用户名: 密码: 验证码:
冰水堆积物特性及其路用性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部高山高纬度地区广泛分布有第四纪冰水堆积地层,在冰水堆积物地区修建高速公路,工程经验较少,前期研究工作也未见相关报导。同时,西部地区地质条件复杂、地震活动频繁,在高速公路的修筑中必须考虑这些问题。因此,研究冰水堆积物这种新填料的工程特点,获取其路基工程性状具有重要的理论意义和应用价值。本文依托交通部科技示范工程—雅泸高速公路,采用现场调查、室内试验、现场试验、理论分析和数值模拟相结合的方法,对冰水堆积物粗粒土的岩土工程特性及其工程性状进行研究。主要工作及成果如下:
     1.在系统总结冰水堆积物分类及其成因、特点的基础上,基于现场调查及勘察,确定了雅泸高速公路全线冰水堆积物的主要成因;根据室内试验及现场动力触探结果,对雅泸路沿线冰水堆积物72个取样点的土体参数进行统计分析,获取了冰水堆积物基本物理力学性质及土类、天然状态、粗细料比例、颗粒大小/形状等对其影响规律。
     2.将分形理论引入冰水堆积物粗粒土级配分析中,采用随机—模糊线性回归方法确定其粒度分布分维,对其分形特征进行研究:确定了分维值范围及其与土类和埋深的关系;将冰水堆积物粗粒土分形结构分为直线型、V字型、N字型和∧字型,可据此对土样进行初步定名;得出冰水堆积物粗粒土是一种逐级套嵌的多重分形结构;结合Tailot理想压实级配曲线,提出其作为路基填料的理想分维值范围,便于指导填料的级配改良。
     3.针对冰水堆积物粗粒土的散粒体特征,应用散体力学理论对其本构关系进行研究;基于前述研究成果,使用分形理论体现其多重分形特征,引入粒状修正系数描述颗粒表面形状,基于虚功原理获取宏观应力张量与微观组构量的关系;建立了能够反映冰水堆积物粗粒土多重分形特征、颗粒特点及微观组构的三维条件下各向同性散体本构模型,并将其用于冰水堆积物粗粒土路堤沉降预测。
     4.针对所建立的散体本构模型,通过灰色关联度分析,获取了土体当量粒径、粒状修正系数、孔隙比、法向及切向接触刚度等对冰水堆积物粗粒土力学特性的影响规律;并据此分析了利用机械压实增强路基抵抗变形及破坏能力的机理。
     5.考虑含石率、含泥量、压实度、加筋层数4种因素,选用正交设计表L_9(3~4),进行了冰水堆积物粗粒土大型三轴剪切试验:
     1)基于雅泸高速全线72个冰水堆积物取样点的级配曲线,总结了9种代表性级配,确定了每种级配的最优含水量,并提出了施工中允许含水量误差控制标准;
     2)得出在试验条件下,摩尔强度包线接近直线,强度参数c值在67~102kPa范围内,应力应变曲线呈应变软化特征;
     3)获取了各因素对强度参数的影响规律,得出存在最优含泥量,使冰水堆积物粗粒土强度最高,据此提出了施工中应确保含泥量的建议。
     6.基于应力路径法及粘弹性理论,采用现场动力触探、三轴试验及散体本构关系等得到的变形参数,对冰水堆积物粗粒土路基进行沉降预测,并探讨了压实度对路堤工后沉降的影响;得到了路基沉降各组成部分大小及所占比例;提出可利用由本文散体本构模型得到的模量估算路堤自身压密沉降。
     7.采用有限差分软件FLAC~(2D)5.0分析冰水堆积物加筋陡坡路堤地震动力反应特性。讨论了网格尺寸及形状、边界设置、阻尼选择及参数确定、人工地震波合成、修正及输入等应特别注意的问题;对加筋前后路基的地震动力反应特性,包括水平位移、速度、加速度、危险区域及动剪应力分布等进行对比;获取了满足冰水堆积物加筋路基抗震要求的最优加筋间距等设计参数。
The Quaternary fluvioglacial deposited stratum is widely distributed in the high mountain and high latitude area of Western China. The project experience of building highway in fluvioglacial deposits area is deficient, and relative research about this field is not found. Meanwhile, the geological condition is complicated and the seismic activity is frequent in Western China. These questions must be considered when building highways. So, it is very important for theory and application to study project characteristics of fluvioglacial deposits - the new embankment fill material, and obtain its behavior in subgrade engineering. Relyed on the scientific and technological demonstration project of the Ministry of Transport of P.R.China - Yalu highway, through field survey, laboratory experiments, in-situ tests, theoritical analysis and numerical simulation, the characteristics of fluvioglacial deposits and its engineering behavior in highway were researched. The main contents include followings:
     1. The main causes of fluvioglacial deposits in YaLu highway were confirmed based on field survey, investigation and systemically summarizing the classification, causes and characteristics of fluvioglacial deposits. On the basis of the results of laboratory experiments and in-situ DPT, the soil parameters of 72 soil samples along the YaLu highway were statistically analyzed, and furthermore, the basic physico-mechanical properties of fluvioglacial deposits and the influence of soil type, natural state, the content of coarse (fine) grain and particle size & shape, etc. on fluvioglacial deposits was obtained.
     2. The fractal theory was introduced to analyze the grain composition of fluvioglacial deposited coarse grained soil. The fractal dimensions were obtained by the random-fuzzy linear regression method. The range of fractal dimension values and the relation between the fractal dimensions and soil types and buried depth; the fractal structure of fluvioglacial deposited coarse grained soil was classified into beeline type, V style, N style and A style, and the soil can be named tentatively by this; it was obtained that fluvioglacial deposited coarse grained soil was a kind of multi-fractal structure; based on Tailot ideal grain composition curve, the ideal fractal dimension value range of fluvioglacial deposited coarse grained soil was suggested so as to instruct the improving of fill.
