用户名: 密码: 验证码:
我国内蒙古东北部三种泡状棘球绦虫感染引起宿主体内基因差异表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
唐崇惕等对我国内蒙古东北部呼伦贝尔草原泡状棘球蚴的病原情况进行调查时,在沙狐(Vulpes corsac)体内发现多房棘球绦虫的成虫,在布氏田鼠(Microtus brandti)体内发现了泡状棘球蚴。随后的研究发现,流行于此地区的泡状棘球蚴病原应包含独立的三种,分别为:欧洲的多房棘球绦虫(Echinococcus multilocularis),西伯利亚棘球绦虫(Echinococcus sibiricensis)以及苏俄棘球绦虫(Echinococcus russicensis)。
     本论文主要对这三种泡状棘球绦虫引起的宿主体内基因差异表达变化进行研究,包括以下三个部分:
     1.三种泡状棘球绦虫棘球蚴核糖体基因(rDNA) ITS(Internal TranscribedSpacer,内转录间隔区)序列比较分析:
     通过DNA聚合酶链式反应对三种泡状棘球绦虫棘球蚴核糖体内转录间隔序列(ITS序列)进行扩增,将扩增产物进行克隆测序,所得序列结果进行比对和聚类分析。发现同种泡状棘球蚴的ITS序列有至少两种不同序列,序列复杂多变,尤其体现在ITS2序列部分。然而西伯利亚泡状棘球蚴的序列明显与另2虫种不同,尤其体现在ITS1序列部分。聚类分析显示来源于同种泡状棘球蚴的不同克隆序列大多能类聚在一起,表明这三种泡状棘球绦虫ITS序列间存在差异。
     2.三种泡状棘球蚴引起宿主体内基因差异表达的研究:
     本部分内容主要是运用基因芯片技术和蛋白质组学技术,结合生物信息学分析,对三种泡状棘球蚴感染的小鼠肝脏内基因表达的变化予以研究。按照结果分析的侧重点不同,共分为两章:
     第一章主要分析与讨论在三种泡状棘球蚴感染的宿主体内均有差异表达的基因(共性部分):通过基因芯片试验结果我们发现,在三种泡状棘球蚴感染的小鼠肝脏内表达变化均有显著差异的基因一共有64个,进一步的GO功能分析结果显示它们与几个功能组相关,其中包括了防御反应和免疫功能,氧化还原酶活性功能和细胞代谢功能类别。而蛋白质组学实验结果显示表达变化差异显著的73个蛋白也多与这几大功能类别相关,更为重要的是防御反应和免疫功能相关的蛋白表达值都升高,而具氧化还原酶活性功能以及和细胞代谢功能相关的蛋白表达值都降低,支持了基因芯片的实验结果。
     第二章进一步比较与分析感染不同种泡状棘球蚴的各个实验组间基因表达情况的差异(个性部分):发现有278个基因仅在感染了西伯利亚和苏俄泡状棘球蚴的感染组A和B中表达差异显著,而在感染欧洲泡状棘球蚴的感染组C中表达变化不明显。在这278个基因当中,205个上调的基因与多个生物学过程相关,包括防御与免疫应答反应,细胞凋亡,细胞分化,细胞周期,细胞分裂,DNA复制等。同时我们还发现在感染苏俄泡状棘球蚴的小鼠体内与细胞分裂、细胞骨架构建与生成、DNA损伤应答的基因表达值升高的幅度明显高于另两种泡状棘球蚴感染的小鼠,而且后两个GO功能类别未在感染组A或C中被显著富集。表明宿主适应性程度、宿主免疫应答反应差异会造成这三种泡状棘球蚴感染的小鼠体内基因表达变化的不同。
     3.感染三种泡状棘球蚴的小鼠体内细胞因子动态变化的研究:
     对不同感染组小鼠血清中的Th1/2型细胞因子动态表达变化差异进行研究。结果发现Th1型细胞因子TNF-α和IFN-γ在三种泡状棘球蚴感染感染的小鼠血清中的表达值均在感染初期就略有升高,接种后80到100天时,升高幅度达到峰值;而Th2型细胞因子IL-4在感染初期变化并不显著,在感染约100天之后表达值才显著提高。此外,IL-10也是在感染后期的小鼠血清中被检测到有表达。
     同时,三种泡状棘球蚴感染的小鼠血清中这几种细胞因子动态变化存在差异。西伯利亚泡状棘球蚴感染的TNF-α和IFN-γ表达在接种80-100天后达到峰值,之后仍相对维持在较高水平,而感染苏俄泡状棘球蚴和欧洲泡状棘球蚴小鼠血清中这两种细胞因子含量达到峰值后迅速下降,而且幅度更为显著。提示在西伯利亚泡状棘球蚴感染的小鼠体内,TNF-α和IFN-γ高表达的时间更长些,作用也更为持久。此外,从整体上来看,感染欧洲泡状棘球蚴的小鼠体内这两种细胞因子的表达水平均比另两个感染组要低。
At the end of last centry, Tang Chongti et al found there were three types of alveolar echinococcus in the Northeast Inner Mongolia, China. Subsequent studies indicated that they should be regarded as independent species: Echinococcus multilocularis, Echinococcus sibiricensis and Echinococcus russicensis.
     In this dissertation, the differential host gene expression during the infection with three alveolar echinococcus was explored.
     There are three parts in the paper.
     1. The comparative analysis of ITS sequences from three alveolar echinococcus:
     By using PCR technology, we amplified ITS sequences from three alveolar echinococcus. The results showed that there were at least 2 different kinds of sequences from the same type of alveolar echinococcus, especially in the ITS2 part. However, the ITSl sequences of Echinococcus sibiricensis were quite different from those of Echinococcus russicensis and Echinococcus multilocularis. As such, the clustering result showed that most of the clone sequences from the same type of alveolar echinococcus can be distinguished from another one, implying the genomic differences in these types of alveolar echinococcus.
