用户名: 密码: 验证码:
G蛋白偶联受体激酶5缺陷在早期阿尔茨海默病发病机制中的潜在作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分雌性G蛋白偶联受体激酶5缺陷小鼠出现恶化的阿尔茨海默病样病理改变
     背景:现已知道性别在阿尔茨海默病(AD)的发病中是一不容忽视的危险因素,许多研究表明,AD的患病率女性显著高于男性;与男性相比,女性AD患者脑内呈现出更为严重的病理变化。最近研究揭示G蛋白偶联受体(GPCRs)激酶(5GRK5)缺陷引起的相关GPCRs脱敏障碍在早期AD的病理发生机制中具有重要作用,而且GRK5敲除/缺陷(GRK5KO)小鼠表现出早期AD病理特征和短时期记忆功能损害。但是这种病理变化在不同性别间有没有差异,目前不得而知。目的:研究GRK5KO小鼠出现的AD样病理变化是否存在性别差异,并探讨其分子机制。方法:用Campbell-Switzer银染和免疫荧光染色来观察老化的GRK5KO小鼠海马内肿胀轴突的病理变化;Western blotting检测海马内突触蛋白水平的变化;同时对上述改变在不同性别间进行深入比较。此外,用免疫酶联吸附试验检测黄体生成素(LH)诱导的环磷酸腺苷的聚积量。结果:雌性GRK5KO小鼠海马内呈簇状分布的肿胀轴突数目比雄性小鼠高出2.5倍;而且雌性GRK5KO小鼠海马内数个突触蛋白水平(包括突触素)比雄性小鼠显著减低。双因素方差分析显示性别和GRK5缺陷双因素之间呈显著协同效应,共同促进了雌性GRK5KO小鼠轴突缺陷和部分突触蛋白水平的降低。另外,LH活性增加据认为是引起AD性别差异现象的重要原因,但在本实验中LH受体脱敏并不受GRK5缺陷的影响。由此可见,雌性GRK5KO小鼠出现恶化的病理改变并不是由于LH受体脱敏损害造成的。结论:在促进雌性GRK5KO小鼠出现早期AD样病理改变的过程中,GRK5缺陷和性别双因素表现出协同效应,尽管目前其潜在的分子机制尚未阐明。
     第二部分G蛋白偶联受体激酶5缺陷对Tg2576小鼠脑内炎症反应的影响
     背景:最近的研究显示功能性(膜上)G蛋白偶联受体激酶5(GRK5)缺陷与早期阿尔茨海默病(AD)的病理发生机制存在联系。体外试验表明,GRK5缺陷通过损害相关G蛋白偶联受体(GPCRs)脱敏可以促进小胶质细胞的激活。但令人遗憾的是,GRK5敲除/缺陷小鼠(GRK5KO)除了有中等程度的轴突缺陷和突触退变以及轻度水平的β淀粉样肽(Aβ)水平上升外,并没有发现纤丝状Aβ沉积,也没有表现出任何小胶质细胞增生迹象。一种可能的解释是体内GRK5缺陷导致的功能缺失有可能被其他的GRK成员所代偿;另外一种原因在于缺少炎症启动因子,诸如纤丝状Aβ。目的:研究在纤丝状Aβ存在时,GRK5缺陷是否会加剧转瑞典突变淀粉样肽前体蛋白基因(TgAPPsw, Tg2576)小鼠脑内的炎症反应,并探讨其作用机制。方法:将具有C57/BL6遗传背景的GRK5KO杂合子与具有相同遗传背景的Tg2576小鼠杂交,以产生野生型(WT)、GRK5KO杂合子型、转淀粉样肽前体蛋白(APP)基因型以及转基因&敲除(Double)型4种基因型小鼠。用定性和定量免疫荧光(IF)染色方法来评价这些动物脑内小胶质和星形胶质细胞的增生反应。用IF染色和Western blotting分别检测脑内Aβ沉积量和水平的变化。结果:抗CD45、CD11b、OX42和白介素1β特异性抗体的IF染色可以特征化小胶质细胞的变化。IF染色结果定量分析显示,Tg2576小鼠被灭活一个拷贝的GRK5基因后导致海马和皮层内小胶质细胞数量和Aβ沉积量(包括负荷量与数量)同时上升了近1倍左右,并伴有星形胶质细胞的显著增生。而且激活的小胶质和星形胶质细胞大多位于或环绕于纤丝状Aβ斑块附近。但IF染色未发现WT和GRK5KO小鼠脑内有明显胶质细胞增生改变,也没有纤丝状Aβ沉积。此外,Aβ的Western blotting检测结果与IF染色相互印证。Spearman等级相关检验发现APP和Double小鼠海马和皮层内Aβ沉积量(负荷量/数量)与对应的小胶质细胞/星形胶质细胞数量均呈高度显著正相关。结论:Tg2576小鼠GRK5基因敲除50%后,确实加剧了脑内的炎症反应,但其加剧的方式不是直接对炎症调节因子加以调控,而主要是通过增强对炎症启动因子(纤丝状Aβ)的调节来发挥作用的。
     第三部分G蛋白偶联受体激酶5缺陷对Tg2576小鼠脑内β淀粉样肽前体蛋白加工过程的影响
     目的:研究体内G蛋白偶联受体(GPCRs)激酶5(GRK5)缺陷加剧转瑞典突变淀粉样肽前体蛋白(TgAPPsw, Tg2576)基因小鼠脑内纤丝状β淀粉样肽(Aβ)沉积的分子机制。方法:将具有C57/BL6遗传背景的GRK5敲除/缺陷小鼠(GRK5KO)杂合子与具有相同遗传背景的Tg2576小鼠杂交以建立APP (hAPPsw+/-/GRK5+/+)型及转基因&敲除(Double, hAPPsw+/-/GRK5 +/- )型小鼠。用Western blotting检测APP和Double型6月龄雌性小鼠脑内以及17天龄胎鼠皮层原代培养神经元胞膜上全长APP(flAPP)和可溶性APPα(sAPPα)的变化。结果:APP与Double型的6月龄小鼠脑内flAPP水平无差异,但Double小鼠sAPPα水平较APP小鼠明显减低;胎鼠皮层原代培养神经元胞膜上flAPP水平及sAPPα基础释放量的变化与6月龄小鼠类似,但经用乙酰胆碱毒蕈碱样受体(M)2特异性拮抗剂处理后,可以显著逆转Double胎鼠皮层原代培养神经元sAPPα释放量减低的现象。结论:体内GRK5缺陷引起M2受体脱敏障碍,可以通过调节APP的加工过程来加速Double小鼠脑内Aβ的生成。