     3. According to the granular characteristic of fluvioglacial deposited coarse grained soil, granular material theory was employed to study the constitutive relation of this kind of material. Fractal theory was introduced to reflect the multi-fractal characteristic of influvioglacial deposits. The shape of particle surface of fluvioglacial deposited coarse grained soil was described through the shape correction coefficient. Based on the virtual work principle, the relationship between the macroscopic stress tensor and microscopic fabric was obtained. Finally, a three-dimensional isotropy granular constitutive model was proposed, which could reflect the multi-fractal characteristic, particle characteristic and microscopic fabric and of fluvioglacial deposited coarse grained soil. This model was used to predict the settlement of fluvioglacial deposited coarse grained soil embankment.
     4. According to the granular material constitutive model established above, through grey relational grade analysis, the influencing rules of some parameters (including the equivalent particle size, coefficient of graininess revising, void ratio, normal contact stiffness and tangential contact stiffness) on the mechanic characteristic of fluvioglacial deposited coarse grained soil were obtained. And then, the mechanism of enhancing embankment's ability in resisting against deformation and failure by mechanical compaction was analyzed.
     5. Large-scale triaxial sheer tests of fluvioglacial deposited coarse grained soil were conducted based on the orthogonal design table L_9(3~4) considering 4 factors, including content ratio of rock, content ratio of mud, compactness and reinforced layers.
     1) 9 kinds of representative grading curves were summed up from the grain composition curves of 72 soil samples of fluvioglacial deposits along the Yalu highway, the optimum water content were determined and the control standard on the permissible error of water content in construction being proposed.
     2) Under this experiment condition, the Mohr strength envelope of fluvioglacial deposited coarse grained soil was close to a straight line, the value of c in sheer strength would be in the range of 67-102kPa, and the stress-strain carve showed the characteristic of strain softening.
     3) The influencing rules of 4 factors on strength parameters were obtained and it was found out that there was a optimal mud content, which could make the strength of fluvioglacial deposited coarse grained soil reach the peak. So it was proposed that the mud content should be ensured during the construction.
     6. Based on stress path method and viscoelasticity theory, adopting the deformation parameters obtained by DPT, triaxial shear test and granular material constitutive model, the settlement of fluvioglacial deposited coarse grained soil embankment was predicted and the influence of compact degree on post-construction settlement was discussed. The amount and ratio of each portion of settlement were obtained. And it was suggested the modulus of granular constitute model of fluvioglacial deposited coarse grained soil be used to evaluate the self-compact settlement of embankment.
     7. Finite difference software FLAC~(2D) 5.0 was adopt to analyze the seismic dynamic response on reinforced fluvioglacial deposited coarse grained soil embankment on steep slope. Some key points about the option of numerical analysis were discussed, such as the size and shape of difference mesh, the setting of boundary, the determining of damp, and the producing, rectifying and input of manual shaking wave. Comparison analyses were conducted to discuss the characteristics of seismic dynamic response in embankment pre-and-post reinforcing, including horizontal displacement, velocity, accelerate, risk area and distribution of dynamic sheer stress. Finally, the design parameters such as the optimal distance between reinforced layers were obtained.
引文
[1]曹伯勋.地貌学及第四纪地质学[M].北京:中国地质大学出版社,1995.
    [2]吴中海,赵希涛,江万,吴珍汉,朱大岗.念青唐古拉山东南麓更新世冰川沉积物年龄测定.冰川冻土,2003,25(3):272-274
    [3]何毓蓉,张保华,黄成敏,周红艺,程根伟.贡嘎山东坡林地土壤的诊断特性与系统分类.冰川冻土,2004,26(1):27-32
    [4]Kipp,K.L.,Jr.;Stollenwerk,K.G.;Grove,D.B.Groundwater transport of strontium 90 in a glacial outwash environment.Water Resources Research,v 22,n 4,April 1986,p 519-30.
    [5]Fetter,C.W.Jr.Atteruation of waste water elutriated through glacial outwash.Ground Water,v 15,n 5,Sep-Oct,1977,p 365-371.
    [6]Salem,Hilmi S.Application of the Kozeny-Carman equation to permeability determination for a glacial outwash aquifer,using grain-size analysis.Energy Sources,v 23,n 5,June,2001,p 461-473.
    [7]Kipp,K.L.,Jr.;Stollenwerk,K.G.;Grove,D.B.Groundwater transport of strontium 90 in a glacial outwash environment.Water Resources Research,v 22,n 4,April 1986,p 519-30.
    [8]Puckett,Larry J.;Cowdery,Timothy K.;McMahon,Peter B.;Tornes,Lan H.;Stoner,Jeffrey D.Using chemical,hydrologic,and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system.Water Resources Research,v 38,n 8,Aug 1,2002,p 91-920.
    [9]Fetter,C.W.Jr.Atteruation of waste water elutriated through glacial outwash.Ground Water,v 15,n 5,Sep-Oct,1977,p 365-371.
    [10]Puckett,Larry J.;Cowdery,Timothy K.Transport and fate of nitrate in a glacial outwash aquifer in relation to ground water age,land use practices,and redox processes.Journal of Environmental Quality,v 31,n 3,May/June,2002,p 782-796.
    [11]Lee,Roger W.;Bennett,Phillip C.Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer.Ground Water,v 36,n 4,Jul-Aug,1998,p 583-595.
    [12]宋国荣.溪洛渡水电站对外交通公路岸坡稳定分析.路基工程,2005,(1):39-41.
    [13]McKeown,J.D.;Matheson,D.S.Use of glacial till and outwash silty sand as construction material for dam cores at long spruce generating station.Canadian Geotechnical Journal,v 16,n 2,May,1979,p 363-390.
    [14]土工试验规程,SD-128-84.
    [1 5]公路土工试验规程,JTG E40-2007.
    [16]L·福斯布拉德.土石填方的振动压实[M].甘杰贤等译,北京:人民交通出版社,1986.
    [17]砾质土的试验研究[R].昆明:水电部昆明勘测设计院科研所,1971.
    [18]郭庆国.关于粗粒土工程特性及分类的探讨[J].水利水电技术,1979,(6).
