用户名: 密码: 验证码:
寻常型银屑病患者睡眠结构分析以及Th17和Treg研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银屑病是一种临床上常见的慢性、易复发的红斑鳞屑性皮肤病。由于其外观不良,迁延不愈等特点给患者精神和经济都造成了很大的负担,严重影响到患者的生活质量和社会适应力,是一种典型的心身性皮肤病。据不完全统计我国现在约有400万患者,发病率有逐年上升的趋势,国际卫生组织已将其列为影响人类健康的重要疾病。本次研究围绕与寻常型银屑病病情进展相关的患者的特征、睡眠质量、以及近几年免疫学研究热点Th17和Treg进行探索,希望能得到与疾病进展相关的一些新的信息。
     第一部分与病情进展相关的寻常型银屑病患者的特征分析
     目的:从群体角度分析与病情进展相关的寻常型银屑病患者特征,进而推测银屑病病情加重的可能原因。
     方法:通过对693例寻常型银屑病患者进行流行病学调查和对皮疹严重程度评估,建立logistic回归模型,分析病情相关影响因素。
     结果:693例寻常型银屑病患者中男性363例(52.4%),女性330例(47.6%),多元回归分析显示:性别、职业、文化程度、体重指数、初再发是银屑病加重的的主要危险因素。其中男性相对于女性为危险因素,女性病情严重的可能性只为男性的0.723倍;脑力劳动者相对于非脑力劳动者是保护因素,脑力劳动者病情加重的可能性较非脑力劳动者低;再发相对于初发是危险因素;小学及以下文化程度相对大专及以上文化程度为危险因素,其病情严重的可能性是大专及以上文化程度的1.725倍,体重指数正常相对于肥胖为保护因素,体重正常者病情严重的可能性仅为肥胖者的0.340。一般情况分析显示:女性发病早于男性,且病情较男性为轻。男性初次发病年龄高峰是20-25岁,女性发病年龄高峰为10-20岁。28.7%的患者有家族史,有遗传史者更倾向于早发型。体重指数与皮损面积呈正相关(r=0.128,p=0.001)。男性更容易超重和肥胖。男性患者不同BMI组间皮疹严重程度无差异(r=0.071,p=0.175),女性患者不同BMI组间差异显著(r=0.167,p=0.002)。
     结论:我们通过多元分析的方法了解到社会心理因素在银屑病的发生、发展中起着非常重要的作用,对于疾病正确的认知、健康积极的生活态度、良好的生活方式都会帮助银屑病患者控制病情,治疗疾病。
     第二部分寻常型银屑病患者的睡眠质量研究
     目的:调查寻常型银屑病患者的睡眠质量及其影响因素并检测分析银屑病患者睡眠结构存在的问题。
     方法:对2007年12月至2008年8月在空军总医院皮肤科门诊就诊的126名寻常型银屑病患者进行匹兹堡睡眠质量指数(Pittsburgh sleep quality index,PSQI)问卷和自编睡眠质量影响因素问卷调查,PSQI统计结果与国内刘贤臣等研究的112例正常成人和45例失眠患者进行对照研究,了解银屑病患者的睡眠状况。对在2007年1月至2008年12就诊的28名银屑病患者进行1-3天的床垫式睡眠检测,进行睡眠结构分析。
     结果:126例寻常型银屑病患者中有75例(59.5%)存在睡眠障碍;69名患者(54.8%)认为自己的睡眠质量较差;89人(70.6%)认为睡眠质量与银屑病的病情相关。PSQI均值7.35±2.29,在评分≥2分的评测项目中,入睡时间延迟得分最高;其次为日间功能障碍,第三为睡眠障碍。银屑病患者组与正常成人组比较PSQI总分及各评测项目得分均有统计学差异;银屑病患者组与失眠症患者组PSQI比较,入睡时间和睡眠障碍两个项目无统计学差异。睡眠检测结果显示银屑病患者普遍存在REM睡眠的减少的特征,同时伴有醒觉和NREM睡眠增多、在NREM睡眠中浅睡增加、深睡减少的现象。
     结论:银屑病患者确实存在较为严重的睡眠问题,睡眠的恶化影响了患者的整体状态,不利于疾病的治疗。在银屑病的治疗中应有针对性地对银屑病患者进行心理健康教育,舒缓压力,改善睡眠质量。
     第三部分Th17与Treg细胞与银屑病进展的研究
     背景:在以往的研究认为分泌IFN-γ的Th1类细胞在银屑病的发病中发挥了主要作用。但是近年来,越来越多的证据表明Th17细胞和Treg细胞在银屑病的致病作用中也发挥了重要作用。Th17是2005年发现的新的T细胞亚群,主要分泌IL-17A和IL-17F,RORγt是其分化中的重要转录因子,其在介导自身免疫性疾病和炎症损伤中发挥了重要的致病作用。已有研究发现在银屑病患者的皮损组织中检测到IL-17的表达,但在非皮损组织中没有发现,提示IL-17在银屑病的致病机制中发挥了重要作用。Treg细胞的功能特点是介导免疫无反应性和免疫抑制性。CD4+CD25+ Treg细胞在维持对自身和外来抗原的免疫耐受中起重要作用。
     目的:了解银屑病进展过程中Th17和Treg数量动态变化、功能特点以及Th17和Treg之间相互关系。
     方法:选取2008年7月至2009年1月在空军总医院门诊确诊的54例寻常型银屑病患者和18例健康人进行对照研究。所有患者按照PASI评分分为3组:第一组:PASI score≤10,共27例;第二组:10 25,共9例。采用流式细胞仪、细胞内因子染色、细胞培养等方法检测外周血中Th17和Treg数量及它们之间的相互关系。并对24例寻常型银屑病患者的皮损组织进行免疫组化染色,检测皮损部位Th17和Treg数量。
     结果:银屑病患者外周血和皮损组织中的Treg细胞和Th17细胞均随着疾病进展逐渐增加。银屑病患者Treg和Th17的增加随疾病进展呈正相关,但在外周血以Th17细胞增加为主,在组织原位则以Treg细胞增加为主。银屑病患者Treg细胞能够有效地抑制T细胞增殖和IFN-γ分泌,但对于Th17细胞没有直接的抑制作用。
     结论:机体存在一个完美的自我控制、稳定体系,当机体出现免疫不平衡的时候,就会启动另外一种补充性免疫反应,以此来维持稳定。Th17和Treg细胞在银屑病的进展中发挥重要作用,它们共同参与了机体维持稳定的过程。
     课题的创新点:
     1.首次采用无捆绑、低生理、低心理负荷的微动敏感睡眠床垫对28例银屑病患者进行睡眠检测,发现银屑病患者存在着REM睡眠减少的特征性改变,提出患者睡眠结构改变可能与患者焦虑抑郁状态有关并指出可望通过改善睡眠质量达到有效防治银屑病的见解。
     2.初步阐明银屑病进展过程中Th17、Treg数量的动态变化以及它们之间相互调节的关系。
Psoriasis is a clinical common chronic recurrence skin diseases. Because of affecting the appearance and often failing to recover,it brings patients both mental and economic burden. At same time seriously damage the patients quality of life and the ability to adapt society. It is a typical psychosomatic dermatosis. In China, according to incomplete statistics it’s estimated that more than four million people are suffering from this disease, and the mobility still exhibits a increasing tendency. The World Health Organization has considered it an important impact on human health diseases. The definition of health from the simple absence of disease and weakness expand to the physical, mental and social adaptation. Medical model from a simple biomedical model developed into biological-psychological-social medical model. Our study focused on disease-related patient’s characteristics, sleep quality and correlation between Th17 and Treg during psoriasis progression. We try to discover a number of new clues associated with disease.
