用户名: 密码: 验证码:
Mu阿片受体介导靶向毁损骨癌痛大鼠下行易化系统镇痛效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     恶性肿瘤是危及人类生命的首要原因,临床上较为常见的恶性肿瘤,如乳腺癌、前列腺癌及肺癌等,易发生骨转移,加上原发的骨肉瘤,均会引起病理性的骨痛(简称骨癌痛),极大的干扰了患者的日常生活,并可导致患者死亡率的增高、体能状态的下降及焦虑或抑郁的发生,因此如何改善患者的生活质量成为当前亟待解决的问题。由于对骨癌痛相关机制认识的不足,目前的治疗方案难以达到令人满意的疗效,且常伴有严重的副作用,延误了疼痛的缓解,某种程度上甚至加速了癌症的恶化,因此极有必要寻求一种基于机制的、新的治疗方案。
     脊髓上高级中枢以极为精细的方式下行调控脊髓水平痛觉信息的传递和处理,延髓头端腹内侧区(rostral ventromedial medulla,RVM)作为该调控系统最主要的下行通路,直接影响了大脑和脊髓间痛觉信息的“中继”,大量行为学和电生理学的研究提示RVM区内表达μ阿片受体的下行易化神经元可能直接参与了病理性疼痛的形成,对脊髓水平“中枢敏化”的维持发挥了极为关键的作用,因此这些易化神经元可能成为治疗慢性顽固性疼痛的新靶点。基于此,通过μ阿片受体介导选择性阻断RVM区下行易化作用可能成为治疗骨癌痛的一种有效措施。本实验首先构建大鼠骨癌痛模型,通过应用靶向毒素——皮啡肽-皂角素耦联体,靶向毁损大鼠RVM区内μ阿片受体阳性的下行易化神经元,探讨此治疗方案应用于骨癌痛的有效性和安全性。另外鉴于皮啡肽-皂角素耦联体起效慢、制作工艺复杂、价格昂贵、难以形成产业化等缺点,本实验模拟皂角素在靶细胞内诱导凋亡的过程,进一步构建大鼠源性自发活化的caspase-3重组促凋亡基因,以期为骨癌痛的靶向基因治疗奠定实验基础。
     研究方法与结果
     1. Mu阿片受体介导靶向毁损骨癌痛大鼠下行易化系统镇痛效应的研究
     方法:成年雌性Wistar大鼠96只,随机分为6组:正常对照组(6只,不接受任何处理)、肿瘤细胞接种组(18只,仅构建骨癌痛模型,RVM区不接受任何微注射)、PBS(Phosphate buffered saline,磷酸盐缓冲液)组(18只)、皮啡肽组(18只)、皂角素组(18只)和皮啡肽-皂角素组(18只),其中后四组大鼠RVM区依次接受PBS、皮啡肽、皂角素及皮啡肽-皂角素耦联体单次微注射处理。微注射后第28d,除正常对照组外所有大鼠右侧胫骨接种Walker 256乳腺癌细胞构建大鼠骨癌痛模型,肿瘤细胞接种后第3d开始观察各组大鼠痛觉行为学改变,包括机械性痛觉超敏、机械性痛觉过敏、冷痛觉超敏、热痛觉过敏及移动诱发痛评分至细胞接种后第20d。肿瘤细胞接种后第7d、14d及20d,影像学观察肿瘤细胞接种侧胫骨骨质破坏的程度,免疫组化法检测各组脊髓背角FOS阳性神经元的数目和星形胶质细胞的活化,并采用ELISA法检测脊髓实质中前炎症因子IL-1β和TNF-α的改变。
     结果:1)疼痛行为学检测:肿瘤细胞接种组、PBS组、皮啡肽组及皂角素组大鼠与正常对照组大鼠相比均有痛觉超敏(nociceptive hypersensitivity)的发生(P<0.05),而RVM区微注射皮啡肽-皂角素耦联体可在痛觉超敏发生后的4~7d内明显降低痛觉超敏的程度(P<0.05,与肿瘤细胞接种组相比)。2)影像学检查:所有接种肿瘤细胞的大鼠接种侧胫骨骨质呈现进行性的破坏,各种RVM区微注射处理对局部骨质的破坏无明显影响;3)脊髓Fos阳性神经元的数目:肿瘤细胞接种组、PBS组、皮啡肽组及皂角素组大鼠脊髓双侧Fos阳性的神经元数目较正常对照组显著增加(P<0.05),而细胞接种后第14d和第20d,皮啡肽-皂角素组大鼠脊髓双侧Fos阳性神经元数目与肿瘤细胞接种组相比明显降低(P<0.05),且与正常对照组相比差异无统计学意义(P>0.05)。4)活化星形胶质细胞的数目及前炎症因子IL-1β和TNF-α的表达:肿瘤细胞接种组、PBS组、皮啡肽组及皂角素组大鼠脊髓双侧活化的星形胶质细胞数目和前炎症因子IL-1β和TNF-α的表达均较正常对照组大鼠显著增加(P<0.05),而RVM区微注射皮啡肽-皂角素耦联体可明显降低活化的星形胶质细胞的数目并抑制前炎症因子IL-1β和TNF-α的产生(P<0.05,与肿瘤细胞接种组大鼠相比),并在细胞接种后第20d回落至正常对照组水平(P>0.05)。
     2. Mu阿片受体介导靶向毁损大鼠痛觉下行易化系统安全性评估
     方法:成年雌性Wistar大鼠102只,随机分为五组:正常对照组(6只,不做任何处理)、PBS组(24只)、皮啡肽组(24只)、皂角素组(24只)及皮啡肽-皂角素组(24只),其中后四组大鼠RVM区依次接受PBS、皮啡肽、皂角素及皮啡肽-皂角素耦联体单次微注射处理。从微注射后第4d开始至第28d,每4d对大鼠生命体征进行检测。微注射后第4d、7d、14d及28d,通过超声心动图检测大鼠心功能的反应,免疫组化法检测RVM区内神经元数目以及局部星形胶质细胞和小胶质细胞的活化, Real-time PCR及ELISA法检测局部前炎症因子IL-1β和TNF-α的表达。
     结果:1)生命体征: RVM区内微注射皮啡肽-皂角素耦联体对大鼠基本生理功能无显著影响(P>0.05,与正常对照组相比),包括体重、肛温、呼吸频率、心率及收缩压。2)超声心动图检测心功能:微注射后第7d、14d及28d,皮啡肽-皂角素耦联体组大鼠左心室射血分数(left ejection fraction, EF)、左心室短轴分数(left fractional shortening, FS)、左心室收缩末期内径(left ventricular internal dimension systole at end-diastole, LVIDS)和左心室舒张末期内径(left ventricular internal dimension diastole at end-diastole, LVIDD)与正常对照组相比差异无统计学意义(P>0.05)。3)神经元数目:皮啡肽-皂角素组大鼠RVM区NeuN标记的神经元总数与正常对照组相比差异无统计学意义(P>0.05);4)胶质细胞的活化及前炎症因子IL-1β和TNF-α的表达:与正常对照组相比,皮啡肽-皂角素组大鼠RVM区内小胶质细胞和星形胶质细胞无显著活化,前炎症因子IL-1β和TNF-α持续维持在基线水平(与正常对照组相比,P>0.05)。