    [19]司洪洋.粗颗粒土石料的命名和粗度系数[J].水利水运科学研究,1981,(1):21-25.
    [20]武明.混合土以压实特性为标准的分类方法[J].云南公路科技,1996,(2):36-39.
    [21]王龙,马松林,徐德兴,等.土石混合料的结构分类[J].哈尔滨建筑大学学报,2000,33(6):129-132.
    [22]油新华.土石混合体的随机结构模型及其应用研究[D].北方交通大学博士学位论文,2001.
    [23]董云,柴贺军.土石混合料的工程综合分类法研究[J].岩土力学,2007,28(1):179-184.
    [24]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [25]郭庆国.粗粒土抗剪强度特性及非线型参数试验研究[C].第六届士力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1991.
    [26]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报,1987,(5):59-66.
    [27]郭庆国.关于粗粒土应力应变特性及非线型参数试验研究[J].水利学报,1983,(11):44-49.
    [28]陈希哲.粗粒土的强度与咬合力的试验研究[J].工程力学,1994,11(4):56-63.
    [29]刘开明,屈智炯,肖晓军.粗粒土的工程特性及本构模型研究[J].成都科技大学学报,1993,73(6):93-102.
    [30]甘霖,袁光国.粗粒土的三轴测试及其强度特性[J].水电工程研究,1996,(1):29-35.
    [31]刘祖典,屈智炯.关于粗粒土料非线性模型计算参数和应用的探讨[J].水工设计,1992,4(2):15-19.
    [32]司洪洋.论无粘性砂卵石与堆石力学性质[J].岩土工程学报,1990,12(6):30-41
    [33]屈智炯,刘丌明,肖晓军.粗粒土卸载-再加载变形特性的研究[J].水电站设计,1994,10(3):24-31.
    [34]肖晓军.不同应力路径下粗粒土的应力-应变强度特性[J].成都科技大学学报,1992,65(5):37-42,58.
    [35]保华富,屈智炯.粗粒料的湿化特征研究[J].成都科技大学学报,1989,(1):23-30.
    [36]朱俊高,卢廷浩,邵松桂等.粗粒料“空间准滑面”模型及其在高面板坝三维分析中的应用[J].河海大学学报,1991,19(6):87-96.
    [37]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(2):196-199.
    [38]王昆耀,常亚屏,陈宁.往返荷载下粗粒土的残余变形特性[J].土木工程学报,2000,33(3):48-53.
    [39]张苏民.粗粒土的工程性质及地基评价.勘察科学技术,1991,(1):1-5.
    [40]李远贤,梁军.堆石粗粒土多级加荷三轴试验分析[J].大坝观测与土工测试,2001,25(1):40-42.
    [41]郭熙灵,胡辉,包承纲.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,1997,19(3):83-88.
    [42]田树玉.粗粒土抗剪强度特性的研究[J].大坝观测与土工测试,1997,21(2):35-38.
    [43]武明.土石混合料非均质填料力学特性试验研究[J].公路,1997,(1):40-42.
    [44]李振,李鹏.粗粒土直接剪切试验抗剪强度指标变化规律[J].防渗技术,2002,(1):11-14,18.
    [45]李振,邢义川.干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J].岩土力学,2006,27(12):2255-2260.
    [46]张嘎,张建民.粗颗粒土的应力应变特性及其数学描述研究[J].岩土力学,2004,25(10):1587-1591.
    [47]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力应变关系的影响[J].岩土工程学报,1987,9(6):79-87.
    [48]Jaroslav Feda.Notes on the effect of grain crushing on the granular soil behaviour[J].Engineering geology,2002,(63):93-98.
    [49]Jaroslav Feda.Mechanics of particulate materials-the principle,development in engineering[M].Amsterdam:Elsevier Scientific publishing company,1982.
    [50]王保田,金湘娟,刘汉龙.面板堆石坝坝料力学性质试验研究[J].岩石力学与工程学报,2003,22(2):332-336.
    [51]武明.安楚试验路土石混合非均质填料的力学特性试验研究[J].云南公路科技,1995,1(2):25-33.
    [52]Rowe P W.The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact[J].1962,Proc.Royal.Soc.A.,Vol.296:500-527.
    [53]Tatsuoka F,Sakamoto M,et al.Strength and Deformation Characterstics of Sand in Plane Strain Compression at Extremely Low[J].1986,Soil and Foundations,Vo 1.26,No.1:65-84.
    [54]Park.C-S.Deformation and Strengh Characteristics of a Variety of Sand by Plane Strain Compression Test[D].日本东京大学博士学位论文,1993.
    [55]F Tatsuolca,S Shibuya,X J Kong.Discussion on "the use of hall effect semiconductors on geotechnical instruementation' by C R I Clayten,et al[J].Geotechnical Testing Joumal,ASTM.,1990,13(1):63-67.
    [56]S Shibuya,F Tatsuoka,X J Kong.Elastic Deformation Properties of Geomaterials[J].Soils and Foundations,1992,32(3).
    [57]#12
    [58]王朝东,潘轺湘,喻小生.在普通土大三轴仪上进行土的应力路径试验的探讨[J].岩土力学,1991,12(1):57-63.
    [59]高莲上,赵红庆,张丙印.堆石料复杂应力路径试验及非线性K-G模型研究[A].中国水利学会编.国际高土石坝一混凝土面板堆石坝学术会议论文集.北京:1993,110-117.
    [60]周晓光.堆石在高应力及实际应力路径条件下的强度与变形特性研究[R].中国水利科学研究院岩土所项目报告,1998.
    [61]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力应变关系的影响[J].岩土工程学报,1987,9(6):79-87.
    [62]刘祖德,陆士强,杨天林等.应力路径对填土应力应变关系的影响及应用[J].岩土工程学报,1982,4(4):45-54.
    [63]邱金营.应力路径对砂土应力应变关系的影响[J].岩土工程学报,1995,17(2):75-82.
    [64]徐同庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报,1995,17(4):56-60.
    [65]恩戈科.堆石坝材料的灵敏度分析[J].河海大学学报,1999,27(5):94-99.
