用户名: 密码: 验证码:
糖原合酶激酶-3促进成年大鼠海马的神经发生及其机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经发生在成年哺乳动物脑内仍然持续存在,并主要局限于海马齿状回的亚颗粒层( Subgranular zone, SGZ)和前脑的室管膜下区(Subventricular zone, SVZ)两个脑区。阿尔兹海默病(Alzheimer’s disease, AD)是老年人常见的一种慢性进行性神经退行性疾病,其患者脑内海马区神经发生的水平明显高于正常人,目前对此现象产生的机制仍不清楚。目前针对AD尚无有效的治疗措施,刺激患者脑内新生神经元的产生增多使其替代衰老、死亡的神经元发挥正常功能成为目前极具前景的一个治疗靶点。因此,了解AD患者脑内影响神经发生的相关因素,弄清其脑内神经发生水平增高的原因具有重要的意义。
     以过度磷酸化的微管相关蛋白tau为主要成分的神经原纤维缠结(neurofibrillary tangles, NFTs)是AD患者脑内主要的病理特征之一,糖原合酶激酶-3β(glycogen synthase kinase 3, GSK-3β)是导致tau蛋白过度磷酸化的关键激酶,与AD病变的发展具有密切的联系。此外,tau蛋白与GSK-3β在神经元的发育中也具有重要作用。本研究旨在通过观察GSK-3β活性增高对成年大鼠脑内神经发生的影响及磷酸化tau蛋白在SGZ区和SVZ区与新生神经元之间的关系,探讨AD患者脑内神经发生水平增高的可能机制。
     为探讨GSK-3β与成年神经发生的关系,我们首先采用免疫荧光双标的技术对成年大鼠脑内SGZ区和SVZ区GSK-3β与未成熟神经元之间的关系进行了观察;接下来,为观察GSK-3β活性增高对成年神经发生的影响,我们将动物分为2组,通过侧脑室定位注射生理盐水(NS组)或PI3K特异性抑制剂wortmannin(WT组),并分别于术后不同时间点取材,采用免疫组化的方法对大鼠脑内神经发生的水平进行测定;为进一步明确GSK-3β对成年神经发生的作用,我们将动物分为5组,通过侧脑室注射分别给予10μl的NS、10μMWT、100μMWT、70μM的GSK-3β特异性抑制剂SB216763 ( SB )或100μMWT和70μM SB联合给药,术后3天取材,采用免疫印迹的方法对大鼠脑内神经发生的水平进行测定;为探讨GSK-3β活性增高对成年大鼠齿状回内细胞增殖、分化及存活的影响,我们在侧脑室给药前对大鼠进行连续3天的BrdU腹腔注射,标记此时处于增殖期的新生细胞,并于术后跟踪观察BrdU+细胞的数量改变及分化情况。
     结果显示:
     1. GSK-3β广泛分布于成年大鼠海马齿状回及前脑的室管膜下区,与新生神经元存在明显的共定位关系,但其非活性形式pS9-GSK-3β不表达于新生神经元内;
     2.脑内GSK-3活性增高可特异性地引起成年大鼠海马齿状回的神经发生水平增高;
     3. GSK-3主要通过促进细胞增殖使大鼠海马齿状回的新生神经元增多。
     为观察tau蛋白的磷酸化水平与神经发生之间的相关性,我们采用免疫印迹的方法对WT处理的大鼠脑内tau蛋白的磷酸化水平进行了测定;接下来,为探讨磷酸化tau蛋白与神经元发育之间的关系,我们选取了出生1天(P1)、出生8天(P8)、1月龄(P30)及成年大鼠(Adult,3-4月龄)4个年龄段的大鼠脑片用于研究,分别用识别未成熟神经元的抗体DCX和NeuroD,识别磷酸化tau蛋白的抗体PS396, PT205和PT231以及识别非磷酸化tau蛋白的抗体tau-1对大鼠脑内齿状回和SVZ区未成熟神经元及tau蛋白的分布/表达随年龄增长的变化情况进行观察;最后,为明确成年大鼠脑内磷酸化/非磷酸化tau蛋白与未成熟神经元之间的关系,我们采用免疫荧光双标的方法对大鼠脑内齿状回和SVZ区tau蛋白与未成熟神经元的关系进行了观察。
     结果显示:
     1.通过侧脑室注射WT使脑内GSK-3活性增高,可使大鼠齿状回tau蛋白的磷酸化程度明显增高;
     2.齿状回内DCX和NeuroD阳性细胞的分布与tau蛋白的表达均随着年龄的增长而明显减少,磷酸化tau蛋白的分布/表达与新生神经元之间存在明显的相关性;SVZ区内DCX的分布范围随年龄增长逐渐减小,但其表达强度和tau蛋白一起随着年龄的增长逐渐增加,并在成年后维持一定的强度;
     3.成年大鼠脑内磷酸化tau蛋白与新生神经元之间存在明显的共定位关系。
     我们的结果提示,GSK-3的活性增高可使成年动物海马区的神经发生水平明显增加,而磷酸化tau蛋白特异性地表达于未成熟神经元内,在新生神经元的发育中具有一定的作用。本研究为揭示AD患者脑内神经发生水平增高的机制提供了实验证据。
Neurogenesis persists in the adult mammalian brain and remains restricted to the subgranular zone (SGZ) of the dentate gyrus in hippocampus and the subventricular zone (SVZ) of the lateral ventricles in forebrain. Alzheimer’s disease (AD) is the most common neurodegenerative disease. Increased hippocampal neurogenesis has been observed in AD brain, but little is known about the mechanisms that result in enhanced