用户名: 密码: 验证码:
抑制蛋白酶体干扰骨髓瘤细胞未折迭蛋白反应与自噬
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:多发性骨髓瘤(multiple myeloma,MM)作为一种浆细胞恶性肿瘤,其高蛋白合成与分泌活性极易导致未/错折迭蛋白积聚于内质网腔,故骨髓瘤细胞极易诱发内质网应激(endoplasmic reticulum stress,ERS)。ERS的生化基础称为未折迭蛋白反应(unfolded protein response,URP)。UPR作为一种旨在修复、稳定内质网功能的细胞适应性反应,能通过IRE1α与PERK/eIFα信号通路而调控分子伴侣BiP表达及转录因子XBP-1、CHOP的活化,其中BiP与XBP-1促进细胞生存,而CHOP则介导细胞凋亡。两类信号间的紊乱失衡最终导致细胞死亡。真核细胞适应性反应除了UPR,还有自噬反应(autophagy)。自噬是真核细胞适应营养或生长因子缺乏、低氧、内质网应激等有害刺激,由溶酶体介导的长寿命蛋白或细胞器的降解的一种分解性代谢反应。自噬体形成是自噬的关键步骤,而自噬体形成依赖Atg5及Atg8/LC3等自噬相关蛋白与Beclin1-磷脂酰肌醇三磷酸激酶(PI3K)复合物的综合调控。研究表明,在酵母细胞中UPR既能触发凋亡又能诱发自噬,而在骨髓瘤细胞中,UPR与自噬关系尚不清楚。
     蛋白酶体抑制剂硼替佐米(Bortezomib)能选择性抑制26S蛋白酶体,对多发性骨髓瘤临床疗效显著,其抗瘤效应可能通过干扰NF-κB信号来实现,然而最近发现NF-κB抑制剂诱发骨髓瘤细胞凋亡的程度却远不及蛋白酶体抑制剂显著。提示NF-κB途径不能完全解释硼替佐米的抗瘤效应。近年报道内质网应激诱导的细胞凋亡为硼替佐米的重要效应机制,但其具体调控过程尚不清楚。考虑到内质网应激与UPR及自噬调控之间的相互关系,以及UPR与自噬在骨髓瘤细胞死亡调控中的作用,我们设想,硼替佐米极可能通过影响UPR与自噬的调控过程而发挥其抗骨髓瘤效应。
     方法和结果:为了探讨骨髓瘤细胞UPR与自噬之间的关系,我们绘制了经内质网应激剂和/或自噬诱导剂处理骨髓瘤细胞H929和RPMI8226的剂量-效应曲线,确定了所用药物的实验浓度,并采用Western blot检测靶细胞UPR和自噬相关蛋白的表达。结果表明:(1)采用自噬诱导剂雷帕霉素分别处理H929和RPMI8226细胞不同时间后,靶细胞中UPR相关蛋白XBP-1s、XBP-1u、BiP、CHOP和自噬相关蛋白LC-3、Beclin-1、Atg-5、PI3KC3的表达均呈时间依赖性的增加;(2)经标准内质网应激剂BFA或Tg处理不同时间后,H929和RPMI8226细胞凋亡率及上述UPR相关蛋白和自噬相关蛋白的表达均呈时间依赖性的增加;(3)雷帕霉素能干扰BFA或Tg诱导的UPR相关蛋白的表达;(4) BFA或Tg可以干扰雷帕霉素诱发的自噬相关蛋白的表达。以上结果强烈提示,在骨髓瘤细胞中,UPR与自噬反应的调控过程相互依赖。
     为了进一步探讨硼替佐米是否造成UPR信号紊乱失衡,我们以不同方式处理细胞后,我们采用AnnexinⅤ-FITC/PI双染联合流式细胞术检测靶细胞凋亡率;采用Western blot检测靶细胞UPR相关蛋白的表达。结果表明:(1)经硼替佐米、BFA和Tg处理不同时间后,靶细胞凋亡率及UPR相关蛋白的表达均呈时间依赖性增加;(2)硼替佐米能干扰BFA或Tg诱导的XBP-1s、XBP-1u及BiP蛋白的表达,但却促进BFA或Tg诱导的CHOP蛋白的表达,提示硼替佐米可以引起UPR反应中保护信号的表达与信号输出的紊乱失衡。
     为了探讨硼替佐米是否影响自噬过程,我们以不同方式处理细胞后,采用电镜技术检测自噬体/自噬溶酶体;采用Western blot检测靶细胞自噬相关蛋白的表达,采用免疫共沉淀检测Beclin-1-PI3KC3复合物的形成。结果表明:(1)硼替佐米处理H929细胞24小时后电镜检测未发现有经典自噬体/自噬溶酶体形成; (2)硼替佐米分别处理H929和RPMI8226细胞不同时间后,靶细胞自噬相关蛋白的表达呈时间依赖性减少;(3)硼替佐米可以干扰自噬诱导剂雷帕霉素诱发的自噬相关蛋白的表达;(4)硼替佐米可以抑制Beclin-1-PI3KC3复合物的形成;(5)活化自噬可以降低硼替佐米的促骨髓瘤细胞凋亡活性,抑制自噬对其活性无明显影响。提示,硼替佐米除了干扰UPR、促进骨髓瘤细胞凋亡外,尚抑制骨髓瘤细胞内源性自噬反应,从而进一步消除了自噬对骨髓瘤细胞的保护作用。