    [66]Corotris R B,Farzin M H,Krizek R J.Nonlinear stress-strain formulation for soils[J].ASCE,JGED,1974,100(9):994-1008.
    [67]郭庆国.关于粗粒土应力应变特性及非线性参数的试验研究[J].水利学报,1983,(11):44-49.
    [68]张启岳,司洪洋.粗颗粒土大型三轴试验应力应变特性[J].水利学报,1982,(9):23-30.
    [69]张斌,屈智炯.考虑剪胀和软化特性的粗粒土应力应变模型[J].岩土工程学报,1991,13(6):64-69.
    [70]程展林,丁红顺,吴良平.粗粒土试验研究[J].岩土力学,2007,29(8):1151-1158.
    [71]郑颖人.岩土塑性力学的新进展-广义塑性力学[J].岩土工程学报,2003,25(1):1-10.
    [72]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [73]Christoffersen J etc.A Micromechanical Description of Granular Material Behaviour.J Applied Mech,ASME,1981,48(2):339-344.
    [74]Bathurst R.J.,Rothenburb L..Micromechanical aspects of isotropic granular assemblies with linear contact interaction[J].J.Appl.Mech.1988,55(1):17-23.
    [75]Walton K.The Effective Elastic Moduli of Random Packing of Sphere.J Mech Phys Solids,1987,35(2):213-226.
    [76]Rothenburb L.,Bathurst R.J..Analytical study of induced anisotropy in idealized granular materials[J].Geotechnique,1988,39(4):601-614.
    [77]Chang C S.Packing Structure and Mechanical Properties of Granulates.J Engineering Mech,1990,116(5):1077-1093.
    [78]钟晓雄,袁建新.散粒体的微观组构与本构关系[J].岩土工程学报,1992,(14):39-48.
    [79]陆永青,计三有,戴诗亮,沈成武.散体材料弹性参数的估计[J].武汉交通科技大学学报,1997,21(2):178-185.
    [80]王平,万复光.铁路碎石道床弹性特性研究初探[J].铁道学报,1997,19(4):108-114.
    [81]王平,万复光.碎石道床的组构描述[J].西安交通大学学报,1997,32(2):165-169.
    [82]阎宗岭,龚红兵,董云.土石混填路基填料散体本构关系研究[J].公路交通技术,2004,(6):10-12.
    [83]Mandelbrot B B.Fractal:Form,Chance and Dimension[M].San Francisco:Freeman,1977.15-23.
    [84]Mandelbrot B B.The Fractal Geometry of Nature[M].San Francisco:Freeman,1982.9-17.
    [85]刘秉正,彭建华.非线性动力学与混沌基础[M].长春:东北师范大学出版社,2004.
    [86]卢方元.分形理论及其在经济管理中的应用[J].河南金融管理干部学院学报,2004(3):66.
    [87]张建树.分形理论对科学思维的影响[J].西北大学学报(哲学社会科学版),1997,3(87):87-92.
    [88]张国祺,李后强.分形理论对世界认识的意义[J].大自然探索,1994,13(1):11-16.
    [89]张济忠.分形[M].北京:清华大学出版社,2004.
    [90]谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-23
    [91]Scott W T,Stephen W.Fractal scaling of soil particle size distributions.Soil Sci Soc Am J,1992,56:362-369.
    [92]Young I M,Craw ford J W.The fractal structure of soil aggregates.J Soil Sci,1991,41:87-192.
    [93]O ch iaiM,O zao R,Yamazak i Y.Self-similarity law of particle size distribution and energy law in size reduction of solids.Physica A,1992,191:295-300.
    [94]田堪良,张慧莉,张伯平,扈胜霞.天然沉积砂卵石粒度分布的分形结构研究[J].西北农林科技大学学报(自然科学版),2002,30(5):85-89.
    [95]李哲,王芝银,谢永利.粗粒土类别的分形图解[J].长安大学学报(自然科学版),2004,24(6):15-19.
    [96]王瑞甫.高填方路基沉降计算及预测方法研究[D].湖南大学硕士学位论文,2003.
    [97]曾国熙.地基处理手册[M].北京:中国建筑工业出版社,1998.
    [98]Al-Shamrani,Mosleh A.Applicability of the rectangular hyperbolic method to settlement predictions of sabkha soils[J].Geotechnical and Geological Engineering,2004,22(4):563-587.
    [99]Asaoka A.Observational procedure of settlement of predication[J].Soils and Foundations,1978,18(4):87-101.
    [100]邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1988:343-347.
    [101]赵明华,刘煜,曹文贵.软土路基沉降发展规律及其预测[J].中南大学学报(自然科学版),2004,35(1):157-161.
    [102]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996:150-235.
    [103]曹新文,蔡英,苏谦.高速铁路路基变形控制值的研究[J].路基工程,1998,(2):38-71.
    [104]刘宏,李攀峰,张倬元.用压缩蠕变试验研究高填方体沉降变形[J].西南交通大学学报,2004,39(6):749-753.
    [105]段祝庚,陈晓斌.土石混填路堤长期沉降测试与计算分析[J].铁道科学与工程学报,2007,4(5):57-62.
    [106]时振梁,王健,张晓东.中国地震活动性分区特征.地震学报,1995,17(1):20-24.
    [107]苏超,李俊宏,任青文.有限单元法在高拱坝坝肩动力稳定分析中的应用.河海大学学报(自然科学版),2003,31(2):144-147.
    [108]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析.岩石力学与工程学报,2004,23(8):1318-1324.
    [109]张伯艳,陈厚群,杜修力,等.拱坝坝肩抗震稳定分析.水利学报,2000,(11):55-59.
    [110]薄景山.三峡重庆库区区域滑坡灾害的综合研究报告.哈尔滨:中国地震局工程力学研究所,2003.
    [111]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [112]翟长海.最不利设计地震动的研究[].哈尔滨:中国地震局工程力学研究所,2002.
    [113]Scott A Ashford,Nicholas Sitar.Analysis of topographic amplification of inclined shear waves in a steep coastal bluff.Bulletin of the Seismological Society of America,1997,87(3):692-700.