     Part 1 Epidemiological investigation carried on psoriasis vulgaris and to analysis disease-related characteristics.
     Objective: Analysis from the group perspective of the patient’s disease-related characteristics and to explore the possible reasons for illness.
     Methods: Firstly epidemiological surveys were made on 693 cases of psoriasis vulgaris patients with self-designed questionair by using random sampling method. Then make rash examination and estimate the severity of the illness. At last, set up logistic regression model to analyze the impact of illness-related factors.
     Results: There are 363 cases of male(52.4%)and 330 cases of female(47.6%)in this survey. By logistic regression correlation analysis there were 5 terms had signification differences. Sex, occupation, education, body mass index, initial or recurrence psoriasis are the major risk factors. Men is risk factors Compares women, women have the possibility of a serious illness only 0.723 times that of men; mental is the protection factors to non-mental, mental decrease the possibility illness exacerbations; recurrence compared with the initial is the risk factors; primary school and below the relative level of education is the risk factors contrast to university education and above, the possibility is 1.725 times; the normal body mass index is protective factors for obesity, with normal body weight the possibility in a serious condition is only 0.340 of obesity. Analysis showed: female in the early onset and light condition than men. The peak of initial onset age in male is 20-25 and in female is 10-20.The number of female is was much higher than male in onset age group 5-10 years old group, different is significan(tP<0.01). Meanwhile, 10-15 years old group, compared with men and women are different(P< 0.05). 28.7% of patients have family history, genetic history of those who have early-onset more likely. Body mass index and lesion area was positively correlated (r = 0.128, p = 0.001). Male patients were often overweight and obesity. Male patients in different BMI groups no difference in the severity of skin rash (r = 0.071, p = 0.175), between different groups of female with significant differences (r = 0.167, p = 0.002).
     Conclusion: Social and psychological factors in the occurrence and development of psoriasis plays a very important role. Psoriasis is a psychosomatic diseases. Social psychological factors should be attention in psoriasis treatment.
     Part 2 Survey of sleeping quality and sleep structure research on psoriasis vulgaris
     Objective: This study aimed at examinging the sleep quality in patients with Vulgaris Psoriasis. Its influencing factors were also investigated. Methods: Firstly, during the period ranging from Dec. 2007 to August 2008, 126 Vulgaris Psoriasis outpatients visiting the hospital clinics were measured with the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al. 1989). At the same time, a Self-designed questionnaire was utilized in order to survey the factors that affect the quality of sleep in Psoriasis vulgaris. To compare the PSQI results, a control study was carried out among above psoriasis patients, 112 cases of normal adults and 45 insomnia patients(Liu Xian-chen et al. 1996). Secondly, from Jan. 2007 to Dec. 2008, 28 Vulgaris Psoriasis Volunteers for testing sleep by Micro Movement Sensitive Matress Sleep Monitoring System, then analysis of sleep structure.