Part 1 Worsened Alzheimer-like pathology in female GRK5 deficient mice
     background: Recent studies suggested that G protein-coupled receptor kinase 5 (GRK5) deficiency plays a significant role in early Alzheimer's disease (AD) pathogenesis, and that GRK5 knockout/deficiency (GRK5KO) mouse displays an early Alzheimer-like cognitive deficit associated with increased hippocampal axonal defects and synaptic degenerative changes. Gender is known to play a role in AD, with female showing more extensive pathologic changes in brain as compared to male. Although GRK5 deficiency is linked to AD, it is unknown whether the pathologic changes solely driven by the GRK5 deficiency are gender-differential. Objective(s): The objective of this study is to determine whether the Alzheimer-like pathologic changes solely driven by the GRK5 deficiency are gender-differential and the potential molecular mechanism. Methods: Campbell-Switzer silver staining and immunofluorescent (IF) staining methods were used to observe the pathology in the hippocampus. Western blotting was used to determine the hippocampal levels of synaptic proteins. The extent of the pathologic changes in aged GRK5KO mice was compared between genders. Results: It was found that the female GRK5KO mice had a 2.5-fold increase in hippocampal swollen axonal clusters compared to male GRK5KO mice. Moreover, hippocampal levels of several synaptic proteins, including synaptophysin, were significantly lower in the female than the male. In addition, although increased Luteinizing hormone (LH) activity is believed to play a significant role in the gender phenomenon in AD, the results in our experiment showed that desensitization of LH receptor was not affected by the GRK5 deficiency. Therefore, the worsened pathologic changes in the female mice cannot be attributed to an impaired LH receptor desensitization. Conclusions: Taken together, this study demonstrates a synergistic interaction between GRK5 deficiency and gender in promoting early AD-like pathologic changes in the female GRK5KO mice, although the underlying molecular mechanisms remain to be elucidated.