    [114]Terzaghi K.Mechanisms of landslides,Engineering Geology(Berdey) Volume [M].Geological Society of America,1950.
    [115]AUSILIO E,CONTE E,DENTE G.Seismic Stability Analysis of Reinforced Slopes,Soil Dynamics and Earthquake Engineering,Elsevier Science Ltd,2000,19(3):159-172,0267-7261.
    [116]SIYAHI,BILGE GOKMIRZA.Pseudo-static Stability Analysis in Normally Consolidated Soil Slopes Subjected to Earthquakes.Teknik Dergi / Technical Journal of Turkish Chamber of Civil Engineers Turkish Chamber of CivilEngineers 1998,9(DEC):457-461,0300-2721.
    [117]沈珠江,陆培炎.评当前岩土工程实践中的保守倾向[J].岩土工程学报, 1997,19(4):115-118.
    [118]WU X Y,LAW K T,SELVADURAI,A P S.Examination of the Pseudostatic Limit Equilibrium Method for Dynamic Stability Analysis of Slopes[M].Canadian Geotechnical Conference pt 1 Sep 29-0ct 2 1991.
    [119]LING HOE I,LESHCHINSKY DOV,MOHRI YOSHIYUKI.Soil Slopes under Combined Horizontal and Vertical Seismic Accelerations Earthquake Engineering.Structural Dynamics,1997,26(12):1231-1241,0098-8847.
    [120]NEWMARK N.Effects of Earthquakes on Dams and Embankment.Geotechnique,1965,15(2):139-160.
    [121]TAYLOR LARRY R,PAN T MAX,DELLINGER A S,et al.Seismic Stability Analysis for Geosynthetic Clay Liner Landfill Cover Placement on Steep Slopes[M].Geotechnical Special Publication,1995:196-211.
    [122]KANTHASAMY K M,KANDIAH A.,JONHN E F,et al.Seismic design of port of LOS ANGELES PIER 400:a Geotechnical Engineering Perspective[M].12WCEE,2000.
    [123]Makdisis F I,Seed H B.Simplified procedure for estimating dam and embankments earth-quake induced deformation.Proc.ASCE,JGED,1978,104(GTT):849-867.
    [124]#12
    [125]William,Y,et al.Permanent deformation of earth dam due to earthquake.In:Proc.Int.Conf.on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.St.Louis,1991.
    [126]HISAKAZU SAKAI,SUMIO SAWADA and KENZOTOKI.Structure Considering Tensile Failure[M].12WCEE,2000.
    [127]HALATCHEV ROSSEN A.Probabilistic Stability Analysis of Embankments and Slopes[M].Proceedings of the 11~(th) Internbational Conference on Ground Control in Mining,Jul7-10 1992:432-437.
    [128]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析.地震工程与工程振动,2001,21(2):116-120.
    [129]陈玲玲,陈敏中,钱胜国.岩质陡高边坡地震动力稳定分析.长江科学院院报,2004,21(1):35-35.
    [130]Clough R W,Chopra A K.Earthquake stress analysis in earth dams.J.Engrg.Mech.,ASCE 1966,92.EM2:197-211.
    [131]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2000.
    [132]王思敬.岩石边坡动态稳定性的初步探讨.地质科学,1977,(4):372-376.
    [133]何蕴龙,陆述远.岩石边坡地震作用近似计算方法.岩土工程学报,1998,20(2):66-68.
    [134]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究.烟台大学学报(自然科学与工程技术版),1996(4):67-71.
    [135]张平,吴德伦.动荷载下边坡滑动的试验研究.重庆建筑大学学报.1997,19(2):80-86.
    [136]Wartman J,Rjemer M F,Bray J D,et al.Newmark analyses of a shaking table slope stability experiment.Proc.,Geotechnical Earthquake Engineering and Soil Dynamics Ⅲ,ASCE,Geotechnical Special Publication No.75.Seattle,1998:778-789.
    [137]苏超,李俊宏,任青文.有限单元法在高拱坝坝肩动力稳定分析中的应用.河海大学学报(自然科学版),2003,31(2):144-147.
    [138]赵剑明,陈宁,常亚屏.地震作用下土石坝边坡抗滑稳定性分析.李永盛,高广运主编.环境岩土工程理论与实践.上海:同济大学出版社,2002:239-243.
    [139]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法.岩土力学,2003,24(4):553-556.
    [140]Seed H B,Lee K L,Idriss I M,et al.Analysis of the slides in the San Fernando dams during the earthquake of Feb.9,1971[R].Berkeley:EERC,University of California,1973.
    [141]Lee K L.Seismic permanent deformations in earth dams[R].Los Angeles:School of Engineering and Applied Science,University of California,1974
    [142]Serf F N,Seed H B,Makdisi F I,et al.Earthquake-induced deformations of earth dams[R].Berkeley:EERC,University of California,1976.
    [143]Finn W D L,Yogendrakumar M,Yoshida M,et al.Tara-3:A programme to compute the response of 2-D Embankments and soil-structure interaction systems to seismic loadings[R].Vancouver:Department of civil engineering,University of British Columbia,1986.
    [144]Zhang Chunhan,Pekau O A,Jin Feng,et al.Application of distinct element method in dynamic analysis of high rock slopes and blocky structures[J].Soil dynamics and earthquake engineering,1997,16:385-394.
    [145]陶连金,苏生瑞,张倬元.节理岩体边坡的动力稳定性分析[J].工程地质学报,2001,(1):32-38.
    [146]陈云敏,柯瀚,凌道盛.城市垃圾填埋体的动力特性及地震响应[J].上小工程学报,2002,35(3):66-72
    [147]刘君,孔宪京.卫生填埋场复合边坡地震稳定性和永久变形分析[J].岩土力学,2004,25(5):778-782
    [148]刘春玲,祁生文,章立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733
    [149]公路工程抗震设计规范,JTJ044-89.
    [150]Sandri,D.A performance summary of reinforced soil structures in the greater Los Angeles area after the Northridge earthquake.Geotextiles and Geomembranes,1997,15(4-6):235-253.