     Results: There were 75 cases (59.5%) of Sleep Disorders in 126 psoriasis vulgaris. 69 patients (54.8%) considered themselves of poor quality of sleep. 89 patients (70.6%) believed that the psoriasis patients' condition due to the bad quality of sleep. The mean score of PSQI was 7.35±2.29. Among the component items with a score≥2, the top one is Sleep Latency. Daytime Dysfunction and Sleep Disturbances were the second and third items, respectively. The global score and component scale scores were significantly different between psoriasis patients and the normal adult groups. There were no significantly difference between psoriasis patients and insomnia patients in Sleep Latency and Sleep Disturbances. Sleep test results showed that the prevalence of psoriasis patients with reduced REM sleep characteristics, accompanied by an increased NREM sleep and arousal. Between NREM light sleep increased and the deep sleep reduced.
     Conclusion:Poor sleep quality do exist in psoriasis vulgaris, therefore comprehensive measures should be taken to improve sleep quality of psoriasis vulgaris. Meanwhile it is necessary to promote mental health education, easing the patients pressure to improve the quality of sleep.
     Part 3 An correlation between Th17 and FoxP3+ Treg accumulation during psoriasis progression
     Background: Psoriasis is a chronic, relapsing, immune-mediated inflammatory skin disease, characterized by hyperplasia in the epidermis, infiltration of leukocytes, including monocytes, dendrites cells and T lymphocytes, into both the dermis and the epidermis, and dilatation and growth of blood vessels. Psoriasis was generally considered to be a Th1-associated disease with a principal role for IFN-γfor a long time. However, there are growing evidence that recently recognized two novel and unique subsets of CD4+ T cells, T-helper 17 cells and CD4+CD25+ regulatory T cells, may play important roles in the pathogenesis of psoriasis. Th17 are distinct from Th1 and Th2 cells by preferentially produce interleukin (IL)-17A and F, and require RORγt as a key transcription factor for their differentiation. IL-17 expression is detectable in biopsies from lesional psoriatic skin, but not in nonlesional skin, indicated that Th17 are involved in the pathogenesis of psoriasis. Treg, which are characterized by their constitutive expression of CD25 and FoxP3 and immunological suppression, have been considered to be another T cell subset relevant to immune-mediated diseases in humans. In psoriasis, the imbalance of Treg and effector T cells has recently described by several groups, and suggested that the numerically or functionally impaired Treg in blood and lesional tissue may be the reason which lead to reduced restraint and consequent hyperproliferation of psoriatic pathogenic T cells. Objective: To explore Th17 and Treg number and function changes during the process of disease progression of psoriasis.
     Methods: Blood samples were obtained from 54 psoriasis patients and 18 age- and gender-matched healthy donors. All psoriasis patients were divided into three groups according to the Psoriasis Area and Severity Index (PASI) score: 27 patients in group 1 (PASI score≤10), 18 patients in group 2 (10 25). Using flow cytometry, cell factor staining and culture Method detection the quantity of Th17 and Treg in peripheral blood and the inter-relationship between them. Paraffin-embodied lesional skin tissues from 24 psoriasis patients were employed for immunohistochemical staining.
     Results: In this study, we found that both Th17 and FoxP3+ Treg were increased in psoriasis patients both in circulating serum and lesional skin tissues and were positively correlated with disease progression. But the ratio of Th17 to Treg in lesional skin tissue obviously decreased along with disease progression,while it was significantly increased in circulating and positively correlated with PASI score. IL-17 secretion of CD4+ T cells was not regulated by Treg, even though Treg exhibited significant inhibition on CD4+ T cells proliferation and IFN-γproduction. Therefore, our data suggested that there is a feed back regulation in Th17 induced-inflammation, where increased Treg might exert a suppressive effect on the hyper-immune response. These findings represent new information about the association between Th17 and Treg, which furthers our understanding of pathogenesis of psoriasis. Conclusion:Both T-helper 17 cells (Th17) and CD4+CD25+ regulatory T cells (Treg) play important roles in the pathogenesis of psoriasis.
     Research Innovation:
     1. It is first time use no binding, low psychosocial, low physical Micro Movement Sensitive Matress Sleep Monitoring System to detect the sleep structure in psoriasis patients and found psoriasis patients with special REM sleep changes.
     2. It is first time to explore Th17 and Treg number of dynamic changes with disease progression and their mutual relations.
引文
1 Kimball, A.B., C. Jacobson, S. Weiss, M.G. Vreeland, and Y. Wu, The psychosocial burden of psoriasis. Am J Clin Dermatol, 2005. 6(6): p. 383-392.
    2 Krueger, G., J. Koo, M. Lebwohl, A. Menter, R.S. Stern, and T. Rolstad, The impact of psoriasis on quality of life: results of a 1998 National Psoriasis Foundation patient-membership survey. Arch Dermatol, 2001. 137(3): p. 280-284.
    3 Crown, W.H., B.W. Bresnahan, L.S. Orsini, S. Kennedy, and C. Leonardi, The burden of illness associated with psoriasis: cost of treatment with systemic therapy and phototherapy in the US. Curr Med Res Opin, 2004. 20(12): p. 1929-1936.
    4杨雪琴.银屑病心身疾病属性的基础研究和临床实践.武警医学, 2006,(07) .