     2. The study on the differential host gene expression during the infection with three alveolar echinococcus:
     In this part, microarray, proteomic and bioinformatic technology were used to explore the differential gene (protein) expression induced by three alveolar echinococcus. The results and discussion part are shown as in two chapters:
     Chapter 1: A total of 64 genes were common to infection in the liver of all three alveolar echinococcus with 73 common proteins found. GO analysis of the microarray data showed that up-regulated genes included those involved in immune response and the depressed genes were related to oxidoreductase activity and energy metabolism, which was strongly supported by the proteomic data.
     Chapter 2: Furthermore, analysis of the gene expression data indicated 278 genes were significantly changed in the mice infected with Echinococcus sibiricensis and Echinococcus russicensis, but not in those infected with Echinococcus multilocularis. In the 278 genes, 205 were induced including those related to immune response, apoptosis, cell differentiation, cell cycle, cell division and DNA amplification, etc. Moreover, a number of genes were only significantly up-regulated in the mice infected with Echinococcus russicensis, including those related to cell division, cytoskeleton organization and biogenesis, and DNA damage response. These genes in this infected group have a much higer expression ratio than those in the other two groups as well as the GO functional categories "cytoskeleton organization and biogenesis" and "DNA damage response" were only enriched in Echinococcus russicensis infected group.
     3. Developmental changes in the serum Th1/2 cytokine expression of mice infected with three alveolar echinococcus:
     Th1/2 cytokine expressions were examined in the serum of mice infected with three alveolar echinococcus. The results showed that TNF-αand IFN-γwere slightly induced at early stage of the infection and then remarkably up-regulated at later stage (80-100 day post infection) in all of the infected groups. Contrarily, IL-4 and IL-10 were induced only at the later stage (100 days post infecion).
     The expression of TNF-αand IFN-γin the mice infected with Echinococcus sibiricensis reached at the maximum at 80-100 days post infection and then remained at a relatively high level, however, it signicantly reduced in the other two groups. It implied that the Th1 type cytokines TNF-αand IFN-γfunctioned in the Echinococcus sibiricensis-induced infection with a stronger activity. As such, the expression levels of TNF-αand IFN-γwere lower in the mice infected with Echinococcus multilocularis.
引文
[1]Kern R Wen H,Sato N,et al.WHO classification of alveolar echinococcosis:principles and application[J].Parasitol.Int.,2006,55(Suppl):283-287.
    [2]Gottstein B and Hemphill A.Immunopathology of echinococcosis[J].Chem.Immunol.,1997,66:177-208.
    [3]Deplazes P.Ecology and epidemiology of Echinococcus multilocularis in Europe[J].Parassitologia,2006,48:37-39.
    [4]Shaikenov B S.Distribution and ecology of Echinococcus multilocularis in Central Asia[J].Parasitol Int.,2006,55(Suppl):213-219.
    [5]McManus D P,Zhang W,Li J et al.Echinococcosis[J].The Lancet,362(9392):1295-1304.
    [6]蒋次鹏.我国包虫病流行现况[J].中国寄生虫病防治杂志,1996,9(4):290-294.
    [7]Danson F M,Giraudoux P and Craig P S.Spatial modelling and ecology of Echinococcus multilocularis transmission in China[J].Parasitology International,2006,55(Suppl 1):227-231.
    [8]Giraudoux P,Pleydell D,Raoul F,et al.Transmission ecology of Echinococcus multilocularis:What are the ranges of parasite stability among various host communities in China?[J].Parasitology International,2006,55(Suppl 1):237-246.
    [9]Kumaratilake L M,Thompson R C.A review of the taxonomy and speciation of the genus echinococcus Rudolphi 1801[J].Z.Parasitenk.,1982,68(2):121-146.
    [10]Rausch R T,Bernstein J.J.Echinococcus vogeli sp.n.(Cestoda:Taeniiidae) from the bush dog,Speothos venaticus(Lund)[J].Z.Tropenmed.Parasitol.,1972,23:25-34.
    [11]唐崇惕,王彦海,崔贵文.内蒙古多囊蚴,Polycystia neimonguensis新种记述[J].中国人兽共患病杂志,2003,19(4):14-18.
    [12]Xiao N,Qiu J M,Nakao M,et al.Echinococcus shiquicus n.sp.,a taeniid cestode from Tibetan fox and platean pika in China[J].International Journal for Parasitology,2005,35:693-701.
    [13]Rausch R L.The taxonomic value and variablity of certain structure in the cestodes genus Echinococcus(Rud.,1801),and a review of recognized species[J].Commemeration vol.for Dr.G.S.Thapar.Lucknow,India,1953,233-246.
    [14]Rausch R L.Studies on the helminth fauna of Alaska.The histogenesis of the alveolar larva of Echinococcus species[J].Journal of infectious Diseases,1954,94:178-186.
    [15]Vogel H.Uber den Echinococcus multilocularis Suddeutschlands.Das Bandwurmstadium Van Stammen menschlicher und tierischer Herkunft[J].Zeit.Tropenment.Parasit.,1957,8:404-454.
    [16]Rausch R L,Schiller E L.Studies on the heiminth fauna of Alaska.Echinococcus sibiricensis n.sp.from St.Lawrence Island[J].J.Parasitol.,1954,40(6):659-662.
    [17]唐崇惕,崔贵文,钱玉春,等.内蒙古呼伦贝尔草原泡状棘球蚴病病原的调查[J].动物学报,1988,34(2):172-79.