     Part 2 GRK5 deficiency exaggerates inflammatory changes in Tg2576 mice
     Background: Deficiency of membrane G-protein coupled receptor (GPCR) kinase-5 (GRK5) has been recently linked to early AD pathogenesis, and has been suggested to contribute to augmented microglial activation in vitro by sensitizing relevant GPCRs. Although the GRK5 deficiency indeed caused moderate increase in axonal defects and synaptic degenerative changes and a mild increase ofβ-amyloid (Aβ) level, no fibrillar Aβdeposits or any significant signs of microglial activation were observed in the GRK5 knockout/deficiency (GRK5KO) mice. One possible reason for the absence of microgliosis in these animals we proposed previously is that deficiency of GRK5 in vivo may be largely compensated by other GRK members; another reason might be due to lack of inflammatory initiators, such as fibrillar Aβ, because that GRK only acts when GPCR is activated. Objective(s): The objective of this study was to determine whether the microgliosis is exaggerated in TgAPPsw (Tg2576) mice deficient in GRK5, in which fibrillarβ-amyloid (Aβ) and an active inflammatory process involving activated GPCR signaling are present, and to investigate the potential mechanism why inflammation is exaggerated. Methods: The heterozygotes of GRK5KO mice with a C57/BL6 background were bred with Tg2576 mice also with a C57/BL6 background to produce wild type (WT), GRK5KO, amyloid precursor protein (APP) and the double mice for this study. Both quantitative and qualitative immunofluorescent (IF) staining methods were used to evaluate the microgliosis and astrogliosis in these animals. Qualitative IF staining and Western blotting were used to evaluate the changes of Aβin these animals. Results: Inactivation of one copy of the GRK5 gene in the TgAPPsw mice resulted in approximately doubled extent of microgliosis and Aβplaque deposits (including Aβburden and number), along with significantly exaggerated astrogliosis, in both hippocampus and cortex of the aged animals. Consistent with previous observations, the activated microglia and astrocytes were located primarily near or surrounding the fibrillar Aβdeposits. However, IF staining revealed no significant increase of the gliosis and fibrillar Aβdeposits in hippocampus or cortex of WT or GRK5KO mice. The determination of Aβby Western Blotting was consistent with the result of IF staining. Spearman correlation analyses showed a highly significantly positive correlation between fibrillar Aβplaque burden/number and microglia/astrocyte number respectively. Conclusions: The results demonstrate that knockdown GRK5 gene by 50% in the Tg2576 mice significantly exaggerates inflammatory reaction and Aβdeposits in the brain of these animals. The reason why GRK5 deficiency exaggerates inflammatory changes in TgAPPsw mice is unlikely that GRK5 deficiency mediate inflammatory regulators but inflammatory initiators (fibrillar Aβ).
     Part3 GRK5 deficiency acceleratesβ-amyloidogenesis in Tg2576 mice by enhancing amyloid precursor protein processing
     Objective: The objective of this study was to investigate the molecular mechanisms that the membrane G-protein coupled receptor (GPCRs) kinase-5 (GRK5) deficiency in vivo acceleratesβ-amyloid peptide (Aβ) deposition in TgAPPsw (Tg2576) mice. Methods: The heterozygotes of GRK5/deficient mice (GRK5KO) with a C57/BL6 background were bred with TgAPPsw (Tg2576) mice also with a C57/BL6 background to produce amyloid precursor protein (APP, APPsw+/-/GRK5+/+), and the double (APPsw+/-/GRK5+/-) mice for this study. The soluble APP alpha (sAPPα) and full length APP (flAPP) were observed in 6-month-old female APP and Double mice and the primary culture cortical neuron of 17-day-old APP and Double embryo mice. Results: The results revealed a significant decrease of sAPPαin cortex of the 6-month-old female Double mice as compared to APP mice (p<0.05). But the flAPP levels in the cortex were not significantly different between APP and Double mice. The changes of sAPPαand flAPP in primary culture cortical neuron of 17-day-old APP and Double embryo mice were consistent with the results in 6-month-old APP and Double mice. However, specific antagonist against acetylcholine muscarinic receptor 2 (M2) can remarkably reverse the decrease of sAPPαin primary culture cortical neuron of 17-day-old Double embryo mice. Conclusions: The lack of membrane (functional) GRK5 in vivo results in an impaired M2 receptor desensitization and acceleratesβ-amyloidogenesis in Tg2576 mice by enhancing the APP processing.
引文
[1] Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 2003; 63 (1): 9-18.
    [2] Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem 1998; 67: 653-92.
    [3] Gainetdinov RR, Bohn LM, Walker JK, Laporte SA, Macrae AD, Caron MG, Lefkowitz RJ, Premont RT. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. TNeuron 1999; 24 (4):1029-36.
    [4] Walker JK, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG, Lefkowitz RJ, Premont RT, TFisher JT. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell Mol Physiol 2004; 286 (2):L312-9.
    [5] Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, TArendash GW. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 2007; 28 (12):1873-88.
    [6] Suo Z, Wu M, Citron BA, Wong GT, Festoff BW. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation. J Neurosci 2004; 24 (13): 3444-52.
    [7] Gunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 2004; 58 (2):258-71.
