用户名: 密码: 验证码:
芪丹通脉片干预VEGF的内皮双向作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景与目的
     血管内皮生长因子(VEGF,VEGFA)是促血管新生的关键而有力的调节因子之一。作为一种旁分泌蛋白质,VEGF具有抗内皮细胞凋亡、促内皮细胞有丝分裂和提高血管通透性等作用,是影响血管内环境稳态的重要分子。目前,人们对VEGF生物学作用的双面之争已成热点。一方面,无论在体内还是在体外,VEGF都是内皮细胞的一个促存活因子。缺血、缺氧均可诱导VEGF的表达和分泌。低氧可提高局部组织旁分泌VEGF,并作用在内皮细胞的VEGF受体上,刺激新血管的形成,以适应性调节局部血氧的供应。但是在另一方面,在冠心病、肿瘤、中风、糖尿病等许多疾病状态下,这一适应性调节会发生紊乱,VEGF的“保护性角色”反而转变成主要的致病性病理性因素。在针对这一争论的讨论中,人们逐渐发现,越来越多的依据提示VEGF量的改变与其不同的生物学效应关系密切。已知,血管内皮生长因子受体2(VEGFR2,Flk-1/KDR)是VEGF发挥内皮相关生物学效应的主要受体之一,VEGF激活作用下的KDR表达和胞内转运,调控着内皮细胞对新生血管信号的敏感性,以及下游分子的信号传导。
     传统中医药具有趋利避害性调节和维护机体的稳态平衡的优势。研究发现,益气活血类中药对VEGF表达和分泌有双面干预作用。一方面,益气活血中药通过下调VEGF分泌和表达而抑制肿瘤血管生成及血管内皮细胞的增生,减少组织的血供,抑制肿瘤的生长、转移及对机体有害的病理发展;另一方面,益气活血中药通过上调VEGF分泌和表达促进血管新生及血管内皮细胞的修复,在治疗缺血类疾病中独具特色。
     既往实验发现,芪丹通脉片(QDTMT)具有内皮细胞保护作用,可提高心肌缺血大鼠心室内VEGF表达,增加缺血区的微血管密度(MVD)。但是,在缺氧状态下,QDTMT是否对内源性VEGF分泌和表达水平存在双向调节,是否对其受体KDR也有调节作用尚属未知。
     以往关于活血化瘀中药影响VEGF的实验研究报道,基本上都设计在急性缺氧期,而有关VEGF影响血管增生的实验研究大多设计在疾病的病理改变形成后,后者需要的实验观察时间较长。因此,要进一步明确益气活血化瘀复方中药制剂干预VEGF不同生物效应的具体作用机制,还需要对疾病不同时段进行动态观察。
     为此,本研究在动物实验部分选用了便于动态观察的低压氧舱性大鼠缺氧模型。经QDTMT药物干预后,我们选择不同时间点动态测量了大鼠血清中的VEGF浓度变化,并相应观察了与本实验相关性较强的大鼠心、肝、肺多个组织内血管的病理形态改变。
     因为接近药物在体内作用的真实过程,血清药理学研究方法近些年发展迅速,本实验在设计中对此部分内容也有所借鉴。在制备了QDTMT含药血清后,为进一步探讨QDTMT的KDR相关分子机制,本实验还加入了体外细胞实验内容。通过培养并鉴定脐静脉内皮细胞(HUVECs),观察了QDTMT含药血清对低氧条件下的内皮细胞一般形态,超微结构和细胞活性的影响,并对细胞内KDR的表达变化进行了一定的观察。该实验从一定程度上证实了VEGF量的变化与其不同生物效应间的相关性,为QDTMT血管保护作用的分子机制提供了实验依据,丰富了中医传统理论中益气活血法有关的现代医学的科学内涵。
     二、芪丹通脉片对缺氧大鼠血管内皮生长因子的双向调节作用
     1研究方法和内容
     1.1动物模型的建立与评估健康雄性SD大鼠18只,置于全自动调节低压低氧舱,6h/d进行缺氧造模。除观察动物一般情况变化外,另取肺组织标本,HE染色观察肺组织内血管增生情况,对模型进行评估。
     1.2 QDTMT对缺氧大鼠VEGF的双向调节及血管保护作用健康雄性SD大鼠(n=30)随机分为正常对照组、低氧+QDTMT组(QDTMT组)、低氧+生理盐水组(生理盐水对照组)。动物造模方法同上,并分别在7d、14d两个时间点进行以下内容实验观察。
     1)动物麻醉后,从腹主动脉取血后分离血清,800rpm离心25min,分离血清,-70℃存放。使用前经56℃、30min灭活,0.22μm滤膜灭菌,-20℃保存备用。按ELISA试剂盒说明进行血清VEGF测定。
     2)取大鼠肺、心、肝组织,经4%多聚甲醛固定24h后,梯度乙醇脱水,石蜡包埋,HE染色,光镜下观察组织病理学改变。另取材3mm3大小肝组织块,经戊二醛固定后,透射电镜观察其超微结构改变。
     3) VEGF免疫荧光染色无菌条件下取胸主动脉组织,经4%多聚甲醛固定后,常规石蜡制片。按常规操作顺序进行免疫荧光染色。
     2实验结果
     2.1 ELISA结果:缺氧7d大鼠血清中VEGF浓度较缺氧前增加,缺氧14d大鼠血清中VEGF浓度进一步急剧增加,组间比较有统计学意义。缺氧7d,QDTMT组大鼠血清中的VEGF含量明显高于正常对照组和生理盐水对照组;而缺氧14d后,QDTMT组大鼠血清中VEGF含量低于生理盐水对照组,组间比较有统计学差异(P<0.05)。
     2.2形态学观察结果:光镜下可见,缺氧7d大鼠肺内血管结构改变不明显;缺氧14d大鼠肺组织血管增生明显。QDTMT组大鼠肺、心、肝组织血管增生性改变较生理盐水对照组轻。肝组织电镜结果提示,QDTMT组超微结构损伤较生理盐水对照组轻。而且,在QDTMT组大鼠肝组织内观察到VEGFR2相关的内体样超微结构。
     2.3 VEGF免疫荧光染色结果提示,缺氧7d,三组大鼠主动脉内层VEGF表达变化不大;缺氧14d,生理盐水对照组大鼠主动脉内观察到大量VEGF阳性表达,与ELISA结果相一致。
     3结论与提示