    [18]唐崇惕,唐亮,钱玉春,等.内蒙古东部新巴尔虎右旗泡状肝包虫病原种类及流行学调查[J].厦门大学学报(自然科学版),2001,40(2):503-511.
    [19]唐崇惕,唐亮,康育民,等.内蒙古东部鄂温克旗草场鼠类感染泡状棘球蚴情况的调查[J].寄生虫与医学昆虫学报,2001,8(4):220-226.
    [20]唐崇惕,陈晋安,唐亮,等.西伯利亚棘球绦虫和多房棘球绦虫泡状蚴在长爪沙鼠体内发育的比较[J].地方病通报,2001,16(4):5-8.
    [21]唐崇惕,陈晋安,唐亮,等.内蒙古西伯利亚棘球绦虫和多房棘球绦虫泡状蚴在小白鼠发育成熟的比较[J].实验生物学报,2001;34(4):261-268.
    [22]Tang C T,Quian Y C,Kang Y M,et al.Study on the ecological distribution of alveolar Echinococcus in Hulunbeier pasture of Inner Mongolia,China[J].Parasitology,2004,128:187-194.
    [23]Tang C T,Wang Y H,Peng W F,et al.Alveolar Echinococcus species from Vulpes corsac in Hulunbeier,Inner Mongolia,China,and differential development of the metacestodes in experimental rodents[J].J.Parasitol.,2006,92(4):719-724.
    [24]唐崇惕,崔贵文,钱玉春,等.我国内蒙古大兴安岭北麓泡状肝包虫种类的研究.Ⅰ.多房棘球绦虫(Echinococcus multilocularis Leuckart,1863)[J].中国人兽共患病学报,2006,22(12):1089-1094.
    [25]唐崇惕,崔贵文,钱玉春,等.我国内蒙古大兴安岭北麓泡状肝包虫种类的研究.Ⅱ.西伯利亚棘球绦虫(Echinococcus sibiricensis Rausch et Schiller,1954)[J].中国人兽共患病学报,2007,23(5):419-426.
    [26]唐崇惕,崔贵文,钱玉春,等.我国内蒙古大兴安岭北麓泡状肝包虫种类的研究.Ⅲ. 苏俄棘球绦虫(Echinococcus russicensis sp.nov.)[J].中国人兽共患病学报,2007,23(10):957-963.
    [27]McManus D P,Knight M,Simpson A J.Isolation and characterisation of nuclcie acids from the hydatid organisms,Echinocoasis spp.[J].Mol.Biochem.Parasitol.,1985,16:251-266.
    [28]Bowles J,McManus D P.Rapid discrimination of Echinococcns species and strains using a PCR-based RFLP method[J].Mol.Biochem.Parasitol.,1993,57:231-239.
    [29]任敏,邱加闽,黄启华.四川与宁夏两地区泡球蚴基因组DNA酶切片段长度多态性的初步分析[J].实用寄生虫病杂志,1995,3(1):10-12.
    [30]李文姝,史大中.细粒棘球蚴和泡状棘球蚴的随机扩增多态性DNA分析[J].地方病通报,2001,16(2):4-6.
    [31]Gasser R B,Zhu X Q,McManus D P.Display of sequence variation in PCR-amplified mitochondrial DNA regions of Echinococcus by single-strand conformation polymorphism[J].Acta.Trop.,1998,71:107-115.
    [32]Bowles J,McManus D P.NADH dehydrogenaselgene sequences compared for species and strains of the genus Echinococcus[J].Int.J.Parasitol.,1993,23:969-972.
    [33]Bowles J,Blair D,McManus D P.A molecular phylogeny of the genus Echinococcus[J].Parasitology,1995,110:317-328.
    [34]Gasser R B,Chilton N.Characterisation of taeniid cestode species by PCR-RFLP of ITS2ribosomal DNA[J].Acta.Trop.,1995,59:31-40.
    [35]Kamenetzky L,Canova S G,Guarnera E A,et al.Echinococcus granulosus:DNA Extraction from Germinal Layers Allows Strain Determination in Fertile and Nonfertile Hydatid Cysts[J].Experimental Parasitology,2000,95:122-127.
    [36]Le T H,Pearson M S,Blair D,et al.Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus[J].Parasitology,2002,124:97-112.
    [37]Sorensen R E,Curtis J,Minchella D J.Intraspecific variation in the rDNA ITS loci of 37-collar-spined echinostomes from North American:Implications for sequence-based diagnoses and phylogentics[J].J.Parasitol.,1998,84(5):992-997.
    [38]Rinder H,Rausch R L,Takahashi K,et al.Limited range of genetic variation in Echinococcus multilocularis[J].J.Parasitol.,1997,83(6):1045-1050.
    [39]Van Herwerdena L,Gassera R B,Blair D.ITS-1 ribosomal DNA sequence variants are maintained in different species and strains of Echinococcus[J].Inter.J.Parasitol.,2000,30:157-169.
    [40]霍金龙,苗永旺,曾养志.基因芯片技术及其应用[J].生物技术通讯,2007,18(2):329-332.
    [41]Chevallet M,Santoni V,Poinas A,et al.New zwitterionic detergents improve the analysis ofmembrane proteins by two-dimensional electrophoresis[J].Electrophoresis,1998,19(11):1901-1909.
    [42]陶丽红,林矫矫.蛋白质组学技术及其在寄生虫学研究中的应用[J].国际医学寄生虫病杂志,2007,34(4):184-188.
    [43]Thomas P D,Mi H,Lewis S.Ontology annotation:mapping genomic regions to biological function[J].Curr.Opin.Chem.Biol.,2007:11(1):4-11.