    5杨雪琴.银屑病与心身医学,人民军医, 2004, 47(8):481-484.
    6杨雪琴,彭德海.银屑病患者的性格与情感分析.中华皮肤科杂志, 1998 , 12 (3) : 184– 185.
    7王玉晶,朱芹.银屑病患者生活质量的研究进展[J].中国实用护理杂志, 2007,1(23):55-57.
    8 A l’AbadiesM S, Kent GG. The relationship between stress and onset and exacerbation of psoriasis and other skin condition. Br J Dermatol, 1994, 130(4): 473
    9杨雪琴.银屑病的整体治疗研究.解放军医学杂志.2009,34,(3) 246-249.
    10杨雪琴,李铀,王毅侠,等.银屑病患者的心率变异性研究.中华皮肤科杂志, 1997,30,115-117.
    11张力军,杨雪琴,樊建勇,等.银屑病患者血浆血管紧张素Ⅱ水平检测.中华皮肤科杂志,2000,33(2):115.
    12杨雪琴,邵黎,那爱华,等.银屑病患者血清中神经免疫蛋白与淋巴细胞转化的研究.中华皮肤科杂志, 1998,31(2):97.
    13樊建勇,杨雪琴,张力军,等.进行期银屑病患者血清皮质醇水平测定.临床皮肤科杂志,2000,29(6):339.
    14樊建勇,杨雪琴,张力军,等.银屑病患者血清中糖皮质激素及其受体mRNA的测定及其意义.第四军医大学学报, 2001,22,(22):2091.
    15王毅侠,杨雪琴,李世荫,等.银屑病皮损中神经生长因子及其受体的表达[J].中华皮肤科杂志, 2000, 33 (6) : 312-321.
    16李铀,杨雪琴,金璋瑞.银屑病患者睡眠质量的初步研究.中华皮肤科杂志, 2005, 38, 563-5644.
    17石继海,赵春霞,夏隆庆.国外医学皮肤行病学分册, 2001,27,(2):74-76.
    18 Gupta MA, Gupta AK. The Psoriasis Life Stress Inventory: a preliminary index of psoriasis-related stress. Acta Derm Venereol. 1995 May; 75(3):240-3.
    19 Heydendael VM, de Borgie CA, Spuls PI, et al. The burden of psoriasisis not determined by disease severity only. J Investig Dermatol Symp Proc. 2004 Mar; 9(2):131-5.
    20 Stern RS, Nijsten T, Feldman SR, et al. Psoriasis is common, carries a substantial burden even when not extensive, and is associated with widespread treatment dissatisfaction. J Investig Dermatol Symp Proc.2004 Mar; 9(2):136-9.
    21 Ginsburg I, Link B. Psychosocial consequences of rejection and stigma feelings in psoriasis patients[J]. International Journal of Dermatology, 1993, 32:587.
    22 Bhosle MJ, Kulkarni A, Feldman SR, et al. Quality of life in patients with psoriasis. Health Qual Life Outcomes. 2006 Jun 6;4:35.
    23 Sampogna F , Chren MM, Melchi CF. Age , gender , quality of life and psychological distress in patients hospitalized with psoriasis. Br J Dermatol,2006 ;154 :325-331.
    24刘秀容,刘东海,解其伟,等.银屑病患者家庭心理氛围与其病情变化的关系研究.中国健康心理学杂志,2004,12(6):431-434.
    25 Finlay. AY, Coles EC. The effect of severe psoriasis on the quality of life of 369 patients. British Journal of Dermatology, 1990, 100:1167-1171.
    26 Attah Johnson FY, Mostahimi H. Comordity between dermatological disease and psyciatry disorders. Int J Derm, 1995, 34(4): 244
    27 Scharloo M , Kaptein AA. Patients’illness perception and coping aspredictorsof functional status in psoriasis: a 1 year follow up. Br J Derm, 2000, 142(5): 8992
    28全国银屑病流行调查组.全国1984年银屑病流行调查报告.中华皮肤科杂志; 1986,19(5)253-261.
    29 Krueger GG, Duvic M. Epidemiology of psoriasis: clinical issues. J Invest Dermatol,1994; 102(6): 14s-18s.
    30 Schafer, T., Epidemiology of psoriasis. Review and the German perspective. Dermatology, 2006. 212(4):327-337.
    31 Schon, M.P. and W.H. Boehncke, Psoriasis. N Engl J Med, 2005. 352(18): p. 1899-912.
    32慈书平,张希龙,杨宇.睡眠与睡眠疾病.北京.军事医学科学出版社,2005:7.
    33 Carskadon MA DW.Normal human sleep:an overview.Principles and Practice of Sleep regulation.Philadelphia:W.B.Saunders,2000.
    34赵忠新.临床睡眠障碍学.上海.第二军医大学出版社,2003:28-33.
    35张景行.探讨深慢波睡眠机制的重要意义.中国中医基础医学杂志,2001;7(8):66-69.
    36 Velazquez-Moctezuma J, Dominguez-Salazar E, Cortes-Barberena E, et al. Differential effects of rapid eye movement sleep deprivation and immobilization stress on blood lymphocyte subsets in rats. Neuroimmunomodulation. 2004;11(4):261-267.
    37 Dings DF,Douglas SD,Hamarman S,et al. SIeep deprivation and human immune function. Adv Neuroimmunology 1995; 5 (2): 97-110.