     3.大鼠源性自发活化caspase-3重组基因的构建及其促凋亡效应的研究
     方法:模拟皂角素在细胞内诱导凋亡的过程,通过重组PCR技术获得大、小亚基顺序颠倒的大鼠源性自发活化的重组caspase-3基因,经酶切电泳及测序分析后,克隆入真核表达载体pcDNA3.1(+)或EGFP-C1,转染大鼠永生化神经前体细胞(Immortalized neural progenitor cells,INPC)和人胚肾293T细胞,分别通过荧光倒置显微镜观察细胞形态学改变、Annexin V-PI双标后流式细胞仪检测转染细胞的早期凋亡率、MTT法检测转染后细胞的生长抑制率及Western blot检测转染后细胞内活化caspase-3蛋白质的表达。
     结果:1)转染24h后荧光倒置显微镜显示转染重组caspase-3基因的细胞呈现明显的细胞碎裂、浓缩及细胞突起回缩等典型的凋亡形态学改变。2)转染重组caspase-3基因的细胞Annexin V-PI双染后流式细胞仪检测显示细胞早期凋亡率分别为: 16.01%±1.03%(INPC)和30.67%±1.53%(293T),与正常对照组、空白载体组或野生型caspase-3组细胞相比显著增高(P<0.05);3)MTT结果提示转染重组caspase-3基因的细胞生长抑制率分别为: 44.61%±0.15%(INPC)和48.35±0.16%(293T),与正常对照组、空白载体组或野生型caspase-3组细胞相比生长抑制率明显增加(P<0.05);4)Western blot结果提示转染重组caspase-3基因的细胞中活化caspase-3蛋白的相对表达量分别为:2.44±0.01 (INPC)和3.42±0.21(293T),较正常对照组、空白载体组或野生型caspase-3组细胞显著增加(P<0.05)。
     4.统计学处理
     采用SigmaStat 3.0统计软件进行处理。计量资料以均数±标准差(±s)表示,实验第一部分组间、组内比较采用双因素方差(Two way ANOVA)分析后post-hoc检验(SNK法),余实验部分中组间、组内比较采用单因素方差(One way ANOVA)分析后SNK法。P<0.05设定为差异有统计学意义。
     研究总结
     1. RVM区微注射皮啡肽-皂角素耦联体选择性毁损μ阿片受体表达阳性的下行易化神经元,可降低脊髓中枢敏化的程度,抑制脊髓内星形胶质细胞的活化和前炎症因子的产生,显著抑制骨癌痛大鼠痛觉超敏的程度。
     2. RVM区微注射皮啡肽-皂角素耦联体选择性毁损μ阿片受体表达阳性的下行易化神经元对实验大鼠生理功能无明显影响,超声心动图结果亦提示对大鼠心功能影响较小。耦联体注射后也未引起局部神经元的显著丢失和明显的神经炎症或神经免疫反应。
     3.通过模拟皂角素在靶细胞内诱导凋亡的过程,成功构建了大鼠源性自发活化的caspase-3重组基因,在无前凋亡信号的作用下可自发诱导细胞凋亡。
     研究意义
     本研究从慢性病理性疼痛脊髓上内源性调控系统入手,根据RVM区在该系统下行投射至脊髓过程中的“中继”作用,应用皮啡肽-皂角素耦联体选择性毁损了RVM区内μ阿片受体表达阳性的下行易化神经元,有效降低了骨癌痛的程度,同时研究结果也证实了靶向毁损效应应用的安全性。本研究是对骨癌痛基于机制治疗的一种新探索,为将该靶向毁损的治疗方案应用于临床提供了实验依据。鉴于皂角素自身的诸多缺点,本研究模拟皂角素诱导细胞凋亡的过程,构建了大鼠源性自发活化的caspase-3重组促凋亡基因,为骨癌痛的靶向基因治疗提供了理想的杀伤基因。
Background
     As advances in cancer detection and therapy extend the life expectancy of cancer patients, there is an increasing focus on improving patients’quality of life. Bone cancer pain is the most common pain in patients with advanced cancer as most common tumors including breast, prostate, and lung cancer have a remarkable affinity to metastasize to bone. Once tumors metastasize to bone, they are usually major causes of morbidity or mortality, and consequently compromise patients’survival and quality of life. Currently, factors that drive cancer pain are poorly understood; however, in the just past decade several animal models of cancer induced bone pain (CIBP) have been developed. In terms of tumor growth, bone remodeling, and bone pain, these models seem to mirror several aspects of human bone caner pain, providing insight into mechanisms that drive bone cancer pain. The researchers realize by degree that bone cancer pain is a unique persistent pain state, including elements of both neuropathy and inflammation.
