用户名: 密码: 验证码:
车用并联混合动力系统瞬态过程控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力电动汽车开始走向产业化的时期,对其控制策略的研究无疑具有重大现实意义。控制策略的研究手段包括仿真、控制原型开发、硬件在环仿真和系统性能测试。本文通过对各种混合动力系统的共性分析,提出了混合动力系统控制策略开发平台的框架,给出了混合动力系统各个功能模块在控制策略开发的不同阶段可采用的形态以及他们之间的连接关系。为了拓展混合动力控制策略仿真的设计空间,设计了统一化模型接口,提出了基于神经网络的发动机缩放建模方法,并通过实验证明了该建模方法能够达到仿真优化需要的精度。
     基于dSPACE系统和发动机动态试验台架,采用模块化和分层设计方法,设计了测试系统的功能模块,部分功能模可实现仿真形态和实物形态置换组合,以满足不同测试的需要,实现了系统模块组合的柔性化。设计完成了系统各种信号协调连接,完成了dsPACE系统、测功机系统和混合动力总成的集成。在所设计的测试平台上进行了并联混合动力测试,实验表明测试平台能实现循环工况模拟、再生制动控制、模式切换控制、换挡控制等过程的测试,测试平台达到了预期的测试功能,为并联混合动力瞬态过程控制技术研究奠定了实验基础。
     并联混合动力能量管理和瞬态过程动力控制都需要发动机的实时转矩。本文通过发动机自动化测试,建立了发动机瞬态转矩的查表模型、神经网络拟合模型,并提出了基于神经网络的发动机平均值模型。对三者的实验验证表明,它们都能达到一定的转矩估计精度。但前两种模型的适应性较差,而基于神经网络的平均值模型根据实时测得的进气压力和喷油流量进行转矩估计,具有更好的适应性,也能对节气门变化率不高时的发动机动态转矩进行估计。
     本文提出了基于模型预测的电机调速闭环控制策略,用于模式切换控制,它不依赖于对发动机瞬态转矩的精确估计,比单纯根据估计的发动机转矩进行电机转矩补偿控制具有更好的控制鲁棒性。仿真和实验表明所提出的控制策略能够有效降低混合动力模式切换过程中的输出转矩和转速波动,实现模式的平稳切换。该控制策略适用与普通并联混合动力,也适用于plug-in混合动力。
     提出了行星齿轮机械变速器方案,通过去除液力自动变速器的变矩器形成的机械自动变速器具有更高的传动效率,同时也保留了其换挡操作的方便性。分析了行星齿轮机械变速器在并联混合动力系统中应用的可行性,对其进行了换挡过程的动力学建模,提出了电机调速主动同步的控制策略,对变速器的加、减挡过程进行了仿真研究,结果表明所提出的电机调速主动同步换挡控制策略能有效降低换挡过程中变速器输出转矩的波动,实现平顺换挡。
With the advent of mass-producing of hybrid electric vehicles (HEV), studying the control strategy of HEV is significance. Simulation, prototype development, hardware-in-the-loop simulation and system bench test are emploied to address the HEV control problem. In this paper, a platform framework was presented for the development of HEV control strategy by abstracting the essential factors of the HEV system. The system was modularized, the states of the modules and their relationship for different developing stage was described. To explore a large design space for HEV, a universal interface definition for Meta-Model was designed, and a neural network based scaling modeling method for engine and electric machine was proposed. Bench test indicated that the scaling model can satisfy the requirement for simulation.
     The functional modules of the HEV test system are designed with modularization and hierarchical method. Virtual parts or physical parts are optional to make up various types of test systems, so the system is flexibility to satisfy different of control strategy development purpose. The designed test system can implement the regeneration braking test of HEV. Proper interfaces were designed to integrate the dSPACE system, dynamometer system and hybrid powertrain. Some tests were implemented on the designed test system. The functions of duty cycle simulation, regenerative brake test, HEV mode switch control test and gear shift control test were validated. The test system meet the expected functions, this made a foundation for the study of the transient process control in this paper.