    [44]Dimopoulos G,Christophides G K,et al.Genome expression analysis of Anopheles gambiae:Responses to injury,bacterial challenge,and malaria infection[J].Proc.Natl.Acad.Sci.,2005,99(13):8814-8819.
    [45]Schaecher K,Kumar S,Yadava A and et al.Genome-Wide Expression Profiling in Malaria Infection Reveals Transcriptional Changes Associated with Lethal and Nonlethal Outcomes [J].Infection and immunity,2005,73(9):6091-6100.
    [46]Tarun A S,Peng X,Dumpit R F,et al.A combined transcriptome and proteome survey of malaria parasite liver stages[J].Proc.Natl.Acad.Sci.,2008,105(1):305-310.
    [47]Adhiambo M O,Beattie C,and Rink A.cDNA Microarray Analysis of Host-Pathogen Interactions in a Porcine:In Vitro Model for Toxoplasma gondii Infection[J].Infection and immunity,2006,74(7):4254-4265.
    [48]Rodriguez N E,Chang H K,and Wilson M E.Novel Program of Macrophage Gene Expression Induced by Phagocytosis of Leishmania chagasi[J].Infect.Immun.,2004,72(4):2111-2122.
    [49]Forgber M,Basu R,Roychoudhury K,et al.Mapping the Antigenicity of the Parasites in Leishmania donovani Infection by Proteome Serology[J].PLoS ONE.,2006,1(1):40.
    [50]Semnani R T,Keiser P B,Coulibaly Y I,et al.Filaria-Induced Monocyte Dysfunction and Its Reversal following Treatment[J].Infect Immun.,2006,74(8):4409-4417
    [51]Liu F,Hu W,Cui S J,et al.Insight into the host-parasite interplay by proteomic study of host proteins copurified with the human parasite,Schistosoma japonicum[J].Proteomics,2007,7(3): 450-462.
    [52]Swartz J M,Dyer K.D,Cheever A W,et al.Schistosoma mansoni infection in eosinophil lineage-ablated mice[J].Blood,2006,108(7): 2420-2427.
    [53]Harvie M,Jordan T W,and La Flamme A C.Differential Liver Protein Expression during Schistosomiasis[J].Infect.Immun.,2007,75(2): 736-744.
    [54]Lindquist K R,Terenius O and Faye I.Parasite-specific immune response in adult Drosophila melanogaster: a genomic study[J],EMBO Reports,2004,5(2): 207-212.
    [55]Carmena D,Benito A,Eraso E.The immunodiagnosis of Echinococcus multilocularis infection[J].Clin.Microbiol.Infect,2007,13: 460-475.
    [56]Filippou D,Tselepis D,Filippou G,et al.Advances in Liver Echinococcosis: Diagnosis and Treatment[J].Clinical Gastroenterology and Hepatology,2007,5: 152-159.
    [57]Zhang W, McManus D P.Recent advances in the immunology and diagnosis of echinococcosis[J].FEMS Immunol.Med.Microbiol,2006,47(1): 24-41.
    [58]Devouge M and Ali-Khan Z.Intraperitoneal murine alveolar hydatidosis: relationship between the size of the larval cyst mass,immigrant inflammatory cells,splenomegaly and thymus involution[J].Tropenmed.Parasito!.,1983,34:15-20.
    [59]Zhang W,Li J and McManus D P.Concepts in Immunology and Diagnosis of Hydatid Disease[J].Clinical microbiology reviews,2003,16(1): 18-36.
    [60]Lydyard P M.免疫学(影印版)[M].北京:科学出版社,2003.
    [61]Allen J E and Maizels R M.Immunology of human helminth infection[J].Int.Arch.Allergy Immunol,1996,109:3-10.
    [62]Finkelman F D,Pearce E J,UrbanJ F,et al.Regulation and biological function of helminth-induced cytokine responses[J].Immunol.,1991,12:62-66.
    [63]Maizels R M.Balic A,Gomez-Escobar N,et al.Helminth parasites—masters of regulation[J].Immunol.Rev.,2004: 201:89-116.
    [64]Rigano R,Profumo E,Buttari B A,et al.Cytokine gene expression in peripheral blood mononuclear cells (PBMC) from patients with pharmacologically treated cystic echinococcosis[J].Clin.Exp.Immunol.,1999,118:95-101.
    [65]Rigano R,Profumo E,Di Felice G,et al.In vitro production of cytokines by peripheral blood mononuclear cells from hydatid patients[J].Clin.Exp.Immunol.,1995,99: 433-439.
    [66]Rigano R,Profumo E,Teggi A,et al.Production of IL-5 and IL-6 by peripheral blood mononuclear cells (PBMC) from patients with Echinococcus granulosus infection[J].Clin.Exp.Immunol.,1996,105:456-459.
    [67]Touil-Boukoffa C B,Bauvois J,Sanceau B,et al.Production of nitric oxide (NO) in human hydatidosis: relationship between nitrite production and interferon-gamma levels[J].Biochimie,1998,80: 739-744.
    [68]Dai W J,Waldvogel A,Siles-Lucas M,et al.Echinococcus multilocularis proliferation in mice and respective parasite 14-3-3 gene expression is mainly controlled by an alphabeta CD4 T-cell-mediated immune response[J].Immunology,2004,112: 481-488.
    [69]Rigano R,Profumo E,Ioppolo S,et al.1995.Immunological markers indicating the effectiveness of pharmacological treatment in human hydatid disease[J].Clin.Exp.Immunol.,1995,102:281-285.