    [8] Roy S, Zhang B, Lee VM, Trojanowski JQ. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 2005; 109 (1): 5-13.
    [9] Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R,Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 2005; 307 (5713):1282-8.
    [10] Barrett AM. Probable Alzheimer's disease: gender-related issues. J Gend Specif Med 1999; 2 (1): 55-60.
    [11] Breitner JC, Silverman JM, Mohs RC, Davis KL. Familial aggregation in Alzheimer's disease: comparison of risk among relatives of early-and late-onset cases, and among male and female relatives in successive generations. Neurology 1988; 38(2): 207-12.
    [12] Fratiglioni L, Viitanen M, von Strauss E, Tontodonati V, Herlitz A, Winblad B. Very old women at highest risk of dementia and Alzheimer's disease: incidence data from the Kungsholmen Project, Stockholm. Neurology 1997; 48 (1):132-8.
    [13] Gao S, Hendrie HC, Hall KS, Hui S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatry 1998; 55 (9): 809-15.
    [14] Jorm AF, Korten AE, Henderson AS. The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 1987; 76 (5): 465-79.
    [15] Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P. Incidence of dementia and Alzheimer's disease in elderly community residents of south-western France. Int J Epidemiol 1994; 23 (6):1256-61.
    [16] Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR, Dartigues JF, Engedal K, Hagnell O, Heeren TJ, et al. Frequency and distribution of Alzheimer's disease in Europe: a collaborative study of 1980-1990 prevalence findings. The EURODEM-Prevalence Research Group. Ann Neurol 1991; 30 (3): 381-90.
    [17] Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry 2005; 62 (6):685-91.
    [18] Bretsky PM, Buckwalter JG, Seeman TE, Miller CA, Poirier J, Schellenberg GD, Finch CE, Henderson VW. Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. Alzheimer Dis Assoc Disord 1999; 13 (4): 216-21.
    [19] Payami H, Zareparsi S, Montee KR, Sexton GJ, Kaye JA, Bird TD, Yu CE, WijsmanEM, Heston LL, Litt M, Schellenberg GD. Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 1996; 58 (4): 803-11.
    [20] Callahan MJ, Lipinski WJ, Bian F, Durham RA, Pack A, Walker LC. Augmented senile plaque load in aged female beta-amyloid precursor protein-transgenic mice. Am J Pathol 2001; 158 (3):1173-7.
    [21] Howlett DR, Richardson JC, Austin A, Parsons AA, Bate ST, Davies DC, Gonzalez MI. Cognitive correlates of Abeta deposition in male and female mice bearing amyloid precursor protein and presenilin-1 mutant transgenes. Brain Res 2004; 1017 (1-2):130-6.
    [22] King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ. Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer's disease. Behav Brain Res 1999; 103 (2):145-62.
    [23] Wang J, Tanila H, Puoliv?li J, Kadish I, van Groen T. Gender differences in the amount and deposition of amyloidbeta in APPswe and PS1 double transgenic mice. Neurobiol Dis 2003; 14 (3): 318-27.
    [24] Jorm AF, Jolley D. The incidence of dementia: a meta-analysis. Neurology 1998; 51 (3):728-33.
    [25] Manly JJ, Merchant CA, Jacobs DM, Small SA, Bell K, Ferin M, Mayeux R. Endogenous estrogen levels and Alzheimer's disease among postmenopausal women. Neurology 2000; 54 (4):833-7.
    [26] McGonigal G, Thomas B, McQuade C, Starr JM, MacLennan WJ, Whalley LJ. Epidemiology of Alzheimer's presenile dementia in Scotland, 1974-88. BMJ 1993; 306 (6879): 680-3.
    [27] Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, Martins RN, Atwood CS. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-beta precursor protein and amyloid-beta deposition. J Biol Chem 2004; 279 (19): 20539-45.
    [28] Casadesus G, Webber KM, Atwood CS, Pappolla MA, Perry G, Bowen RL, Smith MA. Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophys Acta 2006; 1762 (4): 447-52.
    [29] Webber KM, Casadesus G, Perry G, Atwood CS, Bowen R, Smith MA. Gender differences in Alzheimer disease: the role of luteinizing hormone in disease pathogenesis. Alzheimer Dis Assoc Disord 2005; 19 (2): 95-9.
    [30] Lazari MF, Liu X, Nakamura K, Benovic JL, Ascoli M. Role of G protein-coupled receptor kinases on the agonist-induced phosphorylation and internalization of the follitropin receptor. Mol Endocrinol 1999; 13 (6):866-78.