neurogenesis in AD. Until now, none of current medications has been proved to cure AD efficiently. Stimulation of endogenous adult neurogenesis, which could produce more newborn neurons to replace old and dead ones to play normal functions, is a promising therapeutic target for this disease. Therefore, it is of great value to know about which factors could influence adult neurogenesis and elucidate the mechanisms that lead to enhanced neurogenesis in AD brain.
     One of the major pathological features of AD brain is the presence of neurofibrillary tangles which is mainly composed of hyperphosphorylated microtubule associated protein tau. Deregulation of glycogen synthase kinase-3 (GSK-3) activity has been postulated to play an important role in AD, on the basis of its association with neurofibrillary tangles. Besides, GSK-3βand tau protein have been reported to have a role in the development of neurons. In the present study, we investigate the effect of GSK-3 activation on adult neurogenesis and examine the relationship between phosphorylated tau protein and immature neurons in the SGZ and SVZ.
     To explore the possible involvement of GSK-3βin neurogenesis, we first performed double staining of GSK-3βwith immature neuronal markers in the SGZ and SVZ. Next, we injected WT into the left ventricle of rat brain to activate GSK-3βto investigate the effect of GSK-3βactivation on adult neurogenesis by immunohistochemical methods. To further confirm the role of GSK-3 on adult hippocampal neurogenesis, we injected different amounts of WT and used SB, a specific inhibitor of GSK-3, alone or together with WT to treat animals. At 3 days after the brain injection, animals were sacrificed to examine the level of neurogenesis by western blot analysis. To explore the effect of GSK-3 activation on the proliferation, survival and differentiation of newborn cells in the adult hippocampus, we injected intraperitoneally the rats with BrdU for 3 days, and then injected WT or NS, as a control, through lateral ventricle. The number of BrdU-labeled cells and phenotype of newborn cells in the SGZ region were estimated at different time points after the ventricle injection.
     The results are shown as follows:
     1. GSK-3βis widely expressed in the SGZ of dentate gyrus and the SVZ of forebrain. Total GSK-3βis colocalized with immature neurons in the SGZ and SVZ, while inactivate GSK-3βis dissociated from immature neurons in these two areas.