     3.1低压氧舱性缺氧模型下,大鼠血清中的VEGF浓度在不同病理阶段有所变化。
     3.2 QDTMT对VEGF分泌呈双向动态调节作用,可能是其血管保护作用主要机制之一。
     三、芪丹通脉片对缺氧脐静脉血管内皮细胞保护作用研究
     1研究方法和内容
     1.1体外培养人脐静脉血管内皮细胞(HUVECs)及鉴定
     参照文献记载的细胞培养方法,从人脐静脉分离内皮细胞进行原代及传代培养。利用显微镜和免疫荧光染色技术,从形态学和Ⅷ因子膜抗原鉴定培养的内皮细胞。
     1.2 QDTMT含药血清对缺氧HUVECs增殖、凋亡的影响
     1.2.1制备QDTMT含药血清
     成年雄性SD大鼠18只,分组及处理同动物实验部分内容。大鼠缺氧造模后,经腹主动脉取血并分离血清,存放于-70℃备用。参照文献及预实验比较,确定最佳含药血清浓度为10%后,用含100ml/L胎牛血清的M199培养基将3种血清的浓度均配制为10%。
     1.2.2 MTT法检测细胞活性
     选择生长状态良好的3-5代HUVECs,用含100ml/L胎牛血清的M199培养24h,再用无血清M199继续培养6h。将细胞分为A、B、C3份:(1)A份,加入10%空白对照组大鼠血清;(2)B份,加入10%生理盐水对照组大鼠血清;(3)C份,加入10%QDTMT组大鼠血清。除A份细胞在CO2培养箱正常培养24h外,其余两份细胞放入三相气体培养箱中,在37℃、5%CO2以及2%O2浓度条件下培养24h。MTT法常规操作,检测三份细胞的活性。
     1.2.3流式细胞术检测细胞凋亡细胞分组及处理同上,流式细胞仪常规操作测量细胞凋亡率。
     1.3 VEGFR2免疫荧光染色同上处理细胞后,使用常规免疫荧光技术,观察三份细胞中VEGFR2的表达情况。
     1.4细胞超微结构观察细胞同上处理,经离心、收集后,戊二醛固定,制备电镜标本。透射电镜下观察三份细胞超微结构。
     2实验结果
     2.1细胞鉴定及超微结构观察:在倒置显微镜下可见,培养的内皮细胞呈典型铺路石子状排列生长。免疫荧光鉴定结果提示,培养的内皮细胞胞浆呈Ⅷ因子阳性表达。透射电镜观察其超微结构,可见内皮细胞特有的短棒状细胞器Weible-Palade小体。
     2.2 QDTMT含药血清对缺氧HUVECs的影响
     1) MTT结果提示,与A份细胞相比,缺氧使B份和C份细胞增殖受到抑制;与B份相比,QDTMT含药血清干预后的C份内皮细胞增殖明显,组间比较有统计学差异(P<0.05)。
     2)流式细胞术检测结果提示,缺氧使B、C两份细胞的凋亡率较A份细胞凋亡率增高;QDTMT含药血清干预后的C份内皮细胞凋亡率低于B份细胞,组间比较有统计学差异(P<0.05)。
     2.3免疫荧光结果提示,C份内皮细胞上表达的VEGFR2阳性信号强于B份细胞。
     2.4电镜结果提示,在C份细胞的超微结构中发现与VEGFR2转运有关的内涵体结构。
     3结论与提示
     在低氧状态下,体外培养的脐静脉内皮细胞凋亡率增加、增殖减少,QDTMT含药血清干预后的HUVECs则表现出了细胞增殖提高、凋亡率降低。QDTMT对缺氧HUVECs的保护作用可能和它促进内皮细胞VEGFR2表达有关。
一、Research background and aim
     The role of vascular endothelial growth factor (VEGF, also referred to as VEGFA) in the regulation of angiogenesis is the object of intense investigation now. As the most critical and potent proangiogenic regulator, VEGF is a protein with antiapoptotic, mitogenic, and permeability -increasing activities specific for vascular endothelium. For one hand, VEGF is a survival factor for ECs, both in vitro and in vivo. But for the other hand, VEGF has been implicated in pathological angiogenesis associated with tumors, stroke,diabetes, coronary artery disease. The expression and secretion of VEGF is in ischemia and oxygen deficiency. There is much evidence that diverse biological effects of VEGF on ECs have much to do with its concentration. It has been an agreement that VEGF stimulates vascular endothelial cells mainly through VEGF receptor 2 ( VEGFR2,Flk-1/KDR ). VEGF-stimulated recycling of KDR regulates the sensitivity of endothelial cells to proangiogenic signals.