    [151]Tatsuoka,F.,Tateyama,M.,Koseki,J.,Uchimura,T..Geotextile reinforced soil retaining wall and their seismic behavior.In:Special Lecture,Proceeding of the 10th Asian Regional Conference on S.M.F.E.,Beijing,1995,vol.2,pp.26-49.
    [152]韩国城,孔宪京,等.面板堆石坝动力破坏性态及抗震措施试验研究[J].水利学报,1990,(5):61-67.
    [153]甘亚南,李庆华,王冬梅.双面加筋挡土墙结构在高烈度地震区应用的研究[J].焦作工学院学报(自然科学版),2004,23(4):310-314.
    [154]孔宪京,邹德高,邓学晶,刘莹光.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1489-1495.
    [155]Analysis of a highway embankment failure associated with the 1999 D(u|¨)zce,Turkey earthquake[J].Soil Dynamics and Earthquake Engineering,2005,25:251-260.
    [156]E.Ausilio,E.Conte,G.Dente.Seismic stability analysis of reinforced slopes[J].Soil Dynamics and Earthquake Engineering,2000,19:159-172.
    [157]Radoslaw L.Michalowski.Soil reinforcement for seismic design of geotechnical structures[J].Computers and Geotechnics,1998,23:1-17.
    [158]M.Jahanandish,A.Keshavarz.Seismic bearing capacity of foundations on reinforced soil slopes[J].Geotextiles and Geomembranes,2005,23:1-25.
    [159]H.Nouri,A.Fakher,C.J.F.P.Jones.Development of Horizontal Slice Method for seismic stability analysis of reinforced slopes and walls[J].Geotextiles and Geomembranes,2006,24:175-187.
    [160]Zhenqi CAI,Richard J.BATHURST.Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method.Computers and Geotechnics,1995,(17):523-546.
    [161]杨明.加筋上挡墙抗震分析中的屈服加速度.岩石力学与工程学报,2002,21(5):728-731.
    [162]王伟健.加劲挡土墙耐震分析[M].台湾:国立成功大学,2004.
    [163]陈建吾.加劲挡土墙动态行为之模拟[M].台湾:国立成功大学,2004.
    [164]Ling H I.Seismic design and performance of geosynthetic-reinforced soil structures.Geotechnique,1997,47(5):933-952.
    [165]Radoslaw L M.Soil reinforcement for seismic design of geotechnical structures.Computers and Geotechnices,1998,23(1):1-17.
    [166]Radoslaw L M,Liangzhi You.Displacements of Reinforced Slopes Subjected to Seismic Loads.Journal of Geotechnical and Geoenvironmental Engineering,2000,126(8):685-694.
    [167]周亦唐,钟国强,俞进,赵惠敏,葛晓旭.塑料土工格栅加筋土结构的振动台试验研究.四川建筑科学研究,2004,30(2):45-47.
    [168]钟国强.塑料土工格栅加筋土动力特性的试验研究及其动力有限元分析[M].昆明:昆明理工大学,2002.
    [169]曹伯勋.地貌学及第四纪地质学[M].北京:中国地质大学出版社,1995.
    [170]孔宪立.工程地质学[M].北京:中国建筑工业出版社,2001.
    [171]严钦尚.地貌学[M].北京:高等教育出版社,2003.
    [172]四川省公路勘察设计研究院.雅安-泸沽高速公路工程地质详勘报告[R].2007.
    [173]工程地质手册编委会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2001.
    [174]郭庆国.粗粒土的分类[J].水利水电技术,1979(6).
    [175]郭庆国.略论粗粒土三轴剪切试验类型与应用[J].大坝观测与土工测试,1981(2).
    [176]陆同兴.非线性物理概论[M].合肥:中国科技大学出版社,2002.
    [177]Brady R M,Ball R C.Fractal Growth of Copper Elec-trodeposits[J].Nature,1984,309(05):225-229.
    [178]Matejka I,Plestil J,Dusek K.Structure Evolution in Epoxy-Silica Hybrids:Sol-Gel Process[J].Journal ofNon-Crystalline Solids,1998,226(122):114-121.
    [179]Mathot Vincent B F,Scherrenberg Rolf L,Pijpers Thijs F J.Metastability and Order in Linear,Branched and Copolymerized Polyethylenes[J].Polymer,1998,39(19):4 545-4 559.
    [180]Pfeifer P,Avnir D.Chemistry in Noninteger Dimensions between Two and Three.I.Fractal Theory of Heteroge-neous Surfaces[J].J.Chem.Phys.,1983,79(7):3558-3 665.
    [181]Schaefer D W,Martin J E,Wiltzius R et al.Fractal Geometry of Colloidal Aggregates[J].Phys.Rev.Lett.,1984,52(26):2 371-2 374.
    [182]Muthukumar M.Dynamics of polymeric fractals[J].J.Chem.Phys.,1985,83(6):3 161-3 168.
    [183]Termonia Y,Meakin P.Formation of fractal cracks in a kinetic fracture model [J].Phys.Rev.Lett.,1985,54(10):1 083-1 086.
    [184]Coppens M O,Froment G F.Diffusion and Reaction in a Fractal Catalyst Pore-I.Geometrical Aspects[J].Chem.Eng.Sci.,1995,50(6):1 013-1 026.
    [185]Giona M.First-Order-Reaction-Diffusion Kinetics in Complex Fractal Media [J].Chem.Eng.Sci.,1992,47(6):1 503-1 515.
    [186]屈朝霞,张汉谦.材料科学中的分形理论应用进展[J].宇航材料工艺,1999,32(5):5-9.
    [187]刘妙龙,黄蓓佩.上海大都市交通网络分形的时空特征演变研究[J].地理科,2004,24(2):144.
    [188]王安良,杨春信.评价吸奇怪引子分形特征的Grass-berger-Procaccia算法.物理学报[J].2002,51(12):2719.
    [189]刘延柱,陈立群.非线性动力学[M].上海:上海交通大学出版社,2000.