     2. Activation of GSK-3 stimulates neurogenesis specifically in the dentate gyrus of hippocampus.
     3. GSK-3 induced enhanced hippocampal neurogenesis mainly by facilitating cell proliferation.
     To explore the relationship between tau phosphorylation and adult neurogenesis, we compared the level of tau phosphorylation in NS- and WT-treated animals. Next, we performed immunohistochemistry in the brain slices of newborn (P1), 8 days (P8), 30 days (P30) and 3-4 months old (adult) rats to examine the correlation between tau phosphorylation and neurogenesis during brain development. Antibodies DCX and NeuroD were used to examine the distribution of immature neurons in the dentate gyrus and SVZ, and PS396, PT205 and PT231 / Tau-1 were used to examine the expression of phosphorylated / unphosphorylated tau protein in these two regions. Finally, we performed double immunofluorescent staining of tau protein with immature neuronal markers in the SGZ and SVZ of adut rat brain to observe the relationship between tau protein and adult neurogenesis. The results are presented as below:
     1. Activation of GSK-3 induced elevated level of tau phosphorylation in the dentate gyrus of rats.
     2. Distribution of DCX- and NeuroD-positive cells is correlated with the expression of phosphorylated tau protein in the dentate gyrus during brain development. Though the distribution of DCX decreases significantly with aging, which differs from that of tau protein, the expression of both DCX and tau protein increases during development and remains at moderate levels when matures into adulthood.
     3. Phosphorylated tau is colocalized with immature neurons in the SGZ and SVZ of adult rat brain.
     These results suggest that activation of GSK-3 facilitates adult neurogenesis in the SGZ of rat hippocampus and phosphorylated tau protein plays a role in the development of adult born immature neurons. Our finding provides a possible mechanism that leads to the enhanced neurogenesis observed in the AD brains.
引文
1. Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature 1965;207:953-956.
    2. Cayre M, Malaterre J, Scotto-Lomassese S, Strambi C, Strambi A. The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comparative biochemistry and physiology 2002;132:1-15.
    3. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature medicine 2000;6:271-277.
    4. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proceedings of the National Academy of Sciences of the United States of America 1999;96:5263-5267.
    5. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science (New York, N.Y 1999;286:548-552.
    6. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature medicine 1998;4:1313-1317.
    7. Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. The European journal of neuroscience 2004;19:234-246.
    8. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of comparative neurology 2001;435:406-417.
    9. Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells. The Journal of comparative neurology 1999;413:146-154.
    10. Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus sendaxonal projections to field CA3 and are surrounded by synaptic vesicles. The Journal of comparative neurology 1999;406:449-460.
    11. Schinder AF, Gage FH. A hypothesis about the role of adult neurogenesis in hippocampal function. Physiology (Bethesda, Md 2004;19:253-261.
    12. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience 2005;130:843-852.
    13. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nature neuroscience 1999;2:260-265.
    14. Gould E, Tanapat P, Rydel T, Hastings N. Regulation of hippocampal neurogenesis in adulthood. Biological psychiatry 2000;48:715-720.
    15. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002;22:2679-2689.
    16. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature medicine 2002;8:963-970.
    17. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 2000;405:951-955.
    18. Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. The European journal of neuroscience 2003;17:2042-2046.
    19. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386:493-495.
    20. Hagg T. Molecular regulation of adult CNS neurogenesis: an integrated view. Trends in neurosciences 2005;28:589-595.
    21. Hagg T. Endogenous regulators of adult CNS neurogenesis. Current pharmaceutical design 2007;13:1829-1840.
    22. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 2005;25:8680-8685.
    23. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA. Increased hippocampal neurogenesis in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 2004;101:343-347.
    24. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America 2003;100:9023-9027.
    25. Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL. The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience 2005;132:777-788.
    26. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998;18:7768-7778.
    27. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem cells (Dayton, Ohio) 2006;24:739-747.
    28. Wang R, Dineley KT, Sweatt JD, Zheng H. Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 2004;126:305-312.
    29. Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clinical and experimental pharmacology & physiology 2007;34:533-545.
    30. Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. The Journal of comparative neurology 2006;495:70-83.
    31. Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 2007;27:6771-6780.
    32. Becker M, Lavie V, Solomon B. Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America2007;104:1691-1696.
    33. Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. The Biochemical journal 2001;359:1-16.
    34. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. Journal of cell science 2003;116:1175-1186.