     It is well known that traditional Chinese medicine (TCM) is potential to the regulation of homeostasis. Recent studies have demonstrated that TCM of reinforcing Qi and promoting blood circulation exert two-ways regulation of VEGF expression and secretion. Some researchers have showed that TCM can upregulate the level of VEGF as an attractive approach in therapeutic angiogenesis. Conversely, a variety of studies suggest that TCM play an important role in antiangiogenic therapies.
     Previously, we have described Qidantongmai tablet (QDTMT) protect vascular endothelial cell (VEC), increase the VEGF expression in ventricles of myocardial ischemia rats and improve the microvessel density(MVD) in the ischemia zones. However, in hypoxic condition, whether QDTMT has regulation effects on VEGF and KDR is not known. What’more, a long time investigation is required of the complex pathophysiological process in animal experiments.
     In this study, the hypobaria hypoxia chamber is used for the rat hypoxic models. After QDTMT treatment, the concentrations of VEGF in rat serum is detected. The pathological changes of rat tissues and the expression of VEGF in blood vessel are observed in this study. In vitro, we have cultured and subcultured human umbilical endothelial cells(HUVECs), and have observed effects of serum containing QDTMT on endothelial proliferation and apoptosis in hypoxia. In addition, the expression of KDR is also investigated in HUVECs. We use this research to improve understanding of the balance between VEGF level and its biological activies,and of the relationship between the arterioprotection of endothelium and YiqiHuoxue principle in TCM.
     二、Regulation effect of QDTMT on VEGF expression in rats with hypoxic model
     1 Methods
     1.1 The establishment of animal model
     Male Sprague-Dawley rats (n=18) were exposed to low pressure and low oxygen conditions in hypobaric and hypoxic chamber ,6 h /d, for the estab lishment of animal model. After observation of the general state of rats, the lung tissues of rats were collected with Hemotoxylin and Eosin dye, and investigated the proliferation of vascular.
     1.2 Effect of QDTMT on rats with hypoxic model Male Sprague-Dawley rats (n=30) were randomly divided into 3 groups: normal control, hypoxia+ QDTMT (QDTMT), hypoxia + normal saline(hypoxic control). With the animal model of hypobaric hypoxia (HBH) for 7d and 14d,we investigated the pathological changes. Then , as following:
     1) After hypoxia, the serum level of VEGF in rats were detected by ELISA kit.
     2) After hypoxia , lung tissue,heart tissue and liver tissue were fixed with 4% paraffin for about 24 h, and embedded, treated with Hemotoxylin and Eosin dye ,and observed with light microscope. The ultrastructure of liver tissue was observed with electron microscope too.
     3) VEGF expression Open the chest under the sterile condition and the thoracic aorta tissues were fixed with 4% paraform for 8 h .The VEGF positive cells were detected by immunofluorescence in aorta.
     2 Results
     2.1 ELISA After 7d of hypoxia, we found that the concentration of VEGF in serum of QDTMT group was higher than that of normal control and hypoxic control (P < 0.05); after 14d of hypoxia, the VEGF level of hypoxic control was higher than that of QDTMT group (P< 0.05).
     2.2 Pathological changes results Afer 7d of hypoxia, pathological changes of rats showed that blood vessel structural changes were slight in all the groups; afer 14d of hypoxia, pathological changes of vascullar structural were clear in hypoxic control under microscope. Pathological changes were decreased in QDTMT group. In addition , we found the endosome structure in QDTMT group with electron microscope.
     2.3 Immunofluorescence results After 14d of hypoxia, a lot of VEGF positive cells were seen in aorta of hypoxic control group.
     3 Conclusions
     3.1 The level of VEGF in rat serum changed in different pathological stages in this HBH hypoxia model.
     3.2 Two-ways regulation effect on VEGF level may be one of the mechanism for QDTMT to protect the endothelial tissue in hypoxia condition.
     三、Study on protective effects of QDTMT to anoxic HUVECs
     1 Methods
     1.1 Cell cultivation and identification Human umbilical vein endothelial cells(HUVECs) were got from infant umbilical cord for primary cultivation and subcultivation as previously described. HUVECs were identified by morphologic character and membrane antigenⅧfactor. HUVECs were subcultured for use at passage 3-5.
     1.2 Effects of serum containing QDTMT on HUVECs activities in hypoxia.
     1.2.1 preparation for serum containing QDTMT According to different treatment factors , male Sprague-Dawley rats (n=18) were randomly divided into three groups. After hypoxic treatment, serum containing QDTMT was collected and stored in -70℃(refer to study in vivo) .It was showed that the best dilution of serum containing QDTMT was 10%. After diluted in M199 media, the serum concentration of all groups was 10%.
     1.2.2 MTT for HUVECs cytoactive
     HUVECs between passage 3 and 5 were cultured with M199 media for 24h, and were free of M199 media for 6h. Then cells were divided into three groups: (1)A, treated with 10% serum from normoxia control ; (2)B, treated with 10% serum from hypoxic control; (3) C, treated with 10% serum from QDTMT group. Except for normoxia control,cells in the other two groups were exposed in hypoxia condition for 24 h. The proliferation of HUVECs was observed in MTT.