     Currently, the treatment of pain from bone metastases, involving the use of multiple complementary approaches, is frequently relatively ineffective. And the neurobiological basis for the treatment is largely empirical or based on scientific studies arising from some aspects of cancer pain. In clinic, the severity of this pain is variable from patient to patient, tumor to tumor, and time to time, even from site to site plausibly because their underling mechanisms are inconsistent. In addition, the metastases are generally not limited to a single site and analgesics that are most commonly used to treat bone caner pain are limited by significant adverse side effects. Therefore, it is a big challenge for us to explore some novel mechanism-based approaches to relieve bone cancer pain for most patients.
     Complex networks of pathways project from various supraspinal structures to modulate spinal processing of sensory input in a top-down fashion. The rostral ventromedial medulla (RVM) in the brainstem is one major final common output of this endogenous modulatory system and is involved in the relay of sensory information between the spinal cord and brain. The net output of descending neurons that exert inhibitory or facilitatory effects will determine whether neuronal activity in the spinal cord increased or decreased. Extensive behavioral and electrophysiological studies suggest that descending facilitation from the RVM is critical for maintenance of central sensitization in neuropathic pain. Thus, targeting these descending facilitatory neurons may be a novel and as yet clinically unexploited method for treating chronic intractable pain. However, little is known that whether this modality is also workable in CIBP. Thus, through selective ablating ablationμreceptor positive facilitatory neurons with dermorphin-saporin, this research investigated analgesic effects through blocking descending facilitation from RVM in the rat model of CIBP and evaluated the safety of this targeted lesion. Furthermore, considering complex making and high price of dermorphin-saporin, we continued to clone a rat constitutively active recombinant caspase-3 gene in order to lay the foundation for future constructing dermorphin and constitutive active recombinant caspase-3 gene conjugate for gene therapy of CIBP.
     Methods and Results
     1. Inhibition of cancer induced bone pain through selective ablation ofμ-opioid receptor mediated descending facilitation from the rostral ventromedial medulla Methods: A total of 96 adult female Wistar rats were randomly divided into six groups: 1) na?ve group (n=6, without any intervention); 2) carcinoma cell group (n=18, without any intra-RVM microinjection); 3) PBS group (n=18, received a single intra-RVM microinjection with PBS alone); 4) dermorphin group (n=18, received a single intra-RVM microinjection with dermorphin); 5)saporin group (n=18, received a single intra-RVM microinjection with saporin); 6) dermorphin-saporin group (n=18, received a single intra-RVM microinjection with dermorphin-saporin). On day 28 post-microinjection, all rats except na?ve rats were inoculated with Walker 256 carcinoma cells into the right tibiae. Commencing from day 3 to day 20 post-inoculation, mechanical allodynia, mechanical hyperalgesia, cold allodynia, thermal hyperalgesia and the score of ambulatory pain were recorded to investigate changes of nociceptive behaviors. The development of the bone tumor and structural destruction to the bone was monitored by radiological analysis. After repetitive non-noxious tactile stimulation, the total number of FOS positive neurons in the spinal cord horn was regarded as a marker indicative of central sensitization. The GFAP (Glial fibrillary acidicprotein) expression in the spinal cord was detected through immunohistochemistry. And changes of proinflammatory cytokins, such as IL-1βand TNF-αwere observed by ELISA.