    35. Takahashi M, Tomizawa K, Kato R, Sato K, Uchida T, Fujita SC, Imahori K. Localization and developmental changes of tau protein kinase I/glycogen synthase kinase-3 beta in rat brain. Journal of neurochemistry 1994;63:245-255.
    36. Leroy K, Brion JP. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. Journal of chemical neuroanatomy 1999;16:279-293.
    37. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. Journal of neuropathology and experimental neurology 1997;56:70-78.
    38. Maccioni RB, Munoz JP, Barbeito L. The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Archives of medical research 2001;32:367-381.
    39. Cho JH, Johnson GV. Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. The Journal of biological chemistry 2003;278:187-193.
    40. Lovestone S, Hartley CL, Pearce J, Anderton BH. Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 1996;73:1145-1157.
    41. Wagner U, Utton M, Gallo JM, Miller CC. Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. Journal of cell science 1996;109 ( Pt 6):1537-1543.
    42. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. Journal of neurochemistry 2003;87:1333-1344.
    43. Johnson GV, Jenkins SM. Tau protein in normal and Alzheimer's disease brain. J Alzheimers Dis 1999;1:307-328.
    44. Kosik KS, Orecchio LD, Bakalis S, Neve RL. Developmentally regulated expression of specific tau sequences. Neuron 1989;2:1389-1397.
    45. Watanabe A, Hasegawa M, Suzuki M, Takio K, Morishima-Kawashima M, Titani K, Arai T, Kosik KS, Ihara Y. In vivo phosphorylation sites in fetal and adult rat tau. The Journal of biological chemistry 1993;268:25712-25717.
    46. Yoshida H, Ihara Y. Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau. Journal of neurochemistry 1993;61:1183-1186.
    47. Schoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. International review of cytology 1994;151:67-137.
    48. Bullmann T, de Silva R, Holzer M, Mori H, Arendt T. Expression of embryonic tau protein isoforms persist during adult neurogenesis in the hippocampus. Hippocampus 2007;17:98-102.
    49. Sennvik K, Boekhoorn K, Lasrado R, Terwel D, Verhaeghe S, Korr H, Schmitz C, Tomiyama T, Mori H, Krugers H, Joels M, Ramakers GJ, Lucassen PJ, Van Leuven F. Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. Faseb J 2007;21:2149-2161.
    50. De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer's disease. Brain research 2000;33:1-12.
    51. Hernandez F, Perez M, Lucas JJ, Mata AM, Bhat R, Avila J. Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer's disease. The Journal of biological chemistry 2004;279:3801-3806.
    52. Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423:435-439.
    53. Perrimon N, Smouse D. Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis. Developmental biology1989;135:287-305.
    54. Dominguez I, Itoh K, Sokol SY. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proceedings of the National Academy of Sciences of the United States of America 1995;92:8498-8502.
    55. Owen R, Gordon-Weeks PR. Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones. Molecular and cellular neurosciences 2003;23:626-637.
    56. Spittaels K, Van den Haute C, Van Dorpe J, Terwel D, Vandezande K, Lasrado R, Bruynseels K, Irizarry M, Verhoye M, Van Lint J, Vandenheede JR, Ashton D, Mercken M, Loos R, Hyman B, Van der Linden A, Geerts H, Van Leuven F. Neonatal neuronal overexpression of glycogen synthase kinase-3 beta reduces brain size in transgenic mice. Neuroscience 2002;113:797-808.
    57. Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. Journal of cell science 2004;117:5721-5729.
    58. Mandell JW, Banker GA. A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 1996;16:5727-5740.
    59. Biernat J, Mandelkow EM. The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Molecular biology of the cell 1999;10:727-740.
    60. Biernat J, Wu YZ, Timm T, Zheng-Fischhofer Q, Mandelkow E, Meijer L, Mandelkow EM. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Molecular biology of the cell 2002;13:4013-4028.
    61. Minturn JE, Fryer HJ, Geschwind DH, Hockfield S. TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J Neurosci 1995;15:6757-6766.