     结论:1.骨髓瘤细胞中自噬与未折迭蛋白反应的调控过程密切关联;2.蛋白酶体抑制剂硼替佐米虽能诱导骨髓瘤细胞内质网应激,但却干扰了未折迭蛋白反应,致使其保护性成分BiP和XBP-1与促凋亡成份CHOP表达紊乱失衡,进而触发靶细胞凋亡;3.硼替佐米干扰骨髓瘤细胞内源性自噬反应,可能与其抑制Beclin-1/PI3KC3复合体的形成有关;4.硼替佐米除了干扰未折迭蛋白反应、促进骨髓瘤细胞凋亡外,尚能干扰骨髓瘤细胞的内源性自噬反应,从而消除了自噬对骨髓瘤细胞的生存保护作用,这一效应极可能是硼替佐米抗骨髓瘤效应显著优于其它常规化疗药物的重要生物学机制。
Background and Objectives:
     Multiple myeloma(MM) , which produces and secretes abundant immunoglobulins (Igs), is a kind of malignant counterpart of the plasma cells malignacy. Because of heavy load of protein translation and abrupt accumulation of unfoaded or misfoaded protein in endoplasmic reticulum, MM cells are subjected to endoplasmic reticulum stress (ERS). To alleviate ER stress, MM cells activate a signaling pathway called the unfolded protein response (UPR), which aims to reestablish homeostasis by transmitting information to the nucleus about the protein-folding status in the ER lumen, triggering adaptive responses. BiP, XBP-1 and CHOP are activated by IRE1αand PERK/eIFαsignal. BiP and XBP-1 are prosurvival components, and CHOP is proapoptotic one. Disequilibrium between cytoprotective outputs and proapoptotic ones results in cell death. Besides UPR, autophagy is also an adaptive response in eukaryocyte. Autophagy, which mediates mainly the bulk degradation of long-lived cytoplasmic proteins, large protein compounds or organelles by lysosomes, is an adaptive catabiolic reaction when eukaryocytes meet insufficient of nutrients and growth factors, hypoxia, endoplasmic reticulum stress, and other harmful stimuli. The formation of autophagosome, an important procession, depends on not only Atg5-Atg12 and Agt8 (LC3), but also the fuction of Beclin1-PI3K compounds. It was reported that UPR can’t only trigger ERS, but induce autophagy in yeast cells. Whereas it is unclear that the relationship between UPR and autophagy in MM cells.