    [190]谢和平,陈至达.分形几何与岩石断裂[J].力学学报,1998,20(3):264-275·
    [191]徐永福,史春乐.用土的分形结构确定土的水分特征曲线[J].岩土力学,1997,(6):40-43.
    [192]张子新,孙均.分形块体理论及其在三峡高边坡工程中的应用[J].同济大学学报,1996,24(5):552-557.
    [193]刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(1):23-29
    [194]刘松玉,方磊,陈浩东,等.论我国特殊土的粒度分布的分形结构[J].岩土工程学报,1993,15(1):23-30.
    [195]徐永福,孙婉莹,吴正根.我国膨胀土的分形结构的研究[J].河海大学学报,1997,25(1):18-23.
    [196]张国祥,刘宝琛,傅鹤林.分形理论及其在膨胀土结构研究中的应用[J].铁道学报,2000,22(5):72-75.
    [197]李后强,程光铖.分形与分维[M].成都:四川教育出版社,1990.
    [198]刘式达,刘式适.分形与分维引论[M].北京:气象出版社,1993.
    [199]李胡生.边坡工程稳定性分析中的随机-模糊可靠理论[D].武汉:武汉水利水电学院,1991.
    [200]赵峥嵘.公路山体抗剪强度的随机-模糊分析法及加固技术探讨[J].土工基础,2004,12(1):1-4.
    [201]栾茂田,鹈飼惠三.关于岩土工程中若干基本力学问题的思考[J].大连理工大学学报,1999,39(2):309-317.
    [202]周志军.土石混填路基压实质量控制方法研究[D].长安大学博士论文,2006.
    [203]王明洋,钱七虎.颗粒介质的弹塑性动态本构关系研究[J].固体力学学报,1999,16(2):85-91.
    [204]Mindlin,R.D.,et al.Elastic sphere in contact under varying oblique forces[J].J.Appl.Mech.Engns,1953,20(3):327-344.
    [205]G.M.L.Gladwell.经典弹性理论中的接触问题[M].北京:北京大学出版社,1991.
    [206]Chang C S,Chao S J,Chang Y.Estimates of elastic moduli for granular material with anisotropic radom packing structure[J].Int J Solids structures,1995,32:1989-2008.
    [207]Chang C S.Modeling of discrete granulates as micropolar continum[J].J Engrg Mech ASCE 1990,116(12):2703-2721.
    [208]Ching S.Chang.Strain tensor and deformation for granular material[J].Journal of Engineering Mechanics,1988,116(4):790-804.
    [209]Chang C S,Ma L.A micromechanical-base micro-polar theory for deformation of granular solids.Int J Solids structures,1991,28:67-86.
    [210]Sadasivan S K,Raju V S.Theory for shear strength of granular materils.Journal of the geotechnical engineering division.1977,(103):851-861.
    [211]Rothenburg L,Bathurst R J.Influence of particle eccentricity on micromechanical behavior of granular materials[J].Mechanics of Materials,1993,(16):141-152.
    [212]柯朗,希尔伯特著.钱敏,郭敦仁译.数学物理方法:卷Ⅰ.北京:科学出版社,1981:64-68.
    [213]王社.影响路面基层强度因素的灰关联度分析[J].华东公路,1996,(1):28-30.
    [214]邓聚尤.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [215]吕大伟.高速铁路砂桩地基测试及沉降计算方法研究[D].中南大学硕士 论文,2005.
    [216]刘萌成,高玉峰,刘汉龙,费康.粗粒料大三轴试验研究进展[J].岩土力学,2002,23(2):217-221.
    [217]王继庄.粗粒料的变形特性和缩尺效应[J].岩土工程学报,1994,16(4):90-95.
    [218]O.Pallara,F.Froio,A.Rinolfi and D.Lo Presti.Assessment of strength and deformation of coarse grained soils by means of penetration tests and laboratory tests on undisturbed samples.Soil Stress-Strain Behavior:Measurement,Modeling and Analysis,2006:201-213.
    [219]S.J.Watson,D.A.Barry,R.J.Schotting,et al.Validation of classical density-dependent solute transport theory for stable,high-concentration-gradient brine displacements in coarse and medium sands.Advances in Water Resources,2002,25:611-635.
    [220]Miura S,Kawamura S.A procedure minimizing membrane penetration effects in undrained triaxial test[J].Soils and Foundations,1996,36(4):119-126.
    [221]Fukushima s,and Tatsuoka F.Strength and deformation characteristics of saturated sand at extremely low pressures[J].Soils and Foundations,1984,24(4):30-48.
    [222]Flora A,Modoni G.Upgrading equipment and procedures for stress path triaxial testing of coarse-grained materials[J].Geotechnical Testing Journal,1997,20(4):459-469.
    [223]程展林,余建平,丁红顺.水布垭面板堆石坝填料应力应变关系试验研究[J].长江科学院院报,1999,16(1):29-32.
    [224]柏树田,崔亦吴.堆石的力学性质[J].水力发电学报,1997,(3):21-30.
    [225]C.J.Loupasakis,B.G.Christaras,G.Ch.Dimopoulos,et al.Evaluation of Plasticity Models' Ability to Analyze Typical Earth Dams' Soil Materials.Geotech Geol Eng.,2008.DOI 10.1007/s10706-008-9212-5.
    [226]H.Rahardjo,I.G.B.Indrawan,E.C.Leong,et al.Effects of coarse-grained material on hydraulic properties and shear strength of top soil.Engineering Geology,2008.ENGEO-02811.
    [227]I.G.B.Indrawan,H.Rahardjo,E.C.Leong.Effects of coarse-grained materials on properties of residual soil.Engineering Geology,2006,82:154-164.
    [228]陈晓斌.高速公路粗颗粒土路堤填料流变性质研究[D].中南大学博士论文,2007.
    [229]De Mello,V F B.Reflection on Design of Practi-cal Significance to Embankment Dam Construction,17th Rankine Lecture,Geotechnique,1977,27(3),281-345.