     For either energy management or transient process control, it is essential to obtain the torque of the engine. Based on automatic test data, a look-up-table model and neural network model were constructed. This paper comes up with a new type of neural networks based mean value engine model. Experiments results show that these three types of engine models all have certain accuracy for engine torque estimation, but the repeatability of the former two types of model is not steady. The neural network based mean value engine model observe the engine torque by measuring intake pressure and fuel injector flow rate, it has more better robustness and can feedback the transient engine torque if the change rate of throttle is not too high.
     For traditional HEV as well as Plug-in HEV, it is very important to have good mode switch and gear shift process. This paper come up with a mode switch control strategy of model-predictive based motor speed regulation, it dose not depend on the accurate engine torque estimation and has better robustness than the only engine torque based torque compensation strategy. The simulation and test results testified that the proposed control strategy can effectively suppress the oscillation of output torque of the parallel hybrid powertrain, and realized a smooth mode switch.
     In order to address the gear shifting control problem, a planetary gearing automatic mechanical transmission (PGAMT) was proposed. The torque converter of a hydraulic automatic transmission was removed to form a PGAMT, which transmission efficiency was improved without sacrificing the convenience of the gear shifting. This paper analyzed the operation conditions required for PGAMT in the parallel hybrid powertrain, modeled the dynamic of the PGAMT, proposed a gear shifting control strategy that use the electric motor as the actuator to actively synchronize clutch disks to realize clutch-to-clutch gear shifting, simulated the process of up shift and down shift. The simulation results indicate that the active synchronizing by motor shift control strategy can effectively reduce the oscillation of the output torque of the transmission during the course of gear shifting.
引文
[1]Chan,C.C.The state of the art of electric and hybrid vehicle.Proceedings of IEEE,2002.90(2):247-275.
    [2]Jorgensen,K.Technologies for electric,hybrid and hydrogen vehicles:Electricity from renewable energy sources in ransport.Utilities Policy 2008:1-8.
    [3]Hassan Moghbelli,Abolfazl Halvaei Niasar,Reza Langari.New Generation of Passenger Vehicles:FCV or HEV? in IEEE.2006
    [4]Dincer,Mikhaii Granovskii Ibrahim.Economic and enviromental comparison of conventional,hybrid,electric and hydrogen fuel cell vehicles.Journal of power sources,2006.159:1186-1193.
    [5]J.Van Mierlo,G.Maggetto,Ph.Lataire.Which energy source for road transport in the future? A comparison of battery,hybrid and fuel cell vehicles.Energy Conversion and Management,2006(47):2748-2760.
    [6]Krein,Philip T.Hybrid and Electric Automotive Systems:Combined Electrical,Mechanical,and Fuel Cell Opportunities for Personal Transportation.in 2nd International Conference on Power Electronics Systems and Applications.2006
    [7]Krein,P.T.The Re-Electrification of the Automobile:Trends and Motives in Hybrid and Electric Car Designs.in Proc.4th Int'l.Conf Electrical and Electronics Engineering.2005
    [8]Kenji Morita,Kazuki Shimamura,Gen Sugiyama,Masahiko Hori.R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs.SAE 2005-01-3828,2005
    [9]Chan,C.C.The State of the Art of Electric,Hybrid,and Fuel Cell Vehicles.Proceedings of the IEEE 2007.95(4):714-718.
    [10]Sanjaka G.Wirasingha,Nigel Schofield and Ali Emadi.Plug-in hybrid electric vehicle developments in the US:trends,barriers,and economic feasibility,in IEEE Vehicle Power and Propulsion Conference(VPPC).2008.Harbin,China
    [11]E.D.Tare,Michael O.Harpster and Peter J.Savagian.The Electrification of the Automobile:From Conventional Hybrid,to Plug-in Hybrids,to Extended-Range Electric Vehicles.SAE 2008-01-0458,2008
    [12]Thomas H.Bradley,Andrew A.Frank.Design,demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles.Renewable and Sustainable Energy Reviews,2009(13):115-128.