     1.2.3 The apoptosis ratewas tested with FCM in all groups.
     1.3 Using immunofluorescence microscope, we examined the expression of VEGFR2 in HUVECs of all groups.
     1.4 After fixed with glutaraldehyde the ultrastructure of HUVECs was observed with electron microscope.
     2 Results
     2.1 The morphology of cultured cells was obviously changed in the shape of cobble-stone under microscope. We also found the characteristic Weible-Palade bodies in cultured HUVECs. In addition , cells were seen stained with factorⅧby immunofluorescence microscope.
     2.2 The effect of serum containing QDTMT on hypoxic HUVECs.
     1) The MTT showed that the cell cytoactive of B ans C was lower than that of A. QDTMT promoted the proliferation of HUVECs in hypoxic condition, and the proliferation level was higher in C group treated with serum containing QDTMT than that of B group (P < 0.05).
     2) The FCM assay showed that the apoptosis rate was lower in C group than that of B group (P < 0.05).
     2.3 Result of immunofluorescence The VEGFR2 expression level of HUVECs was higher in C group than that of B.
     2.4 With electron microscope, we fund the endosome in C group. Endosome is an important intracellular pool for VEGFR2/KDR mobilization within endothelial cells.
     3 Conclusions
     The results demonstrated that serum containing QDTMT improved the activities of antiapoptosis and proliferation of cultured HUVECs .To enhance the expression of VEGFR2 may be one of the endothelial protective effects of QDTMT.
引文
1顾振纶,戴德哉.心血管药理学新论[M]人民卫生出版社2004:319-322
    2庞明.中国老年心血管病流行现状[J]广西医学,2007;29(1):139-140
    3 Ferrara N, Gerber HP, LeCouter J.The biology of VEGF and its receptors. Nat Med,2003;9(6):669-76
    4 T.Mirzapoiazova, I.Kolosova, PV.Usatyuk, et al. Diverse effects of vascular endothelial growth factor on human pulmonary endothelial barrier and migration . Physiol Lung Cell Mol Physiol,2006;291(4):L718-24
    5 Khurana R, Simons M, Martin JF, et al. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation, 2005 ;112(12):1813-1824
    6 Yamakawa M, Liu LX, Date T, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res,2003;93(7):664-73
    7储永良,黄清春.活血化瘀中药对血管内皮生长因子影响的研究进展[J]中国中医药信息杂志,2006;13(8):96-99
    8王宗仁,李晶华,肖铁卉,等.芪丹通脉片预防大鼠急性心肌缺血及对VEGF,bFGF表达的影响[J].第四军医大学学报,2003;24(7): 628-631
    9王文,王宗仁,张金洲,等.芪丹通脉片对大鼠缺血心肌的血管新生作用与机制研究[J]中国中医急症,2007;16(2):190-191
    10刘群峰,马虹.血管内皮细胞与心血管疾病的关系及其研究进展[J].心脏杂志,2000;12(2):126-128
    11 Huber TL, Kouskoff V, Fehling HJ, et al. Haemangioblast commitment isinitiated in the primitive streak of the mouse embryo. Nature. 2004; 432(7017): 625-30.
    12 Fiuza C, Bustin M, Talwar S,et al. Inflammation promoting activity of HMGB1 on human microvascular endothelial cells. Blood,2003; 101: 2652 - 2660
    13 Berk BC, MinW, Yan C,et al. Athero protective mechanisms activated by fluid shear stress in endothelial cells. Drug News Perspect, 2002; 15: 133 - 139
    14杨彬,赵海梅,成蓓.血管内皮细胞在传代中的衰老与线粒体膜电位的变化[J]中华老年心脑血管病杂志,2006;8 (6):412-415
    15 Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25: 581–611
    16 Neufeld G, Cohen T, Gengrinovitch S, etal. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9-22
    17 C. A. Glass, S. J. Harper,D. O. Bates. The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. Physiol 2006;572(1):243–257
    18 Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39(5):469-78.
    19 Zachary I, Gliki G.Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49(3):568-581
    20 Stewart-M,Turley-H; Cook-N,etal.The angiogenic receptor KDR is widely distributed in human tissues and tumours and relocates intracellularly onphosphorylation. An immunohistochemical study. Histopathology. 2003, 43(1): 33-9
    21 Smith J, Kontermann RE, Embleton J, et al. Antibody phage display technologies with special reference to angiogenesis. FASEB J. 2005;19(3):331-41
    22 Gille H, Kowalski J, Li B, et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). J Biol Chem. 2001 ;27 (5) :3222-30
    23 Kumazaki K, Nakayama M, Suehara N,et al Expression of vascular endothelial growth factor, placental growth factor, and their receptors Flt-1 and KDR in human placenta under pathologic conditions. Hum Pathol. 2002; 33(11):1069-77.
    24 A. Gampel, L. Moss, M. C. Jones, et al.VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood, 2006; 108(8): 2624 - 2631.
    25 Ewan LC, Jopling HM, Jia H,etal.Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic. 2006 ;7(9):1270-82
    26 Ross MA, Sander CM, Kleeb TB, et al.Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology. 2001;34(6):1135-48
    27 Shen BQ, Lee DY, Gerber HP, et al .Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J Biol Chem. 1998 ;273(45):29979-85
    28 Stewart M, Turley H, Cook N, et al. The angiogenic receptor kdr is widely distributed in human tissues and tumours and relocates intracellularly onphosphorylation an immunohisto-chemical study. Histopathology, 2003; 43:33– 39
    29 Machida K, Mayer BJ. The SH2 domain:versatile signaling module and pharmaceutical target. Brochim Biophys Acta,2005;1747(1):1-25
    30Yl?-Herttuala S, Rissanen TT, Vajanto I, etal. Vascular Endothelial Growth Factors Biology and Current Status of Clinical Applications in Cardiovascular Medicine J Am Coll Cardiol, 2007; 49(10):1015-1026
    31 Wu LW, Mayo LD, Dunbar JD,etal.Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation.J Biol Chem. 2000 ;275(7):5096-103.