     Results: 1) Nociceptive behaviors: Rats in carcinoma cells group, PBS group, dermorphin group or saporin group demonstrated nociceptive hypersensitivity compared with na?ve rats (P<0.05), while rats in dermorphin-saporin group showed decreased behaviors within 4-7 days after the onset of nociception in comparison with carcinoma cells group (P<0.05). 2) Radiological analysis: All of rats inoculated with carcinoma cells showed ongoing damage to cortical bone and the trabeculae in the ipsilateral tibial bone from day 7 post-inoculation, and by day 20 the damage threatened the integrity of the tibial bone. All intra-RVM treatments failed to influence the bone destruction during the observation. 3) FOS positive neurons: In parallel with behavioral tests, the number of FOS positive neurons in the bilateral spinal cord significantly enhanced in all groups treated with carcinoma cells compared with na?ve rats on day 7 post-inoculation (P<0.05), whereas dermorphin-saporin declined significantly the amount of FOS labeled neurons on day 14 and day 20 post-inoculation compared with non-microinjection or other intra-RVM treatment (P<0.05). 4) The amount of activated spinal astrocytes and the protein levels of proinflammatory cytokines: The amount of activated astrocytes and the protein levels of IL-1βor TNF-αin the bilateral spinal cord from carcinoma cell group, PBS group, dermorphin group and saporin group increased significantly compared with that from na?ve rats (P<0.05). In contrast, intra-RVM microinjection with dermorphin-saporin evidently decreased the amount of activated astrocytes and down-regulated the production of proinflammatory cytokines relative to non-microinjection (P<0.05), and reversed them to the baseline levels on day 20 post-inoculation (P>0.05).
     2. Safety evaluation of microinjection of the targeted neuropepetide-toxin conjugate, dermophine-saporin, into the rat rostral ventromedial medulla
     Methods :A total of 102 adult Wistar rats were randomly divided into five groups: 1) na?ve group(n=6, without any intervention); 2) PBS group (n=24, received a single intra-RVM microinjection with PBS alone); 3) dermorphin group (n=24, received a single intra-RVM microinjection with dermorphin); 4)saporin group (n=24, received a single intra-RVM microinjection with saporin); 5) dermorphin-saporin group (n=24, received a single intra-RVM microinjection with dermorphin-saporin). From day 4 to day 28 after microinjection, physiological parameters, such as body weight, rectal temperature, respiratory rate, heart rate and systolic blood pressure, were observed every 4 days. On day 4, 7, 14 and 28 post-microinjection, cardiovascular functions were recorded through echocardiogram. Meanwhile, both the number of neurons and the activity of glia were determined via immunohistochemistry, and the mRNA and protein levels of proinflammatory cytokines, such as IL-1βand TNF-α, were analyzed by real-time PCR and ELISA, respectively.
     Results: 1) Intra-RVM with dermorphin-saporin had no significant influence on the physiological parameters (P>0.05), including body weight, rectal temperature, respiratory rate, heart rate and systolic blood pressure; 2) With echocardiogram there was no significant difference in EF (left ejection fraction), FS (left fractional shortening), LVIDS (left ventricular internal dimension systole at end-diastole), and LVIDD (left ventricular internal dimension diastole at end-diastole) between dermorphin-saporin group and na?ve group on day 7, day 14 and day 28 post-microinjection (P>0.05). However, EF and FS significantly increased in all of groups receiving intra-RVM microinjection compared with na?ve group on day 4 after microinjection (P<0.05); 3) The total number of NeuN labeled neurons in the RVM failed to exert significant differences between dermorphin-saporin group and niave group (P>0.05). 4) In the local micro-environment the resident microglia or astrocytes kept quiescent, and the mRNA or protein levels of IL-1βor TNF-αmaintained at the baseline during the observation (P>0.05).
     3. Construction of rat constitutively active recombinant caspase-3 and evaluation of its apoptotic effects in vitro
     Methods: The rat constitutively active recombinant caspase-3 gene was constructed through reversing two subunits of rat wild type caspase-3 gene by overlap-PCR, and cloned into expression vector EGFP-C1 or pcDNA3.1(+).Then, the recombinant caspase-3 was transfected into human 293T cells or rat immortalized neural progenitor cells. The target gene expression and the morphology of transfected cells were observed by fluorescence microscope, and apoptotic effects of the recombinant gene were analyzed by Annexin V-Fluorescein∕PI flow cytometry, MTT assay and Western blot.
     Results: The recombinant caspase-3 can be expressed efficiently in both 293T cells and INPC. The transfected cells with recombinant caspse-3 gene presented typical characteristics of apoptosis, including cellular fragmentation and cytoplasm concentration with fluorescence microscope. Results from Annexin V-Fluorescein∕PI flow cytometry suggested the gene resulted significantly in early apoptosis in both cells compared with controls (P<0.05). In MTT assay both cells displayed evident growth inhibition after transfection with the recombinant caspase-3 relative to controls (P<0.05). And the protein levels of active caspase-3 increased significantly in cells transfected with the recombinant capase-3 compared to cells with other treatment (P<0.05).
     4. Statistical analysis
     All of analyses were performed by SigmaStat 3.0 software package. All data were expressed as the mean±standard deviation (SD). Significant differences within the first part were detected by two-factor ANOVA followed by post-hoc test (SNK), and one-way ANOVA was utilized to detect significant differcence in other parts followed by SNK. Significance was set at P<0.05.
     Conclusion
     1. In our rat model of CIBP, selective ablation ofμopioid receptor expressing descending facilitatory neurons in the RVM with dermorphin-saporin reduced a variety of nociceptive behaviors through inhibiting spinal sensitization, decreasing the amount of activated astrocytes and down-regulating the proinflammatory cytokines (IL-1βor TNF-α) production.
     2. Microinjection of dermorphin-saporin into the RVM had no significant impacts on the physiological functions and heart functions. And neither significant loss of NeuN labelsled neurons nor evident responses of the neuroinflammtory or neuroimmune were absent during the observation.