    [31] Suo Z, Wu M, Citron BA, Gao C, Festoff BW. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. J Biol Chem 2003; 278 (33): 31177-83.
    [32] Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW. Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 2003; 278 (39): 37681-9.
    [33] Challiss RA, Batty IH, Nahorski SR. Mass measurements of inositol(1,4,5) trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun 1988; 157 (2): 684-91.
    [34] Benowitz LI, Perrone-Bizzozero NI, Neve RL, Rodriguez W. GAP-43 as a marker for structural plasticity in the mature CNS. Prog Brain Res 1990; 86: 309-20.
    [35] AL-Hader AA, Lei ZM, Rao CV. Neurons from fetal rat brains contain functional luteinizing hormone/chorionic gonadotropin receptors. Biol Reprod 1997; 56 (5):1071-6.
    [36] Lei ZM, Rao CV, Kornyei JL, Licht P, Hiatt ES. Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology 1993; 132 (5):2262-70.
    [37] Marsh JM, Savard K. The stimulation of progesterone synthesis in bovine corpora lutea by adenosine 3',5'-monophosphate. Steroids 1966; 8 (2): 133-48.
    [38] Marsh JM. The stimulatory effect of luteinizing hormone on adenyl cyclase in the bovine corpus luteum. J Biol Chem 1970 ; 245 (7): 1596-603.
    [39] Leung PC, Steele GL. Intracellular signaling in the gonads. Endocr Rev 1992; 13 (3): 476-98.
    [40] Davis JS. Mechanisms of hormone action: luteinizing hormone receptors and second-messenger pathways. Curr Opin Obstet Gynecol 1994; 6 (3): 254-61.
    [41] Lichtenberg V, Weise HC, Graesslin D, Bettendorf G. Polymorphism of human pituitary lutropin (LH). Effect of the seven isohormones on mouse Leydig cell functions. FEBS Lett 1984; 169 (1):21-4.
    [42] Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer's disease. Ann N Y Acad Sci 1993; 695: 34-41.
    [43] Fowler CJ, Garlind A, O'Neill C, Cowburn RF. Receptor-effector coupling dysfunctions in Alzheimer's disease. Ann N Y Acad Sci 1996; 786: 294-304.
    [44] Joseph JA, Cutler R, Roth GS. Changes in G protein-mediated signal transduction in aging and Alzheimer's disease. Ann N Y Acad Sci 1993; 695:42-5.
    [45] Premont RT, TInglese J, Lefkowitz RJ. Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 1995; 9 (2):175-82.
    [46] Casadesus G, Atwood CS, Zhu X, Hartzler AW, Webber KM, Perry G, Bowen RL, Smith MA. Evidence for the role of gonadotropin hormones in the development of Alzheimer disease. Cell Mol Life Sci 2005; 62 (3):293-8.
    [47] Meethal SV, Smith MA, Bowen RL, Atwood CS. The gonadotropin connection in Alzheimer's disease. Endocrine 2005; 26 (3): 317-26.
    [1] Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12 (9): 1005-15.
    [2] Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006; 83 (2): 470S-474S.
    [3] McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 2001; 22 (6): 799-809.
    [4] van Beek J, Elward K, Gasque P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann N Y Acad Sci 2003; 992: 56-71.
    [5] Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE. Amyloid-beta induces chemokine secretion and monocyte migration across a human blood--brain barrier model. Mol Med 1998; 4 (7): 480-9.
    [6] Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer's disease. Neurobiol Aging 2001; 22 (6): 909-13.
    [7] Halks-Miller M, Schroeder ML, Haroutunian V, Moenning U, Rossi M, Achim C, Purohit D, Mahmoudi M, Horuk R. CCR1 is an early and specific marker of Alzheimer's disease. Ann Neurol 2003; 54 (5): 638-46.
    [8] Aragay AM, Mellado M, Frade JM, Martin AM, Jimenez-Sainz MC, Martinez-A C, Mayor F Jr. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc Natl Acad Sci U S A 1998; 95 (6): 2985-90.
    [9] Langkabel P, Zwirner J, Oppermann M. Ligand-induced phosphorylation of anaphylatoxin receptors C3aR and C5aR is mediated by "G protein-coupled receptor kinases. Eur J Immunol 1999; 29 (9): 3035-46.
    [10] Suo Z, Wu M, Citron BA, Wong GT, Festoff BW. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation. J Neurosci 2004; 24 (13): 3444-52.
    [11] Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 2003; 63 (1): 9-18.
    [12] Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem 1998; 67: 653-92.
    [13] Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, TArendash GW. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 2007; 28 (12): 1873-88.