    32 MA J Hervé, G Meduri1, F G Petit, et al. Regulation of the vascular endothelial growth factor (VEGF) receptor Flk-1/KDR by estradiol through VEGF in uterus. Journal of Endocrinology, 2006;188:91–99.
    33 Sasaki H, Fukuda S, Otani H, et al.Hypoxic preconditioning triggers myocardial angiogenesis: a novel approach to enhance contractile functional reserve in rat with myocardial infarction. J Mol Cell Cardiol.2002 ;34(3):335-48.
    34陈伟海.血管内皮生长因子受体信号转导通路与生物学效应.[J]国外医学心血管疾病分册.2005;32(3):160-162
    35 Kaur C, Sivakumar V, Lu J, et al. Increased vascular permeability and nitricoxide production in response to hypoxia in the pineal gland. J Pineal Res.2007;42(4):338-49
    36 Fukuda S, Kaga S, Sasaki H, et al. Angiogenic signal triggered by ischemic stress induces myocardial repair in rat during chronic infarction. J Mol Cell Cardiol. 2004;36(4):547-59
    37 J.E. Nor, J. Christensen, D.J. Mooney, et al. Vascular endothelial growth factor(VEGF)-media-ted angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol. 1999;154: 375–384.
    38 Betty Y Y Tam, Kevin Wei, John S Rudge, et al. VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis. Nature Medicine. 2006;12:793– 800
    39 Hubold C, Oltmanns KM, Schultes B, et al. High plasma VEGF relates to low carbohydrate intake in patients with type 2 diabetes. Int J Obes (Lond). 2006;30(9):1356-61.
    40 Czarkowska-Paczek B, Bartlomiejczyk I, Przybylski J. The serum levels of growth factors: PDGF, TGF-beta and VEGF are increased after strenuous physical exercise. J Physiol Pharmacol. 2006;57(2):189-97.
    41 Jia H, Bagherzadeh A, Bicknell R, et al. Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem, 2004; 279 (34) : 36148–36157
    42薛猛,孙强.胚胎的血管发育及其调控机制[J]中国比较医学杂志,2003;13(1):45-49
    43 Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell specific receptor tyrosine kinase:VEGF’s, angiopoietins and ephrins in vascular development.Genes Dev,1999;78(13):1055-1066
    44 ZHANG Cai-ping, XIAO Chuan-shi. The roles of Endothelial Progenitor Cells in Neovascularity. J. Adv Cardiovas Dis.2007;28(1):85-88.
    45 Pradeep CR, Sunila ES, Kuttan G.Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies.Integr Cancer Ther.2005;4(4):315-321.
    46 Yamakawa M, Liu LX, Date T,etal.Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res. 2003;93(7):664-73.
    47 Cramer,T. HIF1 is essential for myeloid cell-mediated inflammation.Cell 2003,112:657-658.
    48 Arcangelo D, Facchiano F, Barlucchi LM,et al .Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ Res. 2000;86(3):312-8.
    49 Shiojima I, Walsh K. The role of vascular endothelial growth factor in restenosis: the controversy continues. Circulation, 2004,110:2283–2286.
    50 Ratner M. Genentech discloses safety concerns over Avastin. Nat Biotechnol ,2004;22:1198.
    51 Simons M. Angiogenesis: where do we stand now? Circulation, 2005 ;111:1556–1566.
    52 K. M. Oltmanns, H. Gehring, S. Rudolf, et al. Acute hypoxia decreases plasma VEGF concentration in healthy humans. Am J Physiol Endocrinol Metab, 2006 290(3): E434 - E439.
    53 Pufe T, Lemke A, Kurz B, et al. Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am J Pathol. 2004 ;164(1):185-92.
    54 Jelkmann W. Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem. 2001;47(4):617-23.
    55 Futami R, Miyashita M, Nomura T, et al. Increased serum vascular endothelial growth factor following major surgical injury. J Nippon Med Sch. 2007 ;74(3):223-9.
    56 Christopher Heeschen, James J. Jang, Michael. et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine. 2001; 7, 833 - 839
    57 Zhu XY, Daghini E, Chade AR,etal.Disparate effects of simvastatin on angiogenesis during hypoxia and inflammation.Life Sci.2008;83(23-24) :801-809.
    58 Awasthi N, Schwarz MA, Verma V,etal. Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling.Lab Invest. 2009 ;89(1):38-46.
    59肖俊会,何靖,张宏考,等.血管内皮生长因子的心脏保护作用的研究进展[J].心脏杂志,2006;18(6):713-714,717
    60 Khurana R, Simons M, Martin JF, et al. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation., 2005; 112(12):1813-1824
    61 Birot OJ, Peinnequin A, Simler N, et al. Vascular endothelial growth factor expression in heart of rats exposed to hypobaric hypoxia: differential response between mRNA and protein. Cell Physiol,2004;200(1):107-115
    62 Futami R, Miyashita M, Nomura T, et al.Increased serum vascular endothe lial growth factor following major surgical injury. Nippon Med Sch, 2007 ;74(3):223-229
    63 Pufe T, Lemke A, Kurz B, et al. Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am J Pathol, 2004;164 (1):185-92
    64汪俊元,王安才.他汀类药物对血管重构的干预机制[J].心脏杂志,2006;18(3):356-358.