     3. The constitutively active rat recombinant caspase-3 induced apoptosis without pro-apoptotic signals stimulation, and imitated cell killing effects of saporin in the targeted cells.
     Significance
     Accumulating evidence suggests that inappropriate tonic-descending facilitation arising from the RVM in the brainstem has been established to underlie some chronic pathologic pain. Our research selectively ablatedμopioid receptor expressing neurons in the RVM, presumed to be a source of spinopetal facilitatory projection, by a single intra-RVM microinjection with dermorphin-saporin, and subsequently reversed the experimental CIBP effectively. On the other hand, results of this research established the targeted lesion is a safe and reliable approach to treat pathologic pain. Thus, this research is a novel exploration of mechanism-based therapy for CIBP, providing us some experimental evidence for future clinical application. Furthermore, considering the drawbacks of saporin, we mimicked cell killing effects of saporin in the targeted cells, and cloned the constitutively active recombinant caspase-3, laying the foundation for our future targeted gene therapies in CIBP.
引文
1. Luger NM, Honore P, Sabino MA, et al. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res, 2001, 61(10): 4038-4047.
    2. Urch C. The pathophysiology of cancer-induced bone pain: current understanding. Palliat Med, 2004, 18(4): 267-274.
    3. Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci, 2006, 7(10): 797-809.
    4. Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci, 1999, 19(24): 10886-10897.
    5. Medhurst SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain. Pain, 2002, 96(1-2): 129-140.
    6. Zhang RX, Liu B, Wang L, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain, 2005, 118(1-2): 125-136.
    7. Mao-Ying QL, Zhao J, Dong ZQ, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun, 2006, 345(4): 1292-1298.
    8. Suzuki R, Rygh LJ, and Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci, 2004, 25(12): 613-617.
    9. Mason P. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci, 2001, 24: 737-777.
    10. Porreca F, Burgess SE, Gardell LR, et al. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J Neurosci, 2001, 21(14): 5281-5288.
    11. Burgess SE, Gardell LR, Ossipov MH, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci, 2002, 22(12): 5129-5136.
    12. Gardell LR, Vanderah TW, Gardell SE, et al. Enhanced evoked excitatory transmitter release in experimental neuropathy requires descending facilitation. J Neurosci, 2003, 23(23): 8370-8379.
    13. Vera-Portocarrero LP, Zhang ET, Ossipov MH, et al. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience, 2006, 140(4): 1311-1320.
    14. Urch CE, Donovan-Rodriguez T, and Dickenson AH. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain, 2003, 106(3): 347-356.
    15. Donovan-Rodriguez T, Dickenson AH, and Urch CE. Superficial dorsal horn neuronal responses and the emergence of behavioural hyperalgesia in a rat model of cancer-induced bone pain. Neurosci Lett, 2004, 360(1-2): 29-32.
    16. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol, 1980, 20: 441-462.
    17. Chaplan SR, Bach FW, Pogrel JW, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 1994, 53(1): 55-63.
    18. Decosterd I, Buchser E, Gilliard N, et al. Intrathecal implants of bovine chromaffin cells alleviate mechanical allodynia in a rat model of neuropathic pain. Pain, 1998, 76(1-2): 159-166.
    19. Decosterd I and Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain, 2000, 87(2): 149-158.
    20. Choi Y, Yoon YW, Na HS, et al. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain, 1994, 59(3): 369-376.
    21. Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988, 32(1): 77-88.
    22. Urch CE, Donovan-Rodriguez T, Gordon-Williams R, et al. Efficacy of chronic morphine in a rat model of cancer-induced bone pain: behavior and in dorsal horn pathophysiology. J Pain, 2005, 6(12): 837-845.
    23. Ma QP and Woolf CJ. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: implications for the treatment of mechanical allodynia. Pain, 1995, 61(3): 383-390.
    24. Catheline G, Le Guen S, and Besson JM. Intravenous morphine does not modify dorsal horn touch-evoked allodynia in the mononeuropathic rat: a Fos study. Pain, 2001, 92(3): 389-398.
    25. Gordh T, Chu H, and Sharma HS. Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain, 2006, 124(1-2): 211-221.
    26. Hains BC and Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci, 2006, 26(16): 4308-4317.
    27. Wieseler-Frank J, Jekich BM, Mahoney JH, et al. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus. Brain Behav Immun, 2007, 21(5): 711-718.
    28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
    29. Schoeniger-Skinner DK, Ledeboer A, Frank MG, et al. Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120. Brain Behav Immun, 2007, 21(5): 660-667.
    30. Halvorson KG, Sevcik MA, Ghilardi JR, et al. Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. Clin J Pain, 2006, 22(7): 587-600.
    31. Coleman RE. Skeletal complications of malignancy. Cancer, 1997, 80(8 Suppl):1588-1594.
    32. Peters CM, Ghilardi JR, Keyser CP, et al. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol, 2005, 193(1): 85-100.
    33. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2002, 2(8): 584-593.
    34. Pertovaara A, Wei H, and Hamalainen MM. Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci Lett, 1996, 218(2): 127-130.
    35. Kovelowski CJ, Ossipov MH, Sun H, et al. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain, 2000, 87(3): 265-273.
    36. Ossipov MH, Hong Sun T, Malan P, Jr., et al. Mediation of spinal nerve injury induced tactile allodynia by descending facilitatory pathways in the dorsolateral funiculus in rats. Neurosci Lett, 2000, 290(2): 129-132.