     As a new kind of proteasome inhibitor (PI), Bortezomib, a potent and specific 26s proteasome inhibitor has been shown to selectively induce apoptosis of MM cells, has remarkable effect on refractory MM in clinic. It had been constantly thought that PI killed tumor cells by inhibiting nuclear factor (NF)-κB activation. But recently, it was discovered that the apoptotic MM cells induced by the inhibitor of NF-κB were obviously less than those by PI, suggesting that NF-κB inhibitor cannot completely explain the nature of the selectivity of Bortezomib for multiple myeloma cells. Recently, ERS-induced MM cells death is considered as an important mechanism of Bortezomib. However, the mechanism by which this compound acts remains unknown. On account of the relationship of ERS, UPR and autophagy, we assume that Bortezomib maybe affect the signals regulated by UPR and autophagy.
     Methods and Results:
     To investigate the relationship between UPR and autophagy induced by ERS in MM cells, we exammed the expression of UPR related proteins and autophagy related ones by western blot. Our data showed: (1) After cells were treated by classical autophagy inducer, Rapamycin, for different time, the apoptotic rates of H929 or RPMI8226 and the expression levels of XBP-1s,XBP-1u,BiP and CHOP rose in time-dependent manner; (2) After cells were treated by classical ERS stressors, BFA or Tg, for different time, the apoptotic rates of H929 or RPMI8226 and the expression levels of UPR related proteins, and autophagy-related rose in time-dependent manner; (3) Rapamycin disrupted the expressions of XBP-1s、XBP-1u and BiP , but promote the expression of CHOP induced by BFA or Tg; (4) BFA or Tg disrupted the expressions of autophagy-related. Above data strongly suggest that there should be close relationship beween UPR and autophagy in MM cells.
     To further study whether Bortezomib results in disequilibriumin of UPR, annexin V-FITC/PI staining followed by flow cytometry analyzed the apoptotic rates of target cells, and western blot showed the expression of UPR related proteins. Our data showed: (1) After H929 and RPMI8226 cells were treated by the classical endoplasmic reticulum stressor BFA or Tg for different time, the apoptotic rates of target cells and the expression levels of UPR related proteins rose in time-dependent manner. The tendency was coincident with Bortezomib induced; (2) Bortezomib inhibited classic ER stressors BFA or Tg-induced up-regulation of prosuevival UPR components XBP-1s、XBP-1u and BiP and disrupted the proapoptotic outputs CHOP. In other words: Bortezomib induced ERS eventually to apoptosis that was closely associated with the regulatory imbalance between proapoptotic and prosurvival UPR.
     To investigate whether Bortezomib affects on autophagy procession, western blot, electron microscope and co-immunoprecipitation showed: (1) There had few autophagosomes or autolysosomes induced by Bortezomib; (2) After cells were treated by Bortezomib for different time, the apoptotic rates of H929 or RPMI8226 and the expression levels of autophagy-related proteins decreased in time-dependent manner; (3) Bortezomib disrupted the expressions of autophagy-related proteins induced by Rapamycin; (4) Bortezomib inhibited the formation of Beclin-1-PI3KC3 compounds; (5) Induction autophagy by Rapamycin prompted Bortezomib-induced MM cell apoptosis. Our data inferred that Bortezomib did not only disrupt UPR to induc MM cell apoptosis, but disrupted endogenous autophagy to eliminate the protection mechanisms in MM cells.
     Conclusions:
     1. There is close relationship between UPR and regulative procession of autophagy in MM cells.
     2. Bortezomib could induce ERS, but it induces proapoptotic UPR outputs, such as CHOP, whereas inhibits cytoprotective componets for instance BiP and XBP-1.
     3. Bortezomib could disrupt endogenous autophagy in MM cells, as maybe involve in inhibition the formation of Beclin-1-PI3KC3 compounds.
     4. Bortezomib could not only disrupt UPR to induce MM cell apoptosis, but disrupt endogenous autophagy to eliminate the protection mechanisms in MM cells. It is the important mechanism that Bortezomib outweigh to treat multiple myeloma compared with other chemotherapeutics.
引文
[1] Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002;277 (19):16639-47.
    [2] Pelletier N, Casamayor-Palleja M, De Luca K, Mondiere P, Saltel F, Jurdic P, Bella C, Genestier L, Defrance T. The endoplasmic reticulum is a key component of the plasma cell death pathway. J Immunol 2006;176 (3):1340-7.
    [3] Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsina M, Adams J, Kauffman M, Esseltine DL, Schenkein DP, Anderson KC. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 2004;127 (2):165-72.
