in Proc. SPIE, 3845:266-277, Boston, MA, 1999.
    [21] Zhou Wang, Ligang Lu and Alan C. Bovik,“Video Quality Assessment Based on Structural Distortion Measurement”, IEEE Signal Processing: Image Communication, 19(2): 121-132, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700