    [14] Gainetdinov RR, Bohn LM, Walker JK, Laporte SA, Macrae AD, Caron MG, Lefkowitz RJ, Premont RT. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. TNeuron 1999; 24 (4): 1029-36.
    [15] Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B. Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 1996; 93 (23): 12974-9.
    [16] Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG, Premont RT. Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. TNeuron 2003; 38 (2): 291-303.
    [17] Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 1998; 152 (1): 307-17.
    [18] Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, Brunden KR. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 1999; 20(6): 581-9.
    [19] Schwab C, Hosokawa M, McGeer PL. Transgenic mice overexpressing amyloid beta protein are an incomplete model of Alzheimer disease. Exp Neurol 2004; 188 (1): 52-64.
    [20] King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ. Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer's disease. Behav Brain Res 1999; 103 (2): 145-62.
    [21] Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 2002; 99 (11): 7705-10.
    [22] Callahan MJ, Lipinski WJ, Bian F, Durham RA, Pack A, Walker LC. Augmented senile plaque load in aged female beta-amyloid precursor protein-transgenic mice. Am J Pathol 2001; 158 (3): 1173-7.
    [23] Li L, Rasul I, Liu J, Premont R, and Suo Z. Augmented axonal defects and synaptic degenerative changes in female GRK5 deficient mice. Brain Res Bulletin 2008, in press.
    [24] Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 2002; 161 (5): 1869-79.
    [25] Sedgwick JD, Schwender S, Imrich H, D?rries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 1991; 88 (16): 7438-42.
    [26] Czasch S, Paul S, Baumg?rtner W. A comparison of immunohistochemical and silver staining methods for the detection of diffuse plaques in the aged canine brain. Neurobiol Aging 2006; 27 (2): 293-305.
    [27] Wang R, Meschia JF, Cotter RJ, Sisodia SS. Secretion of the beta/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells. J Biol Chem 1991; 266 (25): 16960-4.
    [28] Weidemann A, K?nig G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 1989; 57 (1): 115-26.
    [29] El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 1996; 382 (6593): 716-9.
    [30] Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 2001; 21 (2): RC123.
    [31] Yazawa H, Yu ZX, Takeda , Le Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM. Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 2001; 15 (13): 2454-62.
    [1] Colciaghi F, Marcello E, Borroni B, Zimmermann M, Caltagirone C, Cattabeni F, Padovani A, Di Luca M. Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 2004; 62 (3): 498-501.
    [2] Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 2004; 24 (35):7707-17.
    [3] Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286 (5440): 735-41.
    [4] Vardy ER, Catto AJ, Hooper NM. Proteolytic mechanisms in amyloid-beta metabolism: therapeutic implications for Alzheimer's disease. Trends Mol Med 2005; 11 (10): 464-72.
    [5] Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein- coupled receptor kinases. Annu Rev Biochem 1998; 67 (1): 653-92.
    [6] Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001; 53 (1):1-24.
    [7] Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 2003; 63 (1): 9-18.
    [8] Gainetdinov RR, Bohn LM, Walker JK, Laporte SA, Macrae AD, Caron MG, Lefkowitz RJ, Premont RT. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 1999; 24 (4):1029-36.
    [9] Walker JK, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG, Lefkowitz RJ, Premont RT, TFisher JT. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell MolPhysiol 2004; 286 (2): L312-9.
    [10] Liu J, Li L, Suo Z. HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Neuroreport 2008, in press.
    [11] Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 2002; 22 (5): 1709-17.
    [12] Levey AI. Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci USA 1996; 93 (24): 13541-6.
    [13] Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992; 258 (5080): 304-7.
    [14] King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ. Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer's disease. Behav Brain Res 1999; 103 (2): 145-62.
    [15] Callahan MJ, Lipinski WJ, Bian F, Durham RA, Pack A, Walker LC. Augmented senile plaque load in aged female beta-amyloid precursor protein-transgenic mice. Am J Pathol 2001; 158 (3): 1173-7.
    [16] Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 2002; 99 (11): 7705-10.
    [17] Li L, Rasul I, Liu J, Premont RT, Suo Z. Augmented axonal defects and synaptic degenerative changes in female GRK5 deficient mice. Brain Res Bulletin 2008, in press.
    [18] Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 2007; 28 (12): 1873-88.
    [19] Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 2002; 161 (5): 1869-79.
    [20] Suo Z, Wu M, Citron BA, Gao C, Festoff BW. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. J Biol Chem 2003; 278 (33): 31177-83.
    [21] Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW. Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 2003; 278 (39): 37681-9.
    [22] LesnéS, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006; 440 (7082): 352-7.