    [70]Rogan M T and Craig P S.Immunology of Echinococcus granulosus infections [J].Acta Trop.,1997,67:7-17.
    [71]Dvoroznakova E,Hrckova G,Boroskova Z,et al.Effect of treatment with free and liposomized albendazole on selected immunological parameters and cyst growth in mice infected with Echinococcus multilocularis[J].Parasitol Int.,2004,53: 315-325.
    [72]Manfras B J,Reuter S,Wendland T,et al.Impeded Th1 CD4 memory T cell generation in chronic-persisting liver infection with Echinococcus multilocularis [J].Int.Immunol.,2004,16:43-50.
    [73]Emery I,Liance M,Leclerc C.Secondary Echinococcus multilocularis infection in A/J mice:delayed metacestode development is associated with Thl cytokine production[J].Parasite Immunol.,1997,19(11): 493-503.
    [74]Zhang W,You H,Zhang Z,et al.Further studies on an intermediate host murine model showing that a primary Echinococcus granulosus infection is protective against subsequent oncospheral challenge[J].Parasitol.Int.,2001,50: 279-283.
    [75]Jenkins P,Dixon J B,Rakha N K,et al.Regulation of macrophage-mediated larvicidal activity in Echinococcus granulosus and Mesocestoides corti (Cestoda) infection in mice[J]. Parasitology,1990,100:309-315.
    [76]Kanazawa T,Asahi H,Hata H,et al.Arginine-dependent generation of reactive nitrogen intermediates is instrumental in the in vitro killing of protoscoleces of Echinococcus multilocularis by activated macrophages[J].Parasite Immunol,1993,15:619-623.
    [77]Hernandez-Pomi A,Borras-Salvador R and Mir-Gisbert A.Analysis of cytokine and specific antibody profiles in hydatid patients with primary infection and relapse of disease[J].Parasite Immunol,1997,19:553-561.
    [78]李富荣,石佑恩,史大中,等.泡球蚴感染BALB/c小鼠IgG亚类和细胞因子的动态观察[J].中国寄生虫学与寄生虫病杂志,2003,21(6):357-360.
    [79]李富荣,石佑恩,史大中,等.泡球蜘病患者血清中Th1/Th2型细胞因子水平的观察[J].中国寄生虫学与寄生虫病杂志,2002,20(6):376-377.
    [80]魏晓丽,丁剑冰,许晏,等.小鼠感染泡球蚴后细胞因子水平的变化[J].中国寄生虫学与寄生虫病杂志,2004,22(6):361-364.
    [81]Vuitton D A,Zhang S L,Yang Y,et al.Survival strategy of Echinococcus multilocularis in the human host[J].Parasitol Int.,2006,55(Suppl):51-55.
    [82]Gottstein B,Haag K,Walker M,et al.Molecular survival strategies of Echinococcus multilocularis in the murine host[J].Parasitol Int.,2006,55(Suppl):45-49.
    [83]Riffkin M,Seow H F,Jackson D,et al.Defence against the immune barrage:helminth survival strategies[J],Immunol Cell Biol.,1996:74(6):564-574.
    [84]Jankovic D,Kullberg M C,Caspar P,et al.Parasite-induced Th2 polarization is associated with down-regulated dendritic cell responsiveness to Th1 stimuli and a transient delay in T lymphocyte cycling[J].J.Immunol.,2004:173(4):2419-2427.
    [85]Kullberg M C,Pearce E J,Hieny S E,et al.Infection with Schistosoma mansoni alters Th1/Th2 cytokine responses to a non-parasite antigen[J],Immunol.,1992,(148):3264-3270.
    [86]Fallon P G,Dunne D W.Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection[J],Immunol.,1999,162(7):4122-4132.
    [87]Pearce E J,Caspar P,Grzych J M,et al.Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth,Schistosoma mansoni[J].J.Exp.Med.,1991,173:159-166.
    [88]Dai W J,Waldvogel A,Jungi T,et al.Inducible nitric oxide synthase deficiency in mice increases resistance to chronic infection with Echinococcus multilocularis[J].Immunology,2003,108:238-244.
    [89]Andrade M A,Siles-Lucas M,Espinoza E,et al.Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro[J].Nitric.Oxide,2004,10:150-155.
    [90]Jenne L,Arrighi J F,Sauter B,et al.Dendritic cells pulsed with unfractionated helminthic proteins to generate antiparasitic cytotoxic T lymphocyte[J].Parasite Immunol,2001,23:195-201.
    [91]Vuitton D A,Echinococcosis and allergy[J].Clin.Rev.Allergy.Immunol.,2004,26:93-104.
    [92]Ohbayashi M.Studies on echinococcosis.X.Histological observations on experimental cases of multilocular echinococcosis[J].Jap.Jour.Vet.Res.,1960,8(2):134-160.
    [93]萨姆布鲁克J,拉塞尔D W著,黄培堂等,译.分子克隆实验指南(第三版)[M].北京:科学出版社,2002,36-39.
    [94]Luton K,Walker D,Blair D.Comparisons of ribosomal internal transcribed spacers from two congenetic species of flukes(Platyhelminthes:Trematoda:Digenea)[J].Mol.Biochem.Parasitol.,1992,56:323-328.
    [95]Kane R A,Ridgers I L,Johnston D A,et al.Repetitive sequences within the first internal transcribed spacer of ribosomal DNA in schisosomes contain a Chi-like site[J].Mol.Biochem.Parasitol.,1995,75:265-269.
    [96]van Herwerdena L,Blair D,Agatsuma D.Intra- and inter- specific variation in neclear ribosomal internal transcribed spacer 1 of the Schistosoma japonica species complex[J].Parasitology,1998,116:311-317.