    65 Epstein SE, Stabile E, Kinnaird T, et al. Janus phenomenon: the interrelatedtradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation,2004;109:2826–2831.
    66李前,谈立明,熊辉.活血化瘀中药干预微血管新生的研究概况[J]中医药导报.2007;13(4):94-98
    67 Zhu H B, Wang Z H, Ma C J , et al. Neuroprotective effects of hydroxylsafflor yellow A : In vivo and in vitro studies Planta Med ,2003,69:429 24331
    68张岭,宋艳,李长龄,朱美才,王卉,刘珂,朱海波羟基红花黄色素A促内皮细胞增殖的机制研究[J]中草药,2008,39(3):403-408
    69 Kojima-Yuasa A, Hua JJ, Kennedy DO, etal.Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci. 2003 ,25;73(10):1299-313
    70何秀娟,李萍,邱全瑛.外用中药有效成分对血管增殖作用的影响[J]中国病理生理杂志.2003;9 (11) ;1570
    71 Wang S,Zheng Z,Weng Y,etal.Angiogenesis and anti—angiogenesis activity of Chinese medicinal herbal extracts LifeSci, 2004;74(20):2467- 78
    72王世军,简隆磊,张栋,等.川芎嗪、葛根素、银杏黄酮及三七皂甙对鸡胚尿囊膜血管生长的影响[J].中国微循环, 2005;9 (1) : 78
    73中药抑制血管平滑肌细胞增殖、凋亡与迁移研究进展.周国庆,李荣亨.实用中医药杂志.2005;21(9):577-579.
    74隋岫兰,杨锋,陈荣华,等.红景天抑制人脐静脉内皮细胞生长的初步研究[J]细胞与分子免疫学杂志,2006;22(4):524-525
    75 Guruvayoorappan C, Kuttan G.Anti-angiogenic effect of Biophytum sensitivum is exerted through its cytokine modulation activity and inhibitory activity against VEGF mRNA expression, endothelial cell migration andcapillary tube formation. J Exp Ther Oncol. 2007;6(3):241-50.
    76尹丽慧,丁志山,高承贤,等.参麦注射液对血管生成的影响[J].中国中西医结合杂志,2002;22(10):761
    77 Liu C, Jiang CM, Liu CH, etal.Effect of Fuzhenghuayu decoction on vascuar endothelial growth factor secretion in hepatic stellate cells. Hepatobiliary Pancreat Dis Int. 2002 ;1(2):207-210.
    78钱勇,张励,李庆生.含中药血清对血管内皮细胞生长因子诱导的脐静脉内皮细胞增殖的影响[J]中国中医眼科杂志2002 ;12 (3 ):132-134
    79季宇彬.中药复方化学与药理[M].北京:人民卫生出版社,2003, 86 - 592.
    80徐晓玉,王淑美,陈伟海,等.桃红四物汤Ⅱ号抗血管生成作用及其对KDR / FLK- 1表达的影响[J].中药新药与临床药理,2005 ;16 (5):329-332
    81陈达理.鳖甲煎丸抗肿瘤血管生成的实验研究[J].浙江中医杂志,2004;12: 535 - 537
    82石锦萍,杨红,周毅.乌三颗粒对肿瘤新生血管形成的干预作用及机制研究[J].中药药理与临床,2003;19(1):22–24
    83 Ran, Kornowski , shmuel Funchs,et al.Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation ,2000;101:454-458
    84 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature, 2000,407(6801):249-257
    85徐彦,潘立群,姚昶.中药与血管生成研究进展[J].辽宁中医杂志, 2007;34(3):377-379
    86李晓新,王保和.治疗性血管新生与中医药治疗缺血性心脏病[J].北京中医,2007;26(3):186-189
    87徐杰,范维唬.丹参多酚酸盐对人血管内皮细胞迁移的影响[J].中西医结合学报, 2003;1 (3) : 211
    88 He HB, Yang XZ, Shi MQ, etal. Comparison of cardioprotective effects ofsalvianolic acid B and benazepril on large myocardial infarction in rats Pharmacol Rep. 2008 ; 60(3):369-81
    89刘日光,沈冯君,尹培荣.中药对股骨头缺血坏死修复过程中血管内皮生长因子基因表达的影响[J].中国骨伤,2004;17(12):705–708
    90高燕,高倩,李悦山,等。黄芪、当归及其组方促血管内皮细胞增殖作用的研究[J].中国中西医结合杂志,2003;23(10):753–756
    91王维佳,许林薇,俞杭平.补肾活血中药促进骨折愈合的实验研究[J].中国中医基础医学杂志,1998;4(9):35
    92王晓庆,梁中琴,顾振纶,等.姜黄素抑制血管生成作用的实验研究[J].苏州大学学报(医学版),2004;24(3):348
    93王鹂,刘学法,王佑华,等.鸡胚法筛选促血管生成中药的研究[J].中国中医药科技,2005; 12(4):476
    94梁连生,余静,宋瑞霞,等.甘肃黄芪黄酮对AngⅡ致内皮细胞凋亡的保护作用[J].中国药理学通报,2006;22(12):1505-1509
    95满永,丁莉,国汉邦,等.丹参红花提取物保护内皮细胞免受氧化损伤的体外实验[J].中国临床康复,2006;10(39):119-122
    96王保华,欧阳静平,涂淑珍,等.当归抗高脂血清致内皮细胞损伤的保护作用[J].中国病理生理杂志,2000;16(10):856
    97雷燕,王军辉,陈可冀.黄芪、当归配伍后促鸡胚绒毛尿囊膜血管生成的药效比较研究[J].中国中药杂志, 2003;28(9):876
    98雷燕,高倩,李悦山,等.黄芪、当归及其组方促血管内皮细胞增殖作用的研究[J].中国中西医结合杂志,2003;23(10):753
    99朱兆恩,郭凯霞,张子英.促血管生成中药研究进展[J].人民军医2005;48(6):362-365
    100王蕾,吕新霞,吴志奎,等.补肾生血药对金黄地鼠子宫组织bFGF、VEGF表达水平的影响[J].中国中医基础医学杂志,2000;6 (12) :795
    101孟君,冯君,丘瑞香,等.心脉通胶囊对急性心肌梗塞患者血管内皮生长因子表达的影响[J].广州中医药大学学报,2002;19 (2):88
    102马芳.通心络促脑缺血后毛细血管新生的实验研究[J].卫生职业教育, 2004;22 (17) : 151 - 152
    103刘健,樊小农,张占军.中药治疗脑缺血作用机制的研究进展. [J].中医药学刊,2006;24(2):326-329
    104侯家玉,主编新世纪全国高等中医药院校规划教材·中药药理学[M].北京:中国中医药出版社,2002,212-215,143-146,158-160,220-223.