    [4] Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352 (24):2487-98.
    [5] Berenson JR, Ma HM, Vescio R. The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma. Semin Oncol 2001;28 (6):626-33.
    [6] Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987;7:539-64.
    [7] Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290 (5497):1717-21.
    [8] Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002;416 (6881):648-53.
    [9] Zavrski I, Kleeberg L, Kaiser M, Fleissner C, Heider U, Sterz J,Jakob C, Sezer O. Proteasome as an emerging therapeutic target in cancer. Curr Pharm Des 2007;13 (5):471-85.
    [10] Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA, Anderson KC. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008;111 (3):1654-64.
    [11] Voorhees PM, Dees EC, O'Neil B, Orlowski RZ. The proteasome as a target for cancer therapy. Clin Cancer Res 2003;9 (17):6316-25.
    [12] Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, Sabbatini P, Miller V, Hensley ML, Pezzulli S, Canales C, Daud A, Spriggs DR. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 2002;8 (8):2505-11.
    [13] Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 2002;99 (22):14374-9.
    [14] Chauhan D, Li G, Shringarpure R, Podar K, Ohtake Y, Hideshima T, Anderson KC. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 2003;63 (19):6174-7.
    [15] Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N, Kharbanda S, Anderson KC. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003;278 (20):17593-6.
    [16] Chauhan D, Li G, Sattler M, Podar K, Mitsiades C, Mitsiades N, Munshi N, Hideshima T, Anderson KC. Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene 2003;22 (40):6296-300.
    [17] Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 2004;24 (22):9695-704.
    [18] Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 2003;278 (36):33714-23.
    [19] Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis 2003;8 (4):337-43.
    [20] Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Schlossman R, Munshi NC, Hideshima T, Anderson KC. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003;101 (6):2377-80.
    [21] Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002;2 (12):927-37.
    [22] Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, Schlossman R, Podar K, Munshi NC, Mitsiades N, Anderson KC. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003;101 (4):1530-4.
    [23] Sun GJ, Qian JJ, Meng XB, Song Y, Zhang F, Mei ZZ, Dong Y, Sun ZX. [Mechanism of G2/M cell cycle arrest before apoptosis in leukemia cell line HL-60 induced by proteasome inhibitor MG132]. Ai Zheng 2004;23 (10):1144-8.
    [24] Fracchiolla NS, Lombardi L, Salina M, Migliazza A, Baldini L, Berti E, Cro L, Polli E, Maiolo AT, Neri A. Structural alterations of the NF-kappa B transcription factor lyt-10 in lymphoid malignancies. Oncogene 1993;8 (10):2839-45.
    [25] Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP, Anderson KC. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002;99 (12):4525-30.
    [26] Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, Hideshima T, Treon SP, Munshi NC, Richardson PG,Anderson KC. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002;21 (37):5673-83.
    [27] Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R, Hideshima T, Anderson KC. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98 (3):795-804.
    [28] Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, Saeed S, Barton K, Alkan S. Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 2001;115 (2):279-86.
    [29] Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C, Wu ZQ, Borad MJ, Frantzen M, Roussos E, Neeser J, Mikail A, Adams J, Sjak-Shie N, Vescio RA, Berenson JR. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003;9 (3):1136-44.
    [30] Russo SM, Tepper JE, Baldwin AS, Jr., Liu R, Adams J, Elliott P, Cusack JC, Jr. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 2001;50 (1):183-93.
    [31] Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM. Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 1998;91 (12):4624-31.
    [32] Chen F, Chang D, Goh M, Klibanov SA, Ljungman M. Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ 2000;11 (5):239-46.
    [33] Esther CR, Jr., Sesma JI, Dohlman HG, Ault AD, Clas ML, Lazarowski ER, Boucher RC. Similarities between UDP-glucose and adenine nucleotide release in yeast: involvement of the secretory pathway. Biochemistry 2008;47 (35):9269-78.
    [34] Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Jr., Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006;107(12):4907-16.
    [35] Kurland JF, Meyn RE. Protease inhibitors restore radiation-induced apoptosis to Bcl-2-expressing lymphoma cells. Int J Cancer 2001;96 (6):327-33.