    [23] Yamada M, Takeshita T, Miura S, Murata K, Kimura Y, Ishii N, Nose M, Sakagami H, Kondo H, Tashiro F, Miyazaki JI, Sasaki H, Sugamura K. Loss of hippocampal CA3 pyramidal neurons in mice lacking STAM1. Mol Cell Biol 2001; 21 (11): 3807-19.
    [24] Chandler LJ, Newsom H, Sumners C, Crews F. Chronic ethanol exposure potentiates NMDA excitotoxicity in cerebral cortical neurons. J Neurochem 1993; 60 (4):1578-81.
    [25] Patil S, Chan C. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons. Neurosci Lett 2005; 384 (3): 288-93.
    [26] Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 256 (5054): 184-5.
    [27] Samuels SC, Silverman JM, Marin DB, Peskind ER, Younki SG, Greenberg DA, Schnur E, Santoro J, Davis KL. CSF beta-amyloid, cognition, and APOE genotype in Alzheimer's disease. Neurology 1999; 52 (3): 547-51.
    [28] Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996; 17 (6): 921-33.
    [29] Fonte J, Miklossy J, Atwood C, Martins R. The severity of cortical Alzheimer's type changes is positively correlated with increased amyloid-beta Levels: Resolubilization of amyloid-beta with transition metal ion chelators. J Alzheimers Dis 2001; 3 (2): 209-219.
    [30] Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug Discov Today 2006; 11 (19-20): 931-8.
    [31] Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 1998; 152 (1): 307-17.
    [32] Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, Brunden KR. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 1999; 20 (6): 581-9.
    [33] Nitsch RM, Slack BE, Farber SA, Schulz JG, Deng M, Kim C, Borghesani PR, Korver W, Wurtman RJ, Growdon JH. Regulation of proteolytic processing of the amyloid beta-protein precursor of Alzheimer's disease in transfected cell lines and in brain slices. J Neural Transm Suppl 1994; 44:21-7.
    [34] Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease. J Neurochem 1995; 65 (4): 1431-44.
    [35] Nitsch RM, Wurtman RJ, Growdon JH. Regulation of proteolytic processing of the amyloid beta-protein precursor by first messengers. A novel potential approach for the treatment of Alzheimer's disease. Arzneimittelforschung 1995; 45 (3A): 435-8.
    [1] Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein- coupled receptor kinases. Annu Rev Biochem 1998; 67 (1): 653-92.
    [2] Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001; 53 (1):1-24.
    [3] Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 2003; 63 (1): 9-18.
    [4] Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, et al. Dopaminergic supersensitivity in g protein-coupled receptor kinase 6-deficient mice. Neuron 2003; 38 (2): 291–303.
    [5] Gainetdinov RR, Bohn LM,Walker JK, Laporte SA, Macrae AD, Caron MG, et al. Muscarinic supersensitivity and impaired receptor desensitization in G protein- coupled receptor kinase 5-deficient mice. Neuron 1999; 24 (4): 1029–36.
    [6] Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, et al. Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 1996; 93 (23): 12974–9.
    [7] Walker JK, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG, Lefkowitz RJ, Premont RT, TFisher JT. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell Mol Physiol 2004; 286 (2): L312-9.
    [8] Finder VH, Glockshuber R. Amyloid-beta aggregation. Neurodegener Dis 2007; 4 (1): 13-27.
    [9] Hasegawa M. Biochemistry and molecular biology of tauopathies. Neuropathology 2006; 26(5): 484-90.
    [10] Van Broeck B, Van Broeckhoven C, Kumar-Singh S. Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodegener Dis 2007; 4 (5): 349-65.
    [11] Eckman CB, Eckman EA. An update on the amyloid hypothesis. Neurol Clin 2007; 25 (3): 669-82.
    [12] Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 256 (5054): 184-5.
    [13] Samuels SC, Silverman JM, Marin DB, Peskind ER, Younki SG, Greenberg DA, Schnur E, Santoro J, Davis KL. CSF beta-amyloid, cognition, and APOE genotype in Alzheimer's disease. Neurology 1999; 52 (3): 547-51.
    [14] Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996; 17 (6): 921-33.
    [15] Fonte J, Miklossy J, Atwood C, Martins R. The severity of cortical Alzheimer's type changes is positively correlated with increased amyloid-beta Levels: Resolubilization of amyloid-beta with transition metal ion chelators. J Alzheimers Dis 2001; 3 (2): 209-219.
    [16] Ferreira ST, Vieira MN, De Felice FG. Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases. IUBMB Life 2007; 59 (4-5): 332-45.
    [17] Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS. The toxicity in vitro ofbeta-amyloid protein. Biochem J 1995; 311 ( Pt 1): 1-16.