    [97]van Herwerdena L,Blair D,Agatsuma D.Intra- and inter- individual variation in ITSl of Paragonimus westermani(Trematoda:Digenea) and related species:implications for phylogenetic studies[J].Mol.Phylogenet.Evol.,1999,12:67-73.
    [98]Knapp J,Bart J M,Glowatzki M L,et al.Assessment of Use of Microsatellite Polymorphism Analysis for Improving Spatial Distribution Tracking of Echinococcus multilocularis[J].J.Clin.Microbiol.2007,45(9):2943-2950.
    [99]Bart J M,Knappa J,Gottstein B,et al.EmsB,a tandem repeated multi-loci microsatellite,new tool to investigate the genetic diversity of Echinococcus multilocularis[J].J.Parasitol., 2003,89:416-418.
    [100]Haag K L,Araujo A M,Gottstein B,et al.Breeding systems in Echinococcus granulosus (Cestoda: Taeniidae): selfing or outcrossing?[J]Parasitology,1999,118: 63-71.
    [101]Nakao M,Sako Y,Ito A.Isolation of polymorphic microsateilite loci from the tapeworm Echinococcus multilocularis[J].Infect.Genet.Evol.,2003,3: 159-163.
    [102]Dai W J and Gottstein B.Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection[J].Immunology,1999,97: 107-116.
    [103]Champine P,Michaelson J,Weimer B,et al.Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression[J].Clinical and Experimental Metastasis.2007,24: 551-565.
    [104]Kerr M K,Martin M,Churchill G A.Analysis of variance for gene expression microarray data[J].Journal of Computational Biology,2000,7: 819-837.
    [105]Klion A D and Nutman T B.The role of eosinophils in host defense against helminth parasites[J].J.Allergy Clin.Immunol.,2004,113: 30-37.
    [106]Maizels R M,Balic A,Gomez-Escobar N,et al.Helminth parasites-masters of regulation[J]Immunol.Rev.,2004,201: 89-116.
    [107]Abraham D, Leon O, Schnyder-Candrian S, et al.Immunoglobulin E and eosinophil-dependent protective immunity to larval Onchocerca volvulus in mice immunized with irradiated larvae[J].Infect.Immun.,2004,72: 810-817.
    [108]Lozzi S P,Machado C R,Gerken S E,et al.Involvement of regional lymph nodes after penetration of Schistosoma mansoni cercariae in naive and infected mice[J].Mem.Inst.Oswaldo Cruz.,1996,91: 491-498.
    [109]Martin C,Goff L Le,Ungeheuer M N,et al.Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice[J].Infect.Immun.,2000,68: 3651-3656.
    [110]Haynes A P,and Fletcher J.Neutrophil function tests[J].Baillieres Clin.Haematol.,1990,3:871-887.
    [111]Martin C,Saeftel M,Vuong P N,et al.B-cell deficiency suppresses vaccine-induced protection against murine filariasis but does not increase the recovery rate for primary infection[J].Infect.Immun.,2001,69: 7067-7073.
    [112]Hamann K.J,Gleich G J,Checkel J L,In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins[J].J.Immunol.,1990,144: 3166-3173.
    [113]Plager,D.A.,S.Stuart,and G J.Gleich.Human eosinophil granule major basic protein and its novel homolog[J].Allergy,1998,53: 33-40.
    [114]Specht S,Saeftel M,Arndt M,et al.Lack of Eosinophil Peroxidase or Major Basic Protein Impairs Defense against Murine Filarial Infection[J].Infect.Immun.,2006,74: 5236-5243.
    [115]Gruys E,Toussaint M J,Niewold T A,et al.Acute phase reaction and acute phase proteins[J],J.Zhejiang Univ.Sci.B.,2005,6(11): 1045-1056.
    [116]Heinrich P C,Castell T A,and Andus T.Interleukin-6 and the acute phase response[J].Biochem.J.,1990,265: 621-636.
    [117]Annunziato F,Cosmi L,Galli G,et al.Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo[J].J.Leukoc.Biol.,1999,65: 691-699.
    [118]Khan I A,Murphy P M,Casciotti L,et al.Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection[J].J.Immunol.,2001, 166: 1930-1937.
    [119]Doyonnas R,Nielsen J S,Chelliah S,et al.Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells[J].Blood,2005, 105(11): 4170-4178.
    [120]Diaz A,Irigoin F,Ferreira F,and Sim R B.Control of host complement activation by the Echinococcus granulosus hydatid cyst[J].Immuno-pharmacology,1999,42: 91-98.
    [121]Falcone F H,Loke P,Zang X,et al.A Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection[J].J.Immunol.,2001,167: 5348-5354.
    [122]Nair M G Gallagher I J,Taylor M D,et al.Allen Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Yml and Fizzl by antigen-presenting cells[J].Infect.Immun.,2005,73: 385-394.
    [123]Chang N C,Hung S I,Hwa K Y,et al.A macrophage protein,Yml,transiently expressed during inflammation is a novel mammalian lectin[J].J.Biol.Chem., 2001,276:17497-17506.
    [124]Welch J S,Escoubet-Lozach L,Sykes D B,et al.TH2 cytokines and allergic challenge induce Yml expression in macrophages by a STAT6-dependent mechanism[J].J.Biol. Chem.,2002,277:42821-42829.
    [125]Dai W J,Hemphill A,Waldvogel A,et al.Major Carbohydrate Antigen of Echinococcus multilocularis Induces an Immunoglobulin G Response Independent of αβ+ CD4+ T Cells[J].Infect.Immun.,2001,69:6074-6083.