    [36] Fan XM, Wong BC, Wang WP, Zhou XM, Cho CH, Yuen ST, Leung SY, Lin MC, Kung HF, Lam SK. Inhibition of proteasome function induced apoptosis in gastric cancer. Int J Cancer 2001;93 (4):481-8.
    [37] LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, Neuberg D, Goloubeva O, Pien CS, Adams J, Gupta D, Richardson PG, Munshi NC, Anderson KC. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002;62 (17):4996-5000.
    [38] Naujokat C, Sezer O, Zinke H, Leclere A, Hauptmann S, Possinger K. Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF1/Cip1 in human immature leukemic cells. Eur J Haematol 2000;65 (4):221-36.
    [39] Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A 2001;98 (25):14250-5.
    [40] Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 2006;312 (5773):572-6.
    [41] Hollien J, Weissman JS. Decay of endoplasmic reticulum- localized mRNAs during the unfolded protein response. Science 2006;313 (5783):104-7.
    [42] Mao W, Iwai C, Keng PC, Vulapalli R, Liang CS. Norepinephrine-induced oxidative stress causes PC-12 cell apoptosis by both endoplasmic reticulum stress and mitochondrial intrinsic pathway: inhibition of phosphatidylinositol 3-kinase survival pathway. Am J Physiol Cell Physiol 2006;290 (5):C1373-84.
    [43] Misra UK, Deedwania R, Pizzo SV. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signalingin 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 2006;281 (19):13694-707.
    [44] Wu J, Kaufman RJ. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 2006;13 (3):374-84.
    [45] Gulow K, Bienert D, Haas IG. BiP is feed-back regulated by control of protein translation efficiency. J Cell Sci 2002;115 (Pt 11):2443-52.
    [46] Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18 (16):1926-45.
    [47] Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 2007;17 (1):1-11.
    [48] Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005;120 (2):159-62.
    [49] Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell 2002;1 (1):11-21.
    [50] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122 (6):927-39.
    [51] Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008;90 (2):313-23.
    [52] Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin- phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001;2 (4):330-5.
    [53] Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 2006;119 (Pt 2):259-70.
    [54] Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 2005;1 (1):46-52.
    [55] Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001;8 (6):569-81.
    [56] Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J 2007;26 (10):2527-39.
    [57] Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 2006;66 (6):2885-8.
    [58] Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes--Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 2006;17 (4):1527-39.
    [59] Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. Embo J 2007;26 (7):1749-60.
    [60] Bhadriraju K, L KH. Extracellular matrix-dependent myosin dynamics during G1-S phase cell cycle progression in hepatocytes. Exp Cell Res 2004;300 (2):259-71.
    [61] Petiot A, Pattingre S, Arico S, Meley D, Codogno P. Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct Funct 2002;27 (6):431-41.
    [62] Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, Kroemer G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009;16 (1):87-93.
    [63] Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, Cecconi F, Tavernarakis N, Kroemer G. A dual role of p53 in the control of autophagy. Autophagy 2008;4 (6):810-4.
    [64] Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008;10 (6):676-87.
    [65] Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G. Mutant p53 proteinlocalized in the cytoplasm inhibits autophagy. Cell Cycle 2008;7 (19):3056-61.
    [66] Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005;5 (9):726-34.
    [67] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306 (5698):990-5.
    [68] Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962;12:198-202.
    [69] Anderson WA, Weissman A, Ellis RA. Cytodifferentiation during spermiogenesis in Lumbricus terrestris. J Cell Biol 1967;32 (1):11-26.
    [70] Pfeifer U. Inhibition by insulin of the physiological autophagic breakdown of cell organelles. Acta Biol Med Ger 1977;36 (11-12):1691-4.
    [71] Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 2005;102 (23):8204-9.
    [72] Jin S. p53, Autophagy and tumor suppression. Autophagy 2005;1 (3):171-3.
    [73] Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120 (2):237-48.
    [74] Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 2003;278 (19):16667-74.
    [75] Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002;157 (3):455-68.
    [76] Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005;169 (3):425-34.
    [77] Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I,Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006;441 (7095):880-4.
    [78] Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006;441 (7095):885-9.