    105孙学刚,赵益业,谢小丹,等.补阳还五汤对动脉粥样硬化小鼠诱导型一氧化氮合酶表达的影响[J].中药药理与临床, 2006;22(1) :14-17
    106韩学杰,沈绍功.探讨血管内皮损伤致冠心病心绞痛的发生机理[J] .中国中医基础医学杂志,2001 , (4) :23
    107王宗仁,马静,行利,等.芪丹通脉片对大鼠心肌线粒体损伤的保护作用[J]第四军医大学学报2003; 24(5):400-402
    108于海鹰,王宗仁,马静,魏立强.芪丹通脉片对内皮细胞抗血栓形成作用的影响[J].第四军医大学学报2005;26(10):948-950
    109鲍臻,夏天,王宗仁,等.芪丹通脉片对急性心肌缺血犬血液流变学及生化指标的影响[J]心脏杂志,2001;13(2):125-127
    110马静,王宗仁,马世平,等.芪丹通脉片对健康犬冠状动脉血流量及阻力影响[J]安徽中医学院学报,2001;20(3):45-47
    111肖铁卉,王宗仁,李晶华,等.芪丹通脉片对高脂血症大鼠血液、细胞流变性及红细胞膜流动性的影响[J]安徽中医学院学报,2002,21(1):42-45
    112王星,王宗仁,王三虎,等.芪丹通脉片对大鼠脑缺血再灌注损伤乳酸脱氢酶及氧自由基的影响[J]第四军医大学学报2004;25(23):2193-2195
    113马世平,王宗仁,龙铟,等.芪丹通脉片对高脂血症的药理作用[J]第四军医大学学报2000; 21 (4):515-518
    114魏立强,王宗仁,王琳,等.芪丹通脉片对大鼠血管内皮细胞损伤的保护作用[J].第四军医大学学报,2005;26(4): 321-324
    115龙铟,王宗仁,马静.芪丹通脉片对大鼠血栓形成及血液粘度的影响[J]微循环学杂志2006;16(1) :37~39
    116肖茜,王宗仁,王超,等.芪丹通脉片对急性心肌梗死兔脑钠肽和心室重构的影响[J].解放军医学杂志,2008;33(4):433-443
    117马爱玲,王宗仁,郑瑾,等.芪丹通脉片对实验性动脉粥样硬化大鼠动脉壁ICAM-1、VCAM-1基因表达的影响[J]第四军医大学学报2004;25(4):355-358
    118肖铁卉,王宗仁,李晶华,等.芪丹通脉片对实验性异丙肾上腺素致心肌损害的心肌ICAM-1表达影响[J].第四军医大学学报,2003;24(5): 412 - 414.
    119郑瑾,王宗仁,马爱玲,等.芪丹通脉片对动脉粥样硬化大鼠主动脉及单个核细胞CD40表达的影响[J].第四军医大学学报,2004;25(6): 523- 526.
    120李晶华,王宗仁,肖铁卉,等.芪丹通脉片对急性心肌缺血犬血清NO和血浆ET水平的影响[J]安徽中医学院学报,2002;21(1):39-41
    121马爱玲,王宗仁,郑瑾,等.芪丹通脉片对动脉粥样硬化大鼠血清NO含量及动脉壁eNOS基因表达的影响[J].第四军医大学学报,2004;25(13): 1225-1228.