    [126]Sturm D,Menzel J,Gottstein B,and Kern P.Interleukin-5 is the predominant cytokine produced by peripheral blood mononuclear cells in alveolar echinococcosis[J].Infect.Immun.,1995,63:1688-1697.
    [127]Zhou C,Tabb M M,Nelson E L,Grun F,et al.Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation[J].J.Clin.Invest.,2006,116:2280-2289.
    [128]Morgan E T.Regulation of cytochrome p450 by inflammatory mediators:why and how[J]?Drug Metab.Dispos.,2001,29:207-212.
    [129]Sun Q A,Wu Y,Zappacosta F,et al.Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases[J].J.Biol.Chem.,1999,274:24522-24530.
    [130]Zubay G.Biochemistry,4th ed.[M].WCB/McGraw-Hill,Columbus,OH.,1998.
    [131]Janssen U,and Stoffel W.Disruption of mitochondrial beta -oxidation of unsaturated fatty acids in the 3,2-trans-enoyl-CoA isomerase-deficient mouse[J].J.Bio.l Chem.,2002,277:19579-19584.
    [132]谭丽娜,黄进华.结合珠蛋白的研究进展[J].国际病理科学与临床杂志,2006,26(1):43-47
    [133]Soni K G,Lehner R,Metalnikov P,et al.Carboxylesterase 3(EC 3.1.1.1) is a major adipocyte lipase[J].J.Biol.Chem.,2004,279(39):40683-40689.
    [134]Zhang B,Schmoyer D,Kirov S and Snoddy J.GOTree Machine(GOTM):a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies[J].BMC Bioinformatics,2004,5:16-23
    [135]Dumitru C D,Ceci J D,Tsatsanis C,et al.TNF-alpha induction by LPS is regulated posttranscriptionally via a Tp12/ERK-dependent pathway[J].Cell.2000,103(7):1071-1083
    [136]Lin X,Cunningham E T Jr,Mu Y,et al.The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-kappaB acting through the NF-kappaB-inducing kinase and IkappaB kinases[J].Immunity.1999,10(2):271-80.
    [137]Eliopoulos A G,Wang C C,Dumitru C D,et al.Tp12 transduces CD40 and TNF signals that activate ERK and regulates IgE induction by CD40[J].EMBO J.,2003, 22(15):3855-3864.
    [138]Eliopoulos A G,Dumitru C D,Wang C C,et al.Induction of COX-2 by LPS in macrophages is regulated by Tp12-dependent CREB activation signals[J].EMBO J.2002,21(18):4831-4840.
    [139]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000.
    [140]deSchoolmeester M L,Little M C,Rollins B J,et al.Absence of CC chemokine ligand 2 results in an altered Th1/Th2 cytokine balance and failure to expel Trichuris muris infection[J].J.Immunol.,2003,170(9): 4693-4700.
    [141]Triantaftlou M,Triantafilou K.Lipopolysaccharide recognition: CD14,TLRs and the LPS-activation cluster[J].Trends Immunol,2002,23: 301-304.
    [142]Giambartolomei G H,Dennis V A, Lasater B L et al.Induction of pro- and anti-inflammatory cytokines by Borrelia burgdorferi lipoproteins in monocytes is mediated by CD14[J].Infect.Immun.,1999,67: 140-147.
    [143]Benhnia M R,Wroblewski D,Akhtar MN,et al.Signaling through CD14 attenuates the inflammatory response to Borrelia burgdorferi,the agent of Lyme disease[J].J.Immunol.,2005,174(3): 1539-1548.
    [144]Kerkhoff C,Klempt M,Sorg C.Novel insights into structure and function of MRP8 (S100A8) and MRP 14 (S100A9)[J].Biochim.Biophys.Acta.,1998,1448(2): 200-211.
    [145]Nacken W,Roth J,Sorg C,et al.S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity[J].Microsc.Res.Tech.,2003,60(6):569-580.
    [146]Caamano J,Hunter C A.NF-kB family of transcription factors: central regulators of innate and adaptive immune functions[J].Clin.Microbiol.Rev.,2002,15:414-429.
    [147]Kang S J,Sanchez I,Jing N,et al.Dissociation between neurodegeneration and caspase-11-mediated activation of caspase-1 and caspase-3 in a mouse model of amyotrophic lateral sclerosis[J].J.Neurosci.,2003,23(13): 5455-5460.
    [148]Kang S J,Wang S,Kuida K,et al.Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response[J].Cell Death Differ.,2002, 9(10):1115-1125.
    [149]Nakagawa T,Zhu H,Morishima N,et al.Caspase-12 mediates endoplasmic reticulum-specific-apoptosis and cytotoxicity by amyloid-beta[J].Nature,2000,403(6765):98-103.
    [150]Wootz H,Hansson I,Korhonen L,et al.Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS[J].Biochem.Biophys.Res.Commun.,2004,322(1):281-286.
    [151]Friedrich M L,Wen B G,Bain G,et al.DRAK2,a lymphoid-enriched DAP kinase,regulates the TCR activation threshold during thymocyte selection[J].Int.Immunol.,2005,17(11):1379-1390.
    [152]McGargill M A,Wen B G,Walsh C M,et al.A deficiency in Drak2 results in a T cell hypersensitivity and an unexpected resistance to autoimmunity[J].Immunity.2004,21(6):781-791.
    [153]Mao J,Qiao X,Luo H,et al.Transgenic drak2 overexpression in mice leads to increased T cell apoptosis and compromised memory T cell development[J].J.Biol.Chem.,2006,281(18):12587-12595.
    [154]Li J,Lee B,Lee A S.Endoplasmic reticulum stress-induced apoptosis:multiple pathways and activation of p53-up-regulated modulator of apoptosis(PUMA) and NOXA by p53[J].J.Biol.Chem.,2006,281(11):7260-7270.