    [79] Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007;13 (5):619-24.
    [80] Vabulas RM, Hartl FU. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 2005;310 (5756):1960-3.
    [81] Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993;333 (1-2):169-74.
    [82] Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 2003;278 (20):17636-45.
    [83] Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004;432 (7020):1032-6.
    [84] Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004;7 (2):167-78.
    [85] Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 2005;102 (39):13807-12.
    [86] Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated proteinkinase and Beclin 1 in mediating autophagy. Circ Res 2007;100 (6):914-22.
    [87] Qin ZH, Gu ZL. Huntingtin processing in pathogenesis of Huntington disease. Acta Pharmacol Sin 2004;25 (10):1243-9.
    [88] Bergamini E, Cavallini G, Donati A, Gori Z. The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 2004;36 (12):2392-404.
    [89] Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T. Autophagy defends cells against invading group A Streptococcus. Science 2004;306 (5698):1037-40.
    [90] Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. Escape of intracellular Shigella from autophagy. Science 2005;307 (5710):727-31.
    [91] Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004;119 (6):753-66.
    [92] Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005;307 (5709):593-6.
    [93] Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003;1603 (2):113-28.
    [94] Hippert MM, O'Toole PS, Thorburn A. Autophagy in cancer: good, bad, or both? Cancer Res 2006;66 (19):9349-51.
    [95] Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy 2007;3 (1):28-31.
    [96] Levine B. Cell biology: autophagy and cancer. Nature 2007;446 (7137):745-7.
    [97] Curcio-Morelli C, Zavacki AM, Christofollete M, Gereben B, de Freitas BC, Harney JW, Li Z, Wu G, Bianco AC. Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J Clin Invest 2003;112 (2):189-96.
    [98] Liang XH, Jackson S, Seaman M, Brown K, Kempkes B,Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999;402 (6762):672-6.
    [99] Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007;21 (11):1367-81.
    [100] Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10 (1):51-64.
    [101] Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007;117 (2):326-36.
    [102] Karantza-Wadsworth V, White E. Role of autophagy in breast cancer. Autophagy 2007;3 (6):610-3.
    [103] Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 2006;66 (11):5828-35.
    [104] Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005;115 (10):2679-88.
    [105] Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA, Jr., Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, HeYW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008;4 (2):151-75.
    [106] Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006;8 (10):1124-32.
    [107] Kamada S, Kikkawa U, Tsujimoto Y, Hunter T. Nucleartranslocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 2005;280 (2):857-60.
    [108] Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 2007;14 (7):1247-50.
    [109] Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005;115 (10):2656-64.
    [110] Shohat G, Spivak-Kroizman T, Eisenstein M, Kimchi A. The regulation of death-associated protein (DAP) kinase in apoptosis. Eur Cytokine Netw 2002;13 (4):398-400.
    [111] Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 2009;5 (1):61-74.
    [112] Nigam SK, Jin YJ, Jin MJ, Bush KT, Bierer BE, Burakoff SJ. Localization of the FK506-binding protein, FKBP 13, to the lumen of the endoplasmic reticulum. Biochem J 1993;294 ( Pt 2):511-5.
    [113] Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, Bredesen DE, Ellerby HM. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 2002;277 (24):21836-42.
    [114] Murakami Y, Aizu-Yokota E, Sonoda Y, Ohta S, Kasahara T. Suppression of endoplasmic reticulum stress-induced caspase activation and cell death by the overexpression of Bcl-xL or Bcl-2. J Biochem 2007;141 (3):401-10.
    [115] Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA. Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem 2007;282 (19):14132-9.
    [116] Gu H, Chen X, Gao G, Dong H. Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Mol Cancer Ther 2008;7 (8):2298-307.
    [117] Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ,Adams J, Anderson KC. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001;61 (7):3071-6.
    [118] Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K, Jr., Huang P, Abbruzzese JL, McConkey DJ. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 2005;65 (24):11658-66.
    [119] Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schonthal AH. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 2008;68 (3):843-51.
    [120] Nawrocki ST, Carew JS, Dunner K, Jr., Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 2005;65 (24):11510-9.
    [121] Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol 2004;36 (12):2491-502.
    [122] Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 2000;19 (21):5720-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700