    38 Dings DF,Douglas SD,Zangg L,et al. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64h of sleep deprivation. J Clin Invest. 1994; 93 C 5):1930-1939.
    39 JIrwin M, Masscovich A, Gillin JC, et al. deprivation reduces killer cell activity in humans.Partial sleep Psychosom Med, 994: 56(6) : 493-498.
    40 Ozturk L ,Pelin Z,Karadeniz D ,et al1 Effect s of 48 hours sleep deprivation on human immune profile[J ]. Sleep ,1999 ,2 (4) :107.
    41 Mat sumoto Y,Mishima K,Satoh K, et al1 Total sleep deprivation induces an acute and t ransient increase in N K cell activity in healt hy young volunteers[J ]. Sleep ,2001 ,24 (7) :804.
    42 Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol. 2009 Feb;155(2):231-8. Epub 2008 Nov 24.
    43 Palmblad J,Petrini B,Wasserman J, et al.Lymphocyte and granulocyte reactions during sleep deprivation.Psychosom Med,1979,41:273.
    44 Carol AE.Sustained sleep deprivation impairs host defense.Am J Physiol,1993,265:R1148.
    45 Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009 Mar;10(3):199-210. Epub 2009 Feb 11.
    46 Yi PL, Tsai CH, Lu MK, et al.Interleukin-1beta mediates sleep alteration in rats with rotenone-induced parkinsonism. Sleep. 2007 Apr 1;30(4):413-425.
    47 Borbely AA, Tobler I. Endogenous sleep promoting substances and sleep regulation. Physiol Rev, 1989: 69 ( 2 ) : 605-670.
    48 Terao A, Matsumura H, Saito M. Interleukin-1 induces slow-wave sleep at the prostaglandin D2-sensitive sleep-promoting zone in the rat brain. J Neurosci, 1998; 18(16 ) : 6599-6607.
    49 Jidong F, Ymg W, James MK. Effects of interleulcin-1βon sleep are mediated by the type I receptor. Am J Physiol, 1998; 274 (3Pt2): 655-660.
    50 Taishi P, Churchill L, Wang M, et al.TNFalpha siRNA reduces brain TNF and EEG delta wave activity in rats. Brain Res. 2007 Jul 2;1156:125-32. Epub 2007 May 5.
    51 Yoshida H, Kubota T, Krueger JM. A cyclooxygenase-2 inhibitorattenuates spontaneous and TNF-alpha-induced non-rapid eye movement sleep in rabbits. Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R99-109. Epub 2003 Mar 6.
    52 Emst SS,Kirsten H S , Hubert S,et al.Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocin Metabo, 1998; 83:1573-1579.
    53 Papanicolaou DA, Petrides JS, Tsigos C, et al.Exercise stimulates interleulcin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines. Am J Physiol, 1996; 271(3Pt1): E601-605.
    54 Shearer WT, Reuben HP, Dinges DF. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight [ J ]. J Allergy Clin Immunol , 2001 ,107 (1) :165.
    55孔庆军,孔令斌,张向阳,等.睡眠剥夺对人体循环免疫细胞的影响[J].济宁医学院学报,2005 ,28 (1) :25.
    56洪军,裘于容,王升旭,等.睡眠剥夺56小时对正常人血细胞和免疫功能的影响[J].中国临床心理学杂志,2000 ,11 (2) :27.
    57 Moldofsdy H,Leu FA,Davidson JR, et al.Effects of sleep deprivation on human immune function.FASEB J,1989,3:1972.
    58张丽,杨雪琴,程娟,等.寻常型银屑病患者的睡眠质量调查及影响因素分析.解放军医学杂志,2009,34(3):254-255.
    59 Ramsay B,O’Reagan M. A survey of the social and psychological effects of psoriasis. British Journal of Dermatology, 1988,118:195~201.
    60 Gupta MA, Gupta AK, Kirkby S, et al. A prospective study of psychiatric and dermatologic correlates. Archives of Dermatology, 1998,124:1052~1057.
    61 Bouguéon K, Misery L. Depression and psoriasis. Review. French. Ann Dermatol Venereol. 2008 Feb;135 Suppl 4: S254-258.
    62 Zachariae R, Zachariae CO, Lei U. Affective and sensory dimensions of pruritus severity: associations with psychological symptoms and quality of life in psoriasis patients. Acta Derm Venereol. 2008; 88(2): 121-127.
    63杨雪琴,彭德河,许传珊,等.银屑病患者的性格及情感分析.[J ]中华皮肤科杂志, 1991, 24 (1) : 232-233.
    64 Filakovi? P, Biljan D, Petek A. Depression in dermatology: an integrative perspective.Psychiatr Danub. 2008 Sep ;20 (3): 419-425.
    65 Nasreen S, Ahmed I, Effendi S. Frequency and magnitude of anxiety and depression in patients with psoriasis vulgaris. J Coll Physicians Surg Pak. 2008 Jul ;18 (7): 397-400.
    66 Allegranti I, Gont T. Prevalence of alexithymia characteristic in psoriasis patients. Acta Derm Venereol Suppl,1994,86:146 -147.
    67袁勇贵.述情障碍在中国的研究现状.健康心理学杂志,2002,10(4):318.