    [230]Duncan J Met al.Strength,Stress-Strain and Bulk Modulus Parameter for Finite Element Analyses of Stress and Movements in Soil Masses.Report No.UCB/GT/80-01,1980.
    [231]张启岳,司洪洋.粗颗粒土大型三轴压缩试验与应力应变特性[J].水利学报,1982,(9):22-31.
    [232]郭庆国.粗粒土的抗剪强度特性及其参数[J].中国土木工程学会第六届土力学及基础工程学术会议论文集,同济大学出版社/中国建筑工业出版社,1991.
    [233]赵川,石晋旭,唐红梅.三峡库区土石比对土体强度参数影响规律的试验研究[J].公路,2006,(11):32-35.
    [234]阎宗岭.土石混合料大型三轴剪切试验研究[A].2004年道路工程学术交流会论文集,108-113.
    [235]阎宗岭.堆石体物理力学特性及其工程应用研究[D].重庆大学博士论文,2003.
    [236]甘霖,袁光国.大型高压三轴试验测试及粗粒土的强度特性[J].大坝观测与土工测试,1997,21(3):9-12.
    [237]陈津民.三轴试验研究(2)[J].岩土工程界,2007,11(6):21-23.
    [238]时卫民,郑宏录,刘文平,郑颖人.三峡库区碎石土抗剪强度指标的试验研究fJ].重庆建筑,2005,(2):30-35.
    [239]董云,柴贺军.土石混合料室内大型直剪试验的改进研究[J].岩土工程学报,2005,27(11):1329-1333.
    [240]公路软土地基路堤设计与施工技术规范,IJTJ 017-96..
    [241]华南理工大学等,地基及基础(第三版)[M].北京:中国建筑工业出版社,1998:105.
    [242]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [243]蔡峨.粘弹性力学基础[M].北京:航空航天大学出版社,1989.
    [244]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [245]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(2):196-199.
    [246]杨晓丰,兰大伟.高填方路基自身沉降理论分析[J].黑龙江交通科技,2007,(7):52-53.
    [247]沈珠江.土石料的流变模型及其应用[J].水利水运科学研究,1994,(4): 335-342.
    [248]沈珠江,赵魁芝.堆石坝流变变形的反馈分析[J].水利学报,1998,(6):1-6.
    [249]曹喜仁.高填石路堤工期沉降与工后沉降实用计算方法研究[J].湖南大学学报(自然科学版),2005,32(2):54-58.
    [250]曹喜仁,钟守滨,淤永和,黎莉.高填石路堤工后沉降分析及工程算法探讨[J].湖南大学学报(自然科学版),2002,29(6):112-117.
    [251]J.M.Duncan and C.Y.Chang.Nonlinear analysis of stress and strain in soil.J.S.M.F.D,ASCE,Vol.96,No.SMS,1970.
    [252]徐林荣,吕大伟等.冰水堆积物地区高速公路路基修筑技术研究报告[R].长沙:中南大学,2009.
    [253]刘红帅,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展[J].防灾科技学院学报,2007,9(3):1-8.
    [254]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83-87.
    [255]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171.
    [256]孙吉勇.复合地基加固技术在高填土路堤地基处理中的应用研究[D].长安大学,2005.
    [257]范臻辉,王永和.土工格栅加筋高路堤边坡稳定性的弹塑性有限元分析[J].中南大学学报(自然科学版),2005,36(5):904-910.
    [258]孟剑.分级加筋土高挡墙设计及承载力研究[D].北京工业大学,2005.
    [259]Seed,H.B.,and I.Idriss.Influence of Soil Conditions on Ground Motion During Earthquakes.J.Soil Mech.Found.,Div.ASCE,1969,95:99-137.
    [260]Byrne,P.A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand.Proceedings:Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.St.Louis,Missouri,March,1991:47-55.
    [261]Belytschko,T.An Overview of Semidiscretization and Time Integration Procedures.Computational Methods for Transient Analysis.T.Belytschko and T.J.R.Hughes,Eds.New York:Elsevier Science Publishers,B.V.,1983:1-65.
    [262]Lysmer,J.,and R.L.Kuhlemeyer.Finite Dynamic Model for Infinite Media.J.Eng.Mech.,1969,95(EM4):859-877.
    [263]Kunar,R.R.,P.J.Beresford and P.A.Cundall.A Tested Soil-Structure Model for Surthce Structures.Proceedings of the Symposium on Soil-Structure Interaction,Meerut,India:Sarita Prakashan,1977,Vol.1:137-144.
    [264]Cundall,P.A.,H.Hansteen,S.Lacasse and P.B.Seines.NESSI-Soil Structure Interaction Program for Dynamic and Static Problems.Norwegian Geotechnical Institute,Report 51508-9,December,1980.
    [265]Seed,H.Bolton,and I.M.Idriss.Soil Moduli and Damping Factors for Dynamic Response Analysis.Earthquake Engineering Research Center,University of California,Berkeley,Report No.UCB/EERC-70/10,Dec.1970:48.
    [266]Hardin,B.O.,and V.P.Drnevich.Shear Modulus and Damping in Soils:Ⅰ.Measurement and Parameter Effects.Journal of Soil Mechanics and Foundation Division,ASCE,1972,98(6):603-624.
    [267]Hardin,B.O.,and V.P.Drnevich.Shear Modulus and Damping in Soils:Ⅱ.Design Equations and Curves.Journal of Soil Mechanics and Foundation Division,ASCE,1972,98(7):667-691.
    [268]Itasca Consulting Group Inc.FLAC(Fast Lagrangian Analysis of Continua)Users Manual,Version 5.0,Minneapolis,Minnesota,2005.
    [269]Kuhlemeyer R L,Lysmer J.Finite element method accuracy for wave propagation problems[J].J.Soil Mech.& Foundations Div.,ASCE,1973,99(SM5):421-427.
    [270]周荣军,何玉林等.北京至昆明高速公路四川境雅安至泸沽项目(A1、A2、A5合同段)地震安全性评价报告[R].成都:四川赛思特科技有限责任公司,2005.
    [271]铁路土工合成材料应用设计规范,TB 10118-2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700