    62. Minturn JE, Geschwind DH, Fryer HJ, Hockfield S. Early postmitotic neurons transiently express TOAD-64, a neural specific protein. The Journal of comparative neurology 1995;355:369-379.
    63. Quinn CC, Chen E, Kinjo TG, Kelly G, Bell AW, Elliott RC, McPherson PS, Hockfield S. TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 2003;23:2815-2823.
    64. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiological reviews 2005;85:523-569.
    65. Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 1999;19:5792-5801.
    66. Rodriguez JJ, Montaron MF, Petry KG, Aurousseau C, Marinelli M, Premier S, Rougon G, Le Moal M, Abrous DN. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. The European journal of neuroscience 1998;10:2994-3006.
    67. Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross JC, Weiss S. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science (New York, N.Y 2003;299:117-120.
    68. Gage FH. Mammalian neural stem cells. Science (New York, N.Y 2000;287:1433-1438.
    69. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. The Journal of comparative neurology 2003;460:563-572.
    70. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996;16:2649-2658.
    71. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 1997;17:5820-5829.
    72. Wagner JP, Black IB, DiCicco-Bloom E. Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 1999;19:6006-6016.
    73. Galvan V, Greenberg DA, Jin K. The role of vascular endothelial growth factor inneurogenesis in adult brain. Mini reviews in medicinal chemistry 2006;6:667-669.
    74. Wang Y, Galvan V, Gorostiza O, Ataie M, Jin K, Greenberg DA. Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Res 2006;1115:186-193.
    75. Tatebayashi Y, Iqbal K, Grundke-Iqbal I. Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 1999;19:5245-5254.
    76. Tatebayashi Y, Lee MH, Li L, Iqbal K, Grundke-Iqbal I. The dentate gyrus neurogenesis: a therapeutic target for Alzheimer's disease. Acta neuropathologica 2003;105:225-232.
    77. Gomez-Pinilla F, Cummings BJ, Cotman CW. Induction of basic fibroblast growth factor in Alzheimer's disease pathology. Neuroreport 1990;1:211-214.
    78. Stopa EG, Gonzalez AM, Chorsky R, Corona RJ, Alvarez J, Bird ED, Baird A. Basic fibroblast growth factor in Alzheimer's disease. Biochemical and biophysical research communications 1990;171:690-696.
    79. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proceedings of the National Academy of Sciences of the United States of America 2001;98:5874-5879.
    80. Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, Harada J, Waeber C, Breakefield XO, Moskowitz MA. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. The Journal of clinical investigation 2003;112:1202-1210.
    81. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005;120:137-149.
    82. Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN, Sutherland C. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. The Journal of biological chemistry 2004;279:50176-50180.
    83. Kempf M, Clement A, Faissner A, Lee G, Brandt R. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 1996;16:5583-5592.
    84. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G. Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Molecular and cellular neurosciences 2003;23:373-382.
    85. Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 1993;11:153-163.
    86. Caceres A, Kosik KS. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 1990;343:461-463.
    87. Caceres A, Potrebic S, Kosik KS. The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J Neurosci 1991;11:1515-1523.
    88. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. Journal of cell science 2001;114:1179-1187.
    89. Schindowski K, Belarbi K, Bretteville A, Ando K, Buee L. Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation. Genes, brain, and behavior 2008;7 Suppl 1:92-100.
    1. Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature 1965;207:953-956.
    2. Goldman SA, Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America 1983;80:2390-2394.
    3. Paton JA, Nottebohm FN. Neurons generated in the adult brain are recruited into functional circuits. Science (New York, N.Y 1984;225:1046-1048.
    4. Cayre M, Malaterre J, Scotto-Lomassese S, Strambi C, Strambi A. The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comparative biochemistry and physiology 2002;132:1-15.
    5. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA. In vitroneurogenesis by progenitor cells isolated from the adult human hippocampus. Nature medicine 2000;6:271-277.
    6. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature medicine 1998;4:1313-1317.
    7. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proceedings of the National Academy of Sciences of the United States of America 1999;96:5263-5267.
    8. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science (New York, N.Y 1999;286:548-552.