    [13]Mikhail Granovskii,Ibrahim Dincer.Economic and environmental comparison of conventional,hybrid,electric and hydrogen fuel cell vehicles.Journal of Power Sources,2006.159:1186-1193.
    [14]Jorgensen,K.Technologies for electric,hybrid and hydrogen vehicles:Electricity from renewable energy sources in ransport.Utilities Policy xx,2008:1-8.
    [15]Krein,P.T.The Re-Electrification of the Automobile:Trends and Motives in Hybrid and Electric Car Designs.in in Proc.4th Int'l.Conf Electrical and Electronics Engineering.2005
    [16]Kenji Morita,Kazuki Shimamura,Gen Sugiyama and Masahiko Hori.R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs.SAE2005-01-3828.2005
    [17]刘希玲,丁焰.我国城市汽车行驶工况调查研究.环境科学研究,2000.13(1):23-27.
    [18]杜爱民,步曦,陈礼,等.上海市公交车行驶工况的调查和研究.同济大学学报(自然科学版),2006.34(7):943-959.
    [19]王岐东,贺克斌,姚志良,等.中国城市机动车行驶工况研究.环境污染与防治,2007.29(10):745-784.
    [20]Yimin Gao,Mehrdad Ehsani.Hybrid Electric Vehicle:OVerview and State of the Art.in IEEE ISLE.2005
    [21]Naeim A.Henein,Dinu Taraza,Nabil Chalhoub and Ming-Chia Lai.Exploration of the Contribution of the Start/Stop Transients in HEV Operation and Emissions.SAE 2000-01-3086,2000
    [22]于水,董光宇,吴志军,等.混合动力汽车发动机快速起动瞬态燃烧和碳氢排放.吉林大学学报(工学版),2008.38(5):1035-1039.
    [23]梁海波,高卫民,朱军,等.混合动力Start/Stop控制策略对整车排放影响的研究.内燃机工程,2008.29(2):15-18.
    [24]童毅.并联式混合动力系统动态协调控制问题的研究:[博士学位论文].北京:清华大学,2004.
    [25]童毅,欧阳明高,张俊智.并联式混合动力汽车控制算法的实时仿真研究.机械上程学报,2003.39(10):158-160.
    [26]Kazunari Moriya,Yoshiaki Ito and Yukio Inaguma.Design of the Surge Control Method for the Electric Vehicle Powertrain.SAE2002-01-1935,2002
    [27]Roy I D,Robert D L.Engine torque ripple cancella-tion with an integrated starter alternator in a hybrid electric vehicle:implementation and control.IEEE,2003.39(6):2016-2018.
    [28]王庆年,冀尔聪,王伟华.并联混合动力汽车模式切换过程的协调控制.吉林大学学报(工学版),2008.38(1):1-6.
    [29]李孟海,罗禹贡,杨殿阁,等.基于模型匹配控制的PHEV动态协调控制方法.汽车工程,2007.29(3):203-207.
    [30]周杰,童毅,欧阳明高.轻度混合动力系统典型瞬态过程仿真分析.汽车工程,2003.25(1):65-69.
    [31]古艳春,殷承良,张建武.并联混合动力汽车扭矩协调控制策略仿真研究.系统仿真学报,2007.19(3):631-636.
    [32]陈全世,朱家琏,田光宇.先进电动汽车技术.北京:化学工业出版社,2007.
    [33]罗玉涛,胡红斐,沈继军.混合动力电动汽车行驶工况分析与识别.华南理工大学学报(自然科学版),2007.35(6):8-13.
    [34]张建伟,李孟良,艾国和,等.车辆行驶工况与特征的研究.汽车工程,2005.27(2):220-224.
    [35]李孟良,张建伟,张富兴,等.中国城市乘用车实际行驶工况的研究.汽车工程,2006.26(6):554-528.
    [36]Meisel,Jerome.An