    68 Youngstedt SD, Perlis ML, O'Brien PM, et al. No association of sleep with total daily physical activity in normal sleepers. Physiol Behav. 2003 Mar; 78 (3) :395-401.
    69俞梦孙,杨军,周玉彬,等.用微动敏感床垫监测睡眠的研究[J].中华航空航天医学杂志,1999 , 10 (1) : 40-45.
    70杨军,俞梦孙,张春艳,等.睡眠中的心率变异性[J].北京生物医学工程,1998, 17 (1) : 612-641
    71周玉彬,俞梦孙.用无电极的方法测量人体生理信号[J].北京生物医学工程,2001,20(2):91-94.
    72张宏金,杨军,俞梦孙,等.微动敏感床垫式睡眠监测系统与多导睡眠图的比较研究[J].实用诊断与治疗杂志,2004,6:476-478.
    73吴锋,俞梦孙,成奇明,等.基于谱分析方法提取心动周期变异性中的睡眠结构信息[J].生物医学工程学杂志. 2004,21(2):212-214.
    74 Yang Jun, Yu Mengsun, Zhang Chunyan, et al. Extracting sleep structure from R2R interval variability by means of multi2resolution analysis. The 20th Annual International Conference of The IEEE Engineering in Medicine and Biology Society, 1998, Nov ; 216- 217.
    75吴锋,俞梦孙.基于心率变异性提取睡眠结构信息和检测睡眠呼吸暂停低通气综合征的技术及应用.世界医疗仪器, Vol.9, 2003(12):23-26.
    76 Harrington LE, Hatton RD, Mangan PR, et al.Interleukin17-producing CD4 effector Tcells develop viaalineage distinct from the Thelpertype1 and 2 lineages.NatImmunol,2005,6(11):1123~1132
    77 ParkH, LiZ, YangXO, et al. Adistinctlineage of CD4 Tcells regulates tissue inflammation by producing interleukin 17.NatImmunol,2005, 6 (11):1133-1141.
    78 Tran E H,Prince E N,Owens T. IFN -γshapes immune invasion of the central nervous system via regulation of chemokines [J]. J Immunol, 2000,164:2759-2768.
    79 Cua D J, Sherlock J, Chen Y, et al. Interleukin -23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain [J]. Nature,2003,421(6924):744-748.
    80 Langrish C L,Chen Y,Blumenschein W M,et al. IL-23 drives apathogenic T cell population that induces autoimmune inflammation [J]. J Exp Med,2005,201:233-240.
    81 Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol, 2006, 177: 566-573
    82 Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441: 235-238
    83 McGeachy M J, Cua D G. T cells doing it for themselves:TGF-βregulation of Th1 and Th17 cells. Immunity, 2007, 26: 547-548
    84 Stockinger B. Good for Goose, but Not for Gander: IL-2 Interferes with Th17 Differentiation. Immunity, 2007, (26): 279-280.
    85 Laurence A, Tato C M, Davidson T S, et al. Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity,2007,26: 371-381.
    86 Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol, 2007,25:821-852.
    87 Ivanov II, McKenzie B S, Zhou L, et al. The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126: 1121-1133
    88 Hoffmann P, Eder R, Kunz-Schughart LA,et al. Large scale invitro expansion of polyclonal human CD4+ CD25high regulatory T cells [J]. Blood, 2004;104 (3) :895-903.
    89 Levings MK, Sangregorio R,Roncarolo MG. HumanCD25+ CD4+ Tregulatory cells suppressnaive and memory T cell proliferation and can be expanded invitro without loss of function[J]. ExpMed,2001;193(11):1295-1302.
    90 Veldhoen M, Stockinger B. TGFbeta1, a’Jack of all trades': the link with pro-inflammatory IL-17-producing T cells. Trends Immunol,2006, 27 (8): 358-361.
    91 Veldhoen M, Hocking R J, Atkins C J, et al. TGF-beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006, 24: 179-189.
    92 Mangan P R, Harrington L E, Quinn D B, et al. Transforming growth factor-beta induces development of the Th17 lineage. Nature, 2006,441 (7090): 231-234.
    93 Li T F, Darowish M, Zuscik M J, et al. Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res, 2006, 21 (1): 4-16.
    94 McKarns SC, Schwartz RH. Distinct effects of TGF-beta 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J Immunol, 2005, 174 (4): 2071-2083.
    95 Fantini M C, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol, 2004, 172 (9): 5149-5153.
    96 Chen Y, Thai P, Zhao Y H, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem, 2003, 278 (19): 1736-1743.
    97 Wong CK, Ho CY, Li E K, et al. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus, 2000,9 (8): 589-593.
    98 Yoshida S, Haque A, Mizobuchi T, et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant, 2006, 6 (4): 724-735.
    99 Ferretti S, Bonneau O, Dubois GR, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide induced airway neutrophilia: IL-15 as a possible trigger. J Immunol,2003, 170 (4): 2106-2112.
    100 Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol,2003, 171 (11): 6173-6177.
    101 Tan W, Huang W, Zhong Q, et al. IL-17 receptor knockout mice have enhanced myelotoxicity and impaired hemopoietic recovery following gamma irradiation. J Immunol, 2006, 176 (10): 6186-6193.
    102 KohnoM, TsutsumiA, Matsui H, et al. Interleukin-17 gene expression in patients with rheumatoid arthritis [J]. ModRheumatol, 2008, 18 (1):15-22.