    9. Gould E, Vail N, Wagers M, Gross CG. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proceedings of the National Academy of Sciences of the United States of America 2001;98:10910-10917.
    10. Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. Journal of neurocytology 1989;18:311-318.
    11. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science (New York, N.Y 1994;264:1145-1148.
    12. Belluzzi O, Benedusi M, Ackman J, LoTurco JJ. Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 2003;23:10411-10418.
    13. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM. Becoming a new neuron in the adult olfactory bulb. Nature neuroscience 2003;6:507-518.
    14. Kato T, Yokouchi K, Fukushima N, Kawagishi K, Li Z, Moriizumi T. Continual replacement of newly-generated olfactory neurons in adult rats. Neuroscience letters 2001;307:17-20.
    15. Luskin MB. Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. Journal of neurobiology 1998;36:221-233.
    16. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. The European journal of neuroscience 2002;16:1681-1689.
    17. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J. Functional integration of adult-born neurons. Curr Biol 2002;12:606-608.
    18. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of comparative neurology 2001;435:406-417.
    19. Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. The European journal of neuroscience 2004;19:234-246.
    20. Kaplan MS. Environment complexity stimulates visual cortex neurogenesis: death of a dogma and a research career. Trends in neurosciences 2001;24:617-620.
    21. Kaplan MS, Bell DH. Neuronal proliferation in the 9-month-old rodent-radioautographic study of granule cells in the hippocampus. Experimental brain research. Experimentelle Hirnforschung 1983;52:1-5.
    22. Kaplan MS, Bell DH. Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 1984;4:1429-1441.
    23. Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science (New York, N.Y 1977;197:1092-1094.
    24. Cooper-Kuhn CM, Kuhn HG. Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain research 2002;134:13-21.
    25. Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 1999;19:5792-5801.
    26. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. The Journal of comparative neurology 2003;467:1-10.
    27. Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A,von der Behrens W, Kempermann G. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Molecular and cellular neurosciences 2003;24:603-613.
    28. Gould E, Tanapat P. Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 1997;80:427-436.
    29. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996;16:2027-2033.
    30. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. The Journal of comparative neurology 2001;437:496-504.
    31. Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K, Kempermann G. Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 2004;46:41-52.
    32. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development (Cambridge, England) 2003;130:391-399.
    33. Liu S, Wang J, Zhu D, Fu Y, Lukowiak K, Lu YM. Generation of functional inhibitory neurons in the adult rat hippocampus. J Neurosci 2003;23:732-736.
    34. Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells. The Journal of comparative neurology 1999;413:146-154.
    35. Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. The Journal of comparative neurology 1999;406:449-460.
    36. Stanfield BB, Trice JE. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Experimental brain research. Experimentelle Hirnforschung 1988;72:399-406.
    37. Schinder AF, Gage FH. A hypothesis about the role of adult neurogenesis inhippocampal function. Physiology (Bethesda, Md 2004;19:253-261.
    38. Liu Z, Martin LJ. Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. The Journal of comparative neurology 2003;459:368-391.
    39. Toda H, Takahashi J, Mizoguchi A, Koyano K, Hashimoto N. Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Experimental neurology 2000;165:66-76.
    40. Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 2004;429:184-187.
    41. Gould E, Tanapat P, Hastings NB, Shors TJ. Neurogenesis in adulthood: a possible role in learning. Trends in cognitive sciences 1999;3:186-192.
    42. Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 2002;22:635-638.
    43. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience 2005;130:843-852.
    44. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nature neuroscience 1999;2:260-265.
    45. Gould E, Tanapat P, Rydel T, Hastings N. Regulation of hippocampal neurogenesis in adulthood. Biological psychiatry 2000;48:715-720.
    46. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America 1999;96:13427-13431.
    47. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 2005;25:8680-8685.
    48. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002;22:2679-2689.
    49. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature medicine2002;8:963-970.
    50. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 2000;405:951-955.
    51. Gould E, Gross CG. Neurogenesis in adult mammals: some progress and problems. J Neurosci 2002;22:619-623.
    52. Rodriguez JJ, Montaron MF, Petry KG, Aurousseau C, Marinelli M, Premier S, Rougon G, Le Moal M, Abrous DN. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. The European journal of neuroscience 1998;10:2994-3006.