    [155]Bourdon J C,Renzing J,Robertson P L,et al.Scotin,a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane[J].J.Cell.Biol.,2002,158(2):235-246.
    [156]Chen L,Rao K V,He Y X,et al.Skin-stage schistosomula of Schistosoma mansoni produce an apoptosis-inducing factor that can cause apoptosis of T cells[J].J.Biol.Chem.,2002,277(37):34329-34335.
    [157]Chow S C,Brown A,and Pritchard D I.The human hookworm pathogen Necator americanus induces apoptosis in T lymphocytes[J].Parasite Immunol,2000,22:21-29.
    [158]李富荣,石佑恩,史大,等.多房棘球坳感染宿主CD4~+T淋巴细胞缺失机制的探讨[J].中国奇生虫学与奇生虫病杂志,2003,21(4):197-202.
    [159]李富荣,石佑恩,史大,等.泡状棘球蚴病宿主淋巴细胞的变化及意义[J].中国人兽共 患病杂志,2003,19(3):91-94.
    [160]DosReis G A,and Barcinski M A.Apoptosis and parasitism: from the parasite to the host immune response[J].Adv.Parasitol.,2001,49: 133-161.
    [161]Ockner R K.Apoptosis and liver diseases: recent concepts of mechanism and significance[J].J.Gastroenterol Hepatol.,2001,16(3): 248-260.
    [162]Turner M,Schweighoffer E,Colucci F,Di Santo JP,Tybulewicz VL.Tyrosine kinase SYK:essential functions for immunoreceptor signaling[J].Immunol Today,2000,21(3): 148-154.
    [163]Ichikawa M,Asai T,Saito T,et al.AML-1 is required for megakaryocyte maturation and lymphocytic differentiation,but not for maintenance of hematopoietic stem cells in adult hematopoiesis[J].Nat.Med.,2004,10(3): 299-304.
    [164]Sato T,Ito R,Nunomura S,et al.Requirement of transcription factor AML1 in proliferation of developing thymocytes [J].Immunol Lett,2003,89(1): 39-46.
    [165]Egawa T,Tillman R E,Naoe Y,et al.The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells[J].J.Exp.Med.,2007, 204(8):1945-1957.
    [166]Kohu K,Sato T,Ohno S,et al.Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage[J].J.Immunol.,2005,174(5): 2627-2636
    [167]Woolf E,Xiao C,Fainaru O,et al.Runx3 and Runx1 are required for CD8+ T cell development during thymopoiesis[J].Proc.Natl.Acad.Sci.,2003,100(13): 7731-7736.
    [168]Aliberti J,Schulz O,Pennington DJ,et al.Essential role for ICSBP in the in vivo development of murine CD8 alpha + dendritic cells[J].Blood,2003,101(1): 305-310.
    [169]Fallon P G,Smith P,Dunne D W.Type 1 and type 2 cytokine-producing mouse CD4+ and CD8+ T cells in acute Schistosoma mansoni infection[J].Eur.J.Immunol.,1998,28(4):1408-1416.
    [170]Estaquier J,Marguerite M,Sahuc F,et al.Interleukin-10-mediated T cell apoptosis during the T helper type 2 cytokine response in murine Schistosoma mansoni parasite infection[J].Eur Cytokine Netw.1997,8(2): 153-160.
    [171]Manfras B J,Reuter S,Wendland T,and Kern P.Increased Activation and Oligoclonality of Peripheral CD8~+ T Cells in the Chronic Human Helminth Infection Alveolar Echinococcosis[J].Infect.Immun.,2002,70(3): 1168-1174.
    [172]Shi D Z,Li FR,Bartholomot B,et al.Serum sIL-2R,TNF-alpha and IFN-gamma in alveolar echinococcosis[J].World J.Gastroenterol,2004,10(24): 3674-3676.
    [173]Bresson-Hadni S,Petitjean O,Monnot-Jacquard B,et al.Cellular localisations of interleukin-1 beta,interleukin-6 and tumor necrosis factor-alpha mRNA in a parasitic granulomatous disease of the liver,alveolar echinococcosis[J],Eur.Cytokine Netw.,1994 ,5(5): 461-468.
    [174]Amiot F, Vuong P, Defontaines M,et al.Secondary alveolar echinococcosis in lymphotoxin-alpha and tumour necrosis factor-alpha deficient mice: exacerbation of Echinococcus multilocularis larval growth is associated with cellular changes in the periparasitic granuloma[J].Parasite Immunol.,1999,21(9): 475-483.
    [175]King C L,Low C C and Nutman T B.IgE production in human helminth infection.Reciprocal interrelationship between IL-4 and IFN-gamma[J].J.Immunol.,1993, 150: 1873-1880.
    [176]King C L and Nutman T B.IgE and IgG subclass regulation by IL-4 and IFN-gamma in human helminth infections.Assessment by B cell precursor frequencies[J].J.Immunol.,1993,151:458-465.
    [177]Bauder B,Auer H,Schilcher F,et al.Experimental investigations on the B and T cell immune response in primary alveolar echinococcosis[J].Parasite Immunol.,1999,21: 409-421.
    [178]Emery I,Liance M,Deriaud E,et al.Characterization of T-cell immune responses of Echinococcus multilocularis-infected C57BL/6J mice[J].Parasite Immunol.,1996,18: 463-472.
    [179]Emery I,Leclerc C,Houin R,et al.Lack of H-2 gene influence on mouse susceptibility to secondary alveolar echinococcosis[J].Int.J.Parasitol.,1997,27: 1433-1436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700