    37. Bee LA and Dickenson AH. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states. Neuroscience, 2007, 147(3): 786-793.
    38. Coggeshall RE. Fos, nociception and the dorsal horn. Prog Neurobiol, 2005, 77(5): 299-352.
    39. Goblirsch MJ, Zwolak P, and Clohisy DR. Advances in understanding bone cancer pain. J Cell Biochem, 2005, 96(4): 682-688.
    40. Watkins LR, Hutchinson MR, Ledeboer A, et al. Norman Cousins Lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun, 2007, 21(2): 131-146.
    41. Watkins LR, Hutchinson MR, Milligan ED, et al. "Listening" and "talking" to neurons: Implications of immune activation for pain control and increasing the efficacy of opioids. Brain Res Rev, 2007.
    42. Scholz J and Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci, 2007, 10(11): 1361-1368.
    43. Porreca F, Ossipov MH, and Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci, 2002, 25(6): 319-325.
    44. Hutchinson MR, Bland ST, Johnson KW, et al. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal, 2007, 7: 98-111.
    45. Halassa MM, Fellin T, and Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med, 2007, 13(2): 54-63.
    46. Haydon PG. GLIA: listening and talking to the synapse. Nat Rev Neurosci, 2001, 2(3): 185-193.
    47. Mantyh PW, Rogers SD, Honore P, et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science, 1997, 278(5336): 275-279.
    48. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin, 2006, 56(2): 106-130.
    49. Vera-Portocarrero LP, Xie JY, Kowal J, et al. Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis. Gastroenterology, 2006, 130(7): 2155-2164.
    1. Porreca F, Ossipov MH, and Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci, 2002, 25(6): 319-325.
    2. Bee LA and Dickenson AH. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states. Neuroscience, 2007, 147(3): 786-793.
    3. Porreca F, Burgess SE, Gardell LR, et al. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J Neurosci, 2001, 21(14): 5281-5288.
    4. Burgess SE, Gardell LR, Ossipov MH, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci, 2002, 22(12): 5129-5136.
    5. Vera-Portocarrero LP, Zhang ET, Ossipov MH, et al. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience, 2006, 140(4): 1311-1320.
    6. Battelli MG. Cytotoxicity and toxicity to animals and humans of ribosome-inactivating proteins. Mini Rev Med Chem, 2004, 4(5): 513-521.
    7. Narayanan S, Surendranath K, Bora N, et al. Ribosome inactivating proteins and apoptosis. FEBS Lett, 2005, 579(6): 1324-1331.
    8. Kline RHt and Wiley RG. Spinal mu-opioid receptor-expressing dorsal horn neurons: role in nociception and morphine antinociception. J Neurosci, 2008, 28(4): 904-913.
    9. Dampney RA, Horiuchi J, Tagawa T, et al. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand, 2003, 177(3): 209-218.
    10. Stein AB, Tiwari S, Thomas P, et al. Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Res Cardiol, 2007,102(1): 28-41.
    11. Gordh T, Chu H, and Sharma HS. Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain, 2006, 124(1-2): 211-221.
    12. Hains BC and Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci, 2006, 26(16): 4308-4317.
    13. Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
    14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
    15. Schoeniger-Skinner DK, Ledeboer A, Frank MG, et al. Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120. Brain Behav Immun, 2007, 21(5): 660-667.
    16. Fields HL. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res, 2000, 122: 245-253.
    17. Nason MW, Jr. and Mason P. Medullary raphe neurons facilitate brown adipose tissue activation. J Neurosci, 2006, 26(4): 1190-1198.
    18. Heinricher MM, Morgan MM, Tortorici V, et al. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience, 1994, 63(1): 279-288.
    19. Gao K and Mason P. Somatodendritic and axonal anatomy of intracellularly labeled serotonergic neurons in the rat medulla. J Comp Neurol, 1997, 389(2): 309-328.
    20. Nason MW, Jr. and Mason P. Modulation of sympathetic and somatomotor function by the ventromedial medulla. J Neurophysiol, 2004, 92(1): 510-522.
    21. Montecucchi PC, de Castiglione R, Piani S, et al. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusasauvagei. Int J Pept Protein Res, 1981, 17(3): 275-283.
    22. Stirpe F, Gasperi-Campani A, Barbieri L, et al. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J, 1983, 216(3): 617-625.
    23. Wiley RG and Lappi DA. Targeted toxins in pain. Adv Drug Deliv Rev, 2003, 55(8): 1043-1054.
    24. Stirpe F and Battelli MG. Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci, 2006, 63(16): 1850-1866.
    25. Mantyh PW, Rogers SD, Honore P, et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science, 1997, 278(5336): 275-279.
    26. Shank EJ, Seitz PK, Bubar MJ, et al. Selective ablation of GABA neurons in the ventral tegmental area increases spontaneous locomotor activity. Behav Neurosci, 2007, 121(6): 1224-1233.
    27. Vera-Portocarrero LP, Xie JY, Kowal J, et al. Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis. Gastroenterology, 2006, 130(7): 2155-2164.
    28. Zhang RX, Wang L, Liu B, et al. Mu opioid receptor-containing neurons mediate electroacupuncture-produced anti-hyperalgesia in rats with hind paw inflammation. Brain Res, 2005, 1048(1-2): 235-240.