    53. Cameron HA, Gould E. Distinct populations of cells in the adult dentate gyrus undergo mitosis or apoptosis in response to adrenalectomy. The Journal of comparative neurology 1996;369:56-63.
    54. Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992;12:3642-3650.
    55. Montaron MF, Piazza PV, Aurousseau C, Urani A, Le Moal M, Abrous DN. Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. The European journal of neuroscience 2003;18:3105-3111.
    56. Hagg T. Molecular regulation of adult CNS neurogenesis: an integrated view. Trends in neurosciences 2005;28:589-595.
    57. Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross JC, Weiss S. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science (New York, N.Y 2003;299:117-120.
    58. Jin K, Xie L, Childs J, Sun Y, Mao XO, Logvinova A, Greenberg DA. Cerebral neurogenesis is induced by intranasal administration of growth factors. Annals of neurology 2003;53:405-409.
    59. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proceedings of the National Academy of Sciences of the United States of America 2001;98:5874-5879.
    60. Anderson MF, Aberg MA, Nilsson M, Eriksson PS. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain research 2002;134:115-122.
    61. Niblock MM, Brunso-Bechtold JK, Riddle DR. Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 2000;20:4165-4176.
    62. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 2000;20:2896-2903.
    63. Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 2001;21:1628-1634.
    64. Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences 1998;11:234-245.
    65. Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of neurochemistry 2002;82:1367-1375.
    66. Katoh-Semba R, Asano T, Ueda H, Morishita R, Takeuchi IK, Inaguma Y, Kato K. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. Faseb J 2002;16:1328-1330.
    67. Linnarsson S, Willson CA, Ernfors P. Cell death in regenerating populations of neurons in BDNF mutant mice. Brain Res Mol Brain Res 2000;75:61-69.
    68. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996;16:2649-2658.
    69. Tropepe V, Craig CG, Morshead CM, van der Kooy D. Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 1997;17:7850-7859.
    70. Baker SA, Baker KA, Hagg T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. The European journal of neuroscience 2004;20:575-579.
    71. Kippin TE, Kapur S, van der Kooy D. Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 2005;25:5815-5823.
    72. Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 2004;29:450-460.
    73. Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in neurosciences 2004;27:589-594.
    74. Kulkarni VA, Jha S, Vaidya VA. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. The European journal of neuroscience 2002;16:2008-2012.
    75. Kitamura T, Mishina M, Sugiyama H. Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neuroscience research 2003;47:55-63.
    76. Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. The European journal of neuroscience 2001;13:512-520.
    77. Mohapel P, Leanza G, Kokaia M, Lindvall O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiology of aging 2005;26:939-946.
    78. Harrist A, Beech RD, King SL, Zanardi A, Cleary MA, Caldarone BJ, Eisch A, Zoli M, Picciotto MR. Alteration of hippocampal cell proliferation in mice lacking the beta 2 subunit of the neuronal nicotinic acetylcholine receptor. Synapse (New York,N.Y 2004;54:200-206.
    79. van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nature reviews 2000;1:191-198.
    80. Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proceedings of the National Academy of Sciences of the United States of America 1997;94:10409-10414.
    81. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386:493-495.
    82. Kempermann G, Brandon EP, Gage FH. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr Biol 1998;8:939-942.
    83. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience 1999;2:266-270.
    84. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America 2000;97:11032-11037.
    85. Dobrossy MD, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Molecular psychiatry 2003;8:974-982.
    86. Gomez-Pinilla F, So V, Kesslak JP. Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise. Neuroscience 1998;85:53-61.
    87. Kesslak JP, So V, Choi J, Cotman CW, Gomez-Pinilla F. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behavioral neuroscience 1998;112:1012-1019.
    88. Holmes MM, Galea LA. Defensive behavior and hippocampal cell proliferation: differential modulation by naltrexone during stress. Behavioral neuroscience2002;116:160-168.
    89. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA. Increased hippocampal neurogenesis in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 2004;101:343-347.