    [18] Suo Z, Fang C, Crawford F, Mullan M. Superoxide free radical and intracellular calcium mediate A beta (1-42) induced endothelial toxicity. Brain Res 1997; 762 (1-2): 144-52.
    [19] Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995; 374 (6523): 647-50.
    [20] Crawford F, Suo Z, Fang C, Mullan M. Characteristics of the in vitro vasoactivity of beta-amyloid peptides. Exp Neurol 1998; 150 (1): 159-68.
    [21] Suo Z, Su G, Placzek A, Kundtz A, Humphrey J, Crawford F, Mullan M. A beta vasoactivity in vivo. Ann N Y Acad Sci 2000; 903: 156-63.
    [22] O'Barr S, Cooper NR. The C5a complement activation peptide increases IL-1beta and IL-6 release from amyloid-beta primed human monocytes: implications for Alzheimer's disease. J Neuroimmunol 2000; 109 (2): 87-94.
    [23] Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW. Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 2003; 278 (39): 37681-9.
    [24] Suo Z, Wu M, Citron BA, Wong GT, Festoff BW. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation. J Neurosci 2004; 24 (13): 3444-52.
    [25] Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 2000; 275 (16): 12200-6.
    [26] Sandhu FA, Porter RH, Eller RV, Zain SB, Salim M, Greenamyre JT. NMDA and AMPA receptors in transgenic mice expressing human beta-amyloid protein. J Neurochem 1993; 61 (6): 2286-9.
    [27] Smith DH, Nakamura M, McIntosh TK, Wang J, Rodríguez A, Chen XH, Raghupathi R, Saatman KE, Clemens J, Schmidt ML, Lee VM, Trojanowski JQ. Brain trauma induces massive hippocampal neuron death linked to a surge in beta-amyloid levelsin mice overexpressing mutant amyloid precursor protein. Am J Pathol 1998; 153 (3): 1005-10.
    [28] Obrenovich ME, Smith MA, Siedlak SL, Chen SG, de la Torre JC, Perry G, Aliev G. Overexpression of GRK2 in Alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotox Res 2006; 10 (1): 43-56.
    [29] Leosco D, Fortunato F, Rengo G, Iaccarino G, Sanzari E, Golino L, Zincarelli C, Canonico V, Marchese M, Koch WJ, Rengo F. Lymphocyte G-protein-coupled receptor kinase-2 is upregulated in patients with Alzheimer's disease. Neurosci Lett 2007; 415 (3): 279-82.
    [30] Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 2005; 45 (5): 675-88.
    [31] Gunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 2004; 58 (2): 258-71.
    [32] Roy S, Zhang B, Lee VM, Trojanowski JQ. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 2005; 109 (1): 5-13.
    [33] Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 2005; 307 (5713): 1282-8.
    [34] Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, TArendash GW. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 2007; 28 (12): 1873-88.
    [35] Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE. Amyloid-beta induces chemokine secretion and monocyte migration across a human blood--brain barrier model. Mol Med 1998; 4 (7): 480-9.
    [36] Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer's disease. Neurobiol Aging 2001; 22 (6): 909-13.
    [37] Halks-Miller M, Schroeder ML, Haroutunian V, Moenning U, Rossi M, Achim C,Purohit D, Mahmoudi M, Horuk R. CCR1 is an early and specific marker of Alzheimer's disease. Ann Neurol 2003; 54 (5): 638-46.
    [38] Langkabel P, Zwirner J, Oppermann M. Ligand-induced phosphorylation of anaphylatoxin receptors C3aR and C5aR is mediated by "G protein-coupled receptor kinases. Eur J Immunol 1999; 29 (9): 3035-46.
    [39] Oppermann M, Mack M, Proudfoot AE, Olbrich H. Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus. J Biol Chem 1999; 274 (13): 8875-85.
    [40] Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 2001; 21 (2): RC123.
    [41] Yazawa H, Yu ZX, Takeda , Le Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM. Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 2001; 15 (13): 2454-62.
    [42] Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 2002; 22 (5): 1709-17.
    [43] Levey AI. Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci USA 1996; 93 (24): 13541-6.
    [44] Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A. Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 1996; 66(2):877-80.
    [45] Budd DC, McDonald J, Emsley N, Cain K, Tobin AB. The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 2003; 278 (21): 19565-73.
    [46] Pemberton KE, Hill-Eubanks LJ, Jones SV. Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3T3 cells. Pflugers Arch 2000; 440 (3): 452-61.
    [47] Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinasepathway mediated by G-protein beta gamma subunits. Nature 1994; 369 (6479): 418-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700