    29. Gardell LR, Vanderah TW, Gardell SE, et al. Enhanced evoked excitatory transmitter release in experimental neuropathy requires descending facilitation. J Neurosci, 2003, 23(23): 8370-8379.
    30. Tokuno H, Chiken S, Kametani K, et al. Efferent projections from the striatal patch compartment: anterograde degeneration after selective ablation of neurons expressing mu-opioid receptor in rats. Neurosci Lett, 2002, 332(1): 5-8.
    31. Frankel AE, Kreitman RJ, and Sausville EA. Targeted toxins. Clin Cancer Res, 2000, 6(2): 326-334.
    32. Szalai K, Scholl I, Forster-Waldl E, et al. Occupational sensitization to ribosome-inactivating proteins in researchers. Clin Exp Allergy, 2005, 35(10): 1354-1360.
    33. Forster-Waldl E, Marchetti M, Scholl I, et al. Type I allergy to elderberry (Sambucus nigra) is elicited by a 33.2 kDa allergen with significant homology to ribosomal inactivating proteins. Clin Exp Allergy, 2003, 33(12): 1703-1710.
    34. Hickey WF. Basic principles of immunological surveillance of the normal central nervous system. Glia, 2001, 36(2): 118-124.
    35. Skaper SD. The Brain as a Target for Inflammatory Processes and Neuroprotective Strategies. Ann N Y Acad Sci, 2007, 1122: 23-34.
    36. Nimmerjahn A, Kirchhoff F, and Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308(5726): 1314-1318.
    1. Degterev A, Boyce M, and Yuan J. A decade of caspases. Oncogene, 2003, 22(53): 8543-8567.
    2. Srinivasula SM, Ahmad M, MacFarlane M, et al. Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits. J Biol Chem, 1998, 273(17): 10107-10111.
    3. Jia LT, Zhang LH, Yu CJ, et al. Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res, 2003, 63(12): 3257-3262.
    4. Fischer U and Schulze-Osthoff K. New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev, 2005, 57(2): 187-215.
    5. Fischer U and Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ, 2005, 12 Suppl 1: 942-961.
    6. Chelur DS and Chalfie M. Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci U S A, 2007, 104(7): 2283-2288.
    7.高峰,田玉科,杨辉等.猿肾病毒SV40大T抗原基因永生化大鼠神经前体细胞株的构建.中华麻醉学杂志, 2005, 25: 597-600.
    8. Horton RM, Hunt HD, Ho SN, et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene, 1989, 77(1): 61-68.
    9. Kerr JF, Wyllie AH, and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26(4): 239-257.
    10. Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci, 2004, 13(8): 1979-1987.
    11. Fadeel B and Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med, 2005, 258(6): 479-517.
    12. Schulze-Osthoff K, Ferrari D, Los M, et al. Apoptosis signaling by death receptors.Eur J Biochem, 1998, 254(3): 439-459.
    13. Mittl PR, Di Marco S, Krebs JF, et al. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J Biol Chem, 1997, 272(10): 6539-6547.
    14. Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol, 1996, 3(7): 619-625.
    15. Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407(6805): 770-776.
    16. Riedl SJ and Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol, 2004, 5(11): 897-907.
    17. Chul Cho K, Hoon Jeong J, Jung Chung H, et al. Folate receptor-mediated intracellular delivery of recombinant caspase-3 for inducing apoptosis. J Control Release, 2005, 108(1): 121-131.
    18.曹菲,高峰,许爱军,姚文龙,陈莎莎,田玉科.永生化神经前体细胞膜表面阿片受体表达的鉴定.中国组织工程研究与临床康复, 2007, 11(50): 10030-10033.
    19.曹菲,田玉科,许爱军.大鼠星形胶质瘤细胞系C6膜表面μ阿片受体的表达.中华麻醉学杂志,2008,第五期.
    1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin, 2006, 56(2): 106-130.
    2. Meuser T, Pietruck C, Radbruch L, et al. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain, 2001, 93(3): 247-257.
    3. Goblirsch MJ, Zwolak PP, and Clohisy DR. Biology of bone cancer pain. Clin Cancer Res, 2006, 12(20 Pt 2): 6231s-6235s.
    4. Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci, 1999, 19(24): 10886-10897.
    5. Medhurst SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain. Pain, 2002, 96(1-2): 129-140.
    6. Honore P, Schwei J, Rogers SD, et al. Cellular and neurochemical remodeling of the spinal cord in bone cancer pain. Prog Brain Res, 2000, 129: 389-397.
    7. Cain DM, Wacnik PW, Eikmeier L, et al. Functional interactions between tumor and peripheral nerve in a model of cancer pain in the mouse. Pain Med, 2001, 2(1): 15-23.
    8. Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience, 2002, 113(1): 155-166.
    9. Wacnik PW, Kehl LJ, Trempe TM, et al. Tumor implantation in mouse humerus evokes movement-related hyperalgesia exceeding that evoked by intramuscular carrageenan. Pain, 2003, 101(1-2): 175-186.
    10. Mao-Ying QL, Zhao J, Dong ZQ, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun, 2006, 345(4): 1292-1298.
    11. Zhang RX, Liu B, Wang L, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain, 2005, 118(1-2): 125-136.
    12. Zwolak P, Dudek AZ, Bodempudi VD, et al. Local irradiation in combination with bevacizumab enhances radiation control of bone destruction and cancer-induced pain in a model of bone metastases. Int J Cancer, 2008, 122(3): 681-688.