    90. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America 2003;100:9023-9027.
    91. Romanko MJ, Rola R, Fike JR, Szele FG, Dizon ML, Felling RJ, Brazel CY, Levison SW. Roles of the mammalian subventricular zone in cell replacement after brain injury. Progress in neurobiology 2004;74:77-99.
    92. Wang R, Dineley KT, Sweatt JD, Zheng H. Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 2004;126:305-312.
    93. Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 2007;27:6771-6780.
    94. Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clinical and experimental pharmacology & physiology 2007;34:533-545.
    95. Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. The Journal of comparative neurology 2006;495:70-83.
    96. Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proceedings of the National Academy of Sciences of the United States of America 2004;101:13363-13367.
    97. Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang YP. Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiology of disease 2008;29:316-326.
    98. Becker M, Lavie V, Solomon B. Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 2007;104:1691-1696.
    99. Gomez-Pinilla F, Cummings BJ, Cotman CW. Induction of basic fibroblast growth factor in Alzheimer's disease pathology. Neuroreport 1990;1:211-214.
    100. Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD. Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res Mol Brain Res 1998;62:101-105.
    101. Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM. Increased circulating insulin-like growth factor-1 in late-onset Alzheimer's disease. J Alzheimers Dis 2007;12:285-290.
    102. Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL. The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience 2005;132:777-788.
    103. Collin T, Arvidsson A, Kokaia Z, Lindvall O. Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Experimental neurology 2005;195:71-80.
    104. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 2004;127:319-332.
    105. Grote HE, Bull ND, Howard ML, van Dellen A, Blakemore C, Bartlett PF, Hannan AJ. Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine. The European journal of neuroscience 2005;22:2081-2088.
    106. Lazic SE, Grote H, Armstrong RJ, Blakemore C, Hannan AJ, van Dellen A, Barker RA. Decreased hippocampal cell proliferation in R6/1 Huntington's mice. Neuroreport 2004;15:811-813.
    107. Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, Brundin P, Petersen A. Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice.Neurobiology of disease 2005;20:744-751.
    108. Pearson AG, Curtis MA, Waldvogel HJ, Faull RL, Dragunow M. Activating transcription factor 2 expression in the adult human brain: association with both neurodegeneration and neurogenesis. Neuroscience 2005;133:437-451.
    109. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998;18:7768-7778.
    110. Tanaka R, Yamashiro K, Mochizuki H, Cho N, Onodera M, Mizuno Y, Urabe T. Neurogenesis after transient global ischemia in the adult hippocampus visualized by improved retroviral vector. Stroke; a journal of cerebral circulation 2004;35:1454-1459.
    111. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem cells (Dayton, Ohio) 2006;24:739-747.
    112. Matsuoka N, Nozaki K, Takagi Y, Nishimura M, Hayashi J, Miyatake S, Hashimoto N. Adenovirus-mediated gene transfer of fibroblast growth factor-2 increases BrdU-positive cells after forebrain ischemia in gerbils. Stroke; a journal of cerebral circulation 2003;34:1519-1525.
    113. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002;110:429-441.
    114. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. The Journal of clinical investigation 2003;111:1843-1851.
    115. Dempsey RJ, Sailor KA, Bowen KK, Tureyen K, Vemuganti R. Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. Journal of neurochemistry 2003;87:586-597.
    116. Kumihashi K, Uchida K, Miyazaki H, Kobayashi J, Tsushima T, Machida T.Acetylsalicylic acid reduces ischemia-induced proliferation of dentate cells in gerbils. Neuroreport 2001;12:915-917.
    117. Sasaki T, Kitagawa K, Sugiura S, Omura-Matsuoka E, Tanaka S, Yagita Y, Okano H, Matsumoto M, Hori M. Implication of cyclooxygenase-2 on enhanced proliferation of neural progenitor cells in the adult mouse hippocampus after ischemia. Journal of neuroscience research 2003;72:461-471.
    118. Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, Chopp M. A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Annals of neurology 2001;50:602-611.
    119. Zhu DY, Liu SH, Sun HS, Lu YM. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J Neurosci 2003;23:223-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700