    103 Cho ML, Yoon CH, Hwang SY, et al. Effector function of typeⅡcollagen2stimulated T cells f rom rheumatoid art hritis patients: Crosstalk between T cells and synovial fibroblasts [J]. Arthritis Rheum, 2004, 50 (3): 776-784.
    104 Hwang SY, Kim HY. Expression of IL217 homologs and their receptors in t he synovial cells of rheumatoid art hritis patients[J] . Mol Cell, 2004, 19 (2): 180-184.
    105 Hwang SY, Kim J Y, Park MK, et al . IL217 induces production of IL-6 and IL-8 in rheumatoid art hritis synovial fibroblasts via NFkappaB and PI32kinase/ Akt2dependent pathways [J] . Arthritis Res Ther, 2004, 6 (2): R120-R128.
    106 Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[ J ]. Nature, 2007, 445 (7128):648-651.
    107 Khader SA, CooperAM. IL-23 and IL-17 in tuberculosis[J]. Cytokine, 2008, 41(2):79-83.
    108 Caruso R, Pallone F, Monteleone G. Emerging role of IL-23 / IL-17 axis in Hpylori-associated pathology[J]. World J Gastroenterol,2007, 13(42): 5547-5551.
    109 Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance[J]. Eur J Immunol, 2007,37 (10):2695-2706.
    110 Piccirillo CA,Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol, 2004, 25(7):374-380.
    111 Dieckmann D, Plottner H, Berchtold S, et al. Ex Vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med, 2001, 193(11): 1303-1310.
    112 Jonuleit H, Schmitt E, Stassen M, et al. Identification and functionalcharacterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med, 2001, 193(11): 1285-1294.
    113 Levings MK, Sangregorio R, Roncarolo MG. Human CD4+ CD25+ T regulatory cells suppress na?ve and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med, 2001, 193(11): 1295–1301.
    114 Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologica self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004. 22:531-62.
    115 Stassen M, Schmitt E, Jonuleit H. Human CD4+ CD25+ regulatory T cells and infectious tolerance. Transplantation, 2004, 77supplement: S23-S25.
    116 Hori S, Nomura T, Sakaguchi S, Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299: 1057-1061.
    117 Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance(IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol, 2003, 15:430-435.
    118 Sakaguchi S. The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J. Clin. Invest, 2003, 112:1310-1312.
    119 Rouse BT. Suvas S. Regulatory cells and infectious agents: de′tentes cordiale and contraire. J. Immunol, 2004, 173: 2211-2215.
    120 Walker, MR, Kasprowicz DJ,Gersuk VH,et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+ CD25- T cells. J. Clin. Invest, 2003,112:1437-1443.
    121 Kukreja A, Cost G, Marker J, et a1. Multiple immunoregulatory defect s in type21 diabetes [ J ] . J Clin Invest,2002,109 (1) :131-140.
    122 Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4+CD25+ T cells from patients with type l diabetes [J]. Diabetes, 2005, 54 (1):92-99.
    123 Vigliet ta V, Baecher2Allan C, Weiner HL, et al. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patient s with multiple sclerosis [J]. J Exp Med, 2004 (199):971-979.
    124 Cureil TJ, Coukos G, Zou L, et a1. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival [J]. Nat Med, 2004, 10(9):942-949.
    125 Delgado JC, Tsai EY, Thim S, et al. Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proc Natl Acad Sci, 2002, 99(11): 7576-7581
    126 Lundgren A, Suri-Payer E, Enarsson K, et al. Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect Immun, 2003, 71:1755-1762.
    127 Mills K HG, McGuirk P. Antigen-specific regulatory T cells-their induction and role in infection. Semin Immunol, 2004, 16: 107-117.
    128 Li MO, Wan YY, Flavell RA.T cell-produced transforming growth factor beta1 controls T cell tolerance and regulates Th1 and Th17 celldifferentiation [J].Immunity,2007,26:579-591.
    129 Zhou L, Lopes J E, Chong MW, et al.T GFb-induced Foxp3 inhibit s Th17 cell differentiation by antagonizing RORγt function [J].Nat ure,2008,453:236-240.
    130 Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation [J]. Nature, 2007, 445:771-775.
    131 Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta [J]. J Immunol, 2007, 178: 6725-6729.
    132 Yao Z, Kanno Y, Kerenyi M, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3 [J]. Blood,2007,109:4368-4375.
    133 Wan S, Xia C, Morel L. IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol, 2007, 178(1): 271-279
    134 Kimura A, Naka T, Kishimoto T, et al. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA, 2007, 104 (29):12099~12104
    135 Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternativepathway to induce proinflammatory TH17 cells. Nature, 2007, 448:484-488
    136 Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells [J]. J Immunol, 2007, 178:4901-4907.
    137 Vedhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of aninflammatory cytokine milieu supports denovo differentiation of IL-17-producing T cells[J].Immunit y,2006,24:179-189.
    138 He YW, Deftos ML, Ojala EW, et al. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas lig and expression and IL-2 production in T cells[J]. Immunity, 1998,9:797-806.
    139 Eberl G, Marmon S, Sunshine MJ, et al. An essential function forthe nuclear receptor RORγt in t he generation of fetal lymphoid tissue inducer cells[J].Nat Immunol,2004,5:64273.