    13. Park HC, Seong J, An JH, et al. Alteration of cancer pain-related signals by radiation: proteomic analysis in an animal model with cancer bone invasion. Int J Radiat Oncol Biol Phys, 2005, 61(5): 1523-1534.
    14. Sabino MA, Luger NM, Mach DB, et al. Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer, 2003, 104(5): 550-558.
    15. Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci, 2006, 7(10): 797-809.
    16. Wittrant Y, Theoleyre S, Chipoy C, et al. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta, 2004, 1704(2): 49-57.
    17. Sabino MA, Ghilardi JR, Jongen JL, et al. Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res, 2002, 62(24): 7343-7349.
    18. Clohisy DR, Perkins SL, and Ramnaraine ML. Review of cellular mechanisms of tumor osteolysis. Clin Orthop Relat Res, 2000(373): 104-114.
    19. Sevcik MA, Luger NM, Mach DB, et al. Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain, 2004, 111(1-2): 169-180.
    20. Rodan GA and Martin TJ. Therapeutic approaches to bone diseases. Science, 2000,289(5484): 1508-1514.
    21. Luger NM, Honore P, Sabino MA, et al. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res, 2001, 61(10): 4038-4047.
    22. Sutherland SP, Cook SP, and McCleskey EW. Chemical mediators of pain due to tissue damage and ischemia. Prog Brain Res, 2000, 129: 21-38.
    23. Urch C. The pathophysiology of cancer-induced bone pain: current understanding. Palliat Med, 2004, 18(4): 267-274.
    24. Vasko MR. Prostaglandin-induced neuropeptide release from spinal cord. Prog Brain Res, 1995, 104: 367-380.
    25. Julius D and Basbaum AI. Molecular mechanisms of nociception. Nature, 2001, 413(6852): 203-210.
    26. Gupta RA and Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer, 2001, 1(1): 11-21.
    27. Thun MJ, Henley SJ, and Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 2002, 94(4): 252-266.
    28. Iniguez MA, Rodriguez A, Volpert OV, et al. Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol Med, 2003, 9(2): 73-78.
    29. Pomonis JD, Rogers SD, Peters CM, et al. Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception. J Neurosci, 2001, 21(3): 999-1006.
    30. Asham EH, Loizidou M, and Taylor I. Endothelin-1 and tumour development. Eur J Surg Oncol, 1998, 24(1): 57-60.
    31. Davar G, Hans G, Fareed MU, et al. Behavioral signs of acute pain produced by application of endothelin-1 to rat sciatic nerve. Neuroreport, 1998, 9(10): 2279-2283.
    32. Peters CM, Lindsay TH, Pomonis JD, et al. Endothelin and the tumorigeniccomponent of bone cancer pain. Neuroscience, 2004, 126(4): 1043-1052.
    33. Cain DM, Wacnik PW, Turner M, et al. Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain. J Neurosci, 2001, 21(23): 9367-9376.
    34. Nelson JB and Carducci MA. The role of endothelin-1 and endothelin receptor antagonists in prostate cancer. BJU Int, 2000, 85 Suppl 2: 45-48.
    35. Halvorson KG, Kubota K, Sevcik MA, et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res, 2005, 65(20): 9426-9435.
    36. Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain, 2005, 115(1-2): 128-141.
    37. Couture R, Harrisson M, Vianna RM, et al. Kinin receptors in pain and inflammation. Eur J Pharmacol, 2001, 429(1-3): 161-176.
    38. Fox A, Wotherspoon G, McNair K, et al. Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain, 2003, 104(3): 683-691.
    39. Sevcik MA, Ghilardi JR, Halvorson KG, et al. Analgesic efficacy of bradykinin B1 antagonists in a murine bone cancer pain model. J Pain, 2005, 6(11): 771-775.
    40. Serre CM, Farlay D, Delmas PD, et al. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone, 1999, 25(6): 623-629.
    41. Hukkanen M, Konttinen YT, Rees RG, et al. Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone. Int J Tissue React, 1992, 14(1): 1-10.
    42. Goblirsch MJ, Zwolak P, and Clohisy DR. Advances in understanding bone cancer pain. J Cell Biochem, 2005, 96(4): 682-688.
    43. Peters CM, Ghilardi JR, Keyser CP, et al. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol, 2005, 193(1): 85-100.
    44. Nakagomi S, Suzuki Y, Namikawa K, et al. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci, 2003, 23(12): 5187-5196.
    45. Honore P, Rogers SD, Schwei MJ, et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience, 2000, 98(3): 585-598.
    46. Urch CE, Donovan-Rodriguez T, and Dickenson AH. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain, 2003, 106(3): 347-356.
    47. Wacnik PW, Baker CM, Herron MJ, et al. Tumor-induced mechanical hyperalgesia involves CGRP receptors and altered innervation and vascularization of DsRed2 fluorescent hindpaw tumors. Pain, 2005, 115(1-2): 95-106.
    48. Suzuki R, Morcuende S, Webber M, et al. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci, 2002, 5(12): 1319-1326.
    49. Mouton LJ and Holstege G. Three times as many lamina I neurons project to the periaqueductal gray than to the thalamus: a retrograde tracing study in the cat. Neurosci Lett, 1998, 255(2): 107-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700