    122李静,王文,王宗仁.芪丹通脉片联合骨髓间充质干细胞修复损伤内皮细胞Caspase-3、c-IPI-1和c-IPI-2的表达[J].中医药导报,2007;13(2):9-11
    123谢娟,王宗仁,彭丽静,等.益气活血中药对缺血心肌降钙素基因相关肽免疫反应神经纤维的影响[J]中国临床康复,2006,10(3):57-60
    124王彬,王宗仁,李军昌,等.芪丹通脉片对大鼠缺血/再灌注损伤心肌细胞GLUT4的影响[J]心脏杂志,2007;19(3):255-257
    125赵燕玲,曲友直,王宗仁.芪丹通脉片及拆方对脑缺血再灌注后神经细胞凋亡及Bcl-2蛋白表达的影响中华老年心脑血管病杂志,2006;8(2):133-135
    126王冰,王宗仁,江山,等.活血化瘀类中药制剂对海马缺血损伤大鼠学习记忆的影响[J]中国临床康复,2005;9(48):62-64
    127王冰,王宗仁,王洪典,等.芪丹通脉片对大鼠海马局部缺血及HSP70蛋白表达的影响[J]第四军医大学学报,2006;27(5):454-456
    128李晶华,王宗仁,肖铁卉,等.芪丹通脉片预防异内肾上腺素所致的大鼠慢性心肌缺血.第四军医大学学报,2003,24(5):397
    129王宗仁,李晶华,肖铁卉,等.芪丹通脉片预防大鼠急性心肌缺血及对VEGF、bFGF表达的影响[J].第四军医大学学报,2003,24(7):628-630.
    130王文,张金洲,李静,等.芪丹通脉片含药血清体外诱导MSCs分化为内皮细胞的作用[J].现代生物医学进展,2006;6(11):20-21
    131 Yamakawa M, Liu LX, Date T, et al.Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. [J].Circ Res,2003;93(7):664-73.
    132 Langmeier M, Pokorny J, Mare? J, et al. Changes of the neuronal structure produced by prolonged hypobaric hypoxia in infant rats [J]. BiomedBiochem Acta 1989;48:S204–207.
    133陈主初.病理生理学[M]人民卫生出版社2001:158,160-168
    134范佳林,邱前辉.人脐静脉血管内皮细胞的培养与鉴定[J]现代中医药,2005,第3期:5-6
    135黄泰康,王米渠.中医分子生物学—分子中医学[M].北京:中国医药科技出版社,2003:201-203
    136王喜军.中药及中药复方的血清药物化学研究.世界科学技术·中药现代化,2002,4(2):1
    137彭智聪,黄静宁,郭宝丽,等.中药血清药理学实验方法研究进展[J].中国实验方剂学杂志,2001;7(2):57-59
    138季宇彬.中药复方化学与药理[M].北京:人民卫生出版社,2003:16-18
    139吴健字,李仪奎,符胜光.补阳还五汤保护自由基损伤血管内皮细胞的血清药理实验方法的建立[J].中药药理与临床,1999,15(1):45-46
    140王喜军.中药血清药物化学的研究动态及发展趋势[J].中国中药杂志,2006,31(10):789-792,835
    141张声鹏,施旭光,桂蜀华.关于中药血清药理学中血清供体动物是否造模的思考[J].中国中西医结合杂志,2001;21(5):388-389
    142孙新,苏慧,臧益民,等.U50488H对低氧性肺动脉高压大鼠体内一氧化氮、内皮素及血管紧张素II水平的影响[J].心脏杂志,2007,19(3):249-257
    143 Maloney J, Wang D, Duncan T, etal. Plasma vascular endothelial growth factor in acute mountain sickness. Chest 2000;118:47-52
    144王福安,张学庸,胡家露主编.生物大分子的内化[M].北京:科学出版社,1995:83-86
    145.N. A.Y. Chung, F. Belgore, F. L. Li-Saw-Hee, etal.Is the Hypercoagulable State in Atrial Fibrillation Mediated by Vascular Endothelial Growth Factor ?Stroke, 2002; 33(9): 2187 - 2191.
    146. Yang L, Soonpaa MH, Adler ED, etal. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524-8.
    147. Dor, Y., Porat, R. Keshet. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis.Am.J.Physiol. 2001,280, C1367-C1374 .
    148. Zachary I, Mathur A, Yla-Herttuala S, Martin J. Vascular protection: A novel nonangiogenic cardiovascular role for vascular endothelial growthfactor. Arterioscler Thromb Vasc Biol. 2000;20(6):1512-20
    149. Bhardwaj S, Roy H, Gruchala M, etal. Angiogenic responses of vascular endothelial growth factors in periadventitial tissue.Hum Gene Ther. 2003;14(15):1451-62
    150. Moulton KS, Vakili K, Zurakowski D,etal.Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A. 2003 15; 100(8):4736-41.
    151.薛洁,谢梅林.中药血清药理学的方法学研究近况[J]中草药,2003,34(6):附9-11
    152.接传红,高健生.中药密蒙花抗血管内皮细胞增生作用的研究[J]眼科,2004,13(6):348-350
    153. Saito A, Sugawara A, Uruno A, et al.All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrin ology. 2007,148(3):1412-23
    154.司徒镇强,吴军正.细胞培养[M]西安:世界图书出版公司, 2004:5-7
    155. Bhattacharya-R, Kang-Decker-N, Hughes-D-A, et al. Regulatory role of dynamin- 2 in VEGFR-2 / KDR -mediated endothelial signaling. FASEB -J. 2005; 19(12): 1692-4
    156.金海龙,徐雪,王保国,等.麻醉大鼠停通气缺氧模型的建立[J].麻醉与监护论坛,2004,11(5):328-334
    157.朱欣佚,王长松,谢建军.玉竹对缺氧模型小鼠抗缺氧作用的实验研究[J].长春中医药大学学报,2007,23(4):13-14.
    158.王建春,孙晓霞,杜大江,等.小鼠常压急性缺氧模型装置及其应用[J].动物学杂志,2003,38(2):81-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700