    140 Chen X, Vodanovic-Jankovic S, Johnson B, et al. Absence of regulatory T cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft versus host disease. Blood, 2007, 110(10): 3804-3813.
    141韩根成,沈倍奋. Th17细胞分化、调节及效应研究进展.生物化学与生物物理进展. 2008,35(2):117-123.
    142 Sommer DM, Jenisch S, Suchan M, et al. Increased prevalence of the metabolic syndrome in patients with moderate to severe psoriasis. Arch Dermatol Res. 2006 Dec;298(7):321-8. Epub 2006 Sep 22. PubMed
    143程娟,杨雪琴.银屑病与代谢综合症.中华皮肤科杂志,2008,41(3):208
    144惠让松,杨雪琴.认知教育在银屑病防治中的意义及实施方法.解放军医学杂志, 2009,34,(3)355-356.
    145刘贤臣,唐茂芹.匹兹堡睡眠质量指数的信度和效度研究[J].中华精神科杂志,1996,5 (2) :103-107.
    146张熙.现代睡眠医学.北京,人民军医出版社.2007.
    147慈书平,张希龙,杨宇.睡眠与睡眠疾病.北京,军事医学科学出版社.2005.
    148 Sabat R, Philipp S, Hoflich C, et al. Immunopathogenesis of psoriasis. Exp Dermatol. 2007; 16: 779-798.
    149 Caproni M, Antiga E, Melani L, et al. Serum Levels of IL-17 and IL-22 Are Reduced by Etanercept, but not by Acitretin, in Patients with Psoriasis: a Randomized-Controlled Trial. J Clin Immunol. 2009; 29: 210-214.
    150 Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007; 204: 3183-3194.
    151 Boniface K, Guignouard E, Pedretti N, et al. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol. 2007; 150: 407-415.
    152 Wolk K, Witte E, Wallace E, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006; 36: 1309-1323.
    153 Piskin G, Sylva-Steenland RM, Bos JD, et al. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol. 2006; 176: 1908-1915.
    154 Li J, Li D, Tan Z. The expression of interleukin-17, interferon-gamma, and macrophage inflammatory protein-3 alpha mRNA in patients with psoriasis vulgaris. J Huazhong Univ Sci Technolog Med Sci. 2004; 24: 294-296.
    155 Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004; 199: 125-130.
    156 Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008; 128: 1207-1211.
    157 Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol. 2009; 129: 79-88.
    158 Chen L, Shen Z, Wang G, et al. Dynamic frequency of CD4+CD25+Foxp3+ Treg cells in psoriasis vulgaris. J Dermatol Sci. 2008; 51: 200-203.
    159 de Boer OJ, van der Loos CM, Teeling P, et al. Immunohistochemical analysis of regulatory T cell markers FOXP3 and GITR on CD4+CD25+ T cells in normal skin and inflammatory dermatoses. J Histochem Cytochem. 2007; 55: 891-898.
    160 Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, van Erp PE. Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis. Dermatology. 2006; 213: 111-117.
    161 Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol. 2005; 174: 164-173.
    162 Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cellsregulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005; 6: 1133-1141.
    163 Tesmer LA, Lundy SK, Sarkar S, et al. Th17 cells in human disease. Immunol Rev. 2008; 223: 87-113.
    164 Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008; 38: 2636-2649.
    165 Teunissen MB, Koomen CW, de Waal Malefyt R, et al. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol. 1998; 111: 645-649.
    166 Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses-7-20. Annu Rev Immunol. 2004; 22: 531-562.
    167 Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation-3-6. J Clin Invest. 2004; 114: 1198-1208.
    168 Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol. 2004; 25: 374-380.
    169 van Beelen AJ, Teunissen MB, Kapsenberg ML, et al. Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol. 2007; 7: 374-381.
    170 Hohl TM, Rivera A, Pamer EG. Immunity to fungi. Curr Opin Immunol. 2006; 18: 465-472.
    171 Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with activepsoriasis and correlation with disease severity. Mediators Inflamm. 2005; 2005: 273-279.
    172 Ichiyama K, Yoshida H, Wakabayashi Y, et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem. 2008; 283: 17003-17008.
    173 Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008; 453: 236-240.
    174 Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol. 2008; 9: 1297-1306.
    175 Huter EN, Stummvoll GH, DiPaolo RJ, et al. Cutting edge: antigen-specific TGF beta-induced regulatory T cells suppress Th17-mediated autoimmune disease. J Immunol. 2008;181: 8209-8213.
    176 Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007; 204: 1849-1861.
    177 Evans HG, Suddason T, Jackson I, et al. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci U S A. 2007; 104: 17034-17039.
    178 Sutton C, Brereton C, Keogh B, et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006; 203: 1685-1691.
    179 Kimura A, Naka T, Kishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells.Proc Natl Acad Sci U S A. 2007; 104: 12099-12104.
    180 Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006; 441: 231-234.
    181 Jain R, Tartar DM, Gregg RK, et al. Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med. 2008; 205: 207-218.
    182 Irmler IM, Gajda M, Brauer R. Exacerbation of antigen-induced arthritis in IFN-gamma-deficient mice as a result of unrestricted IL-17 response. J Immunol. 2007; 179: 6228-6236.
    183 Cruz A, Khader SA, Torrado E, et al. Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol. 2006; 177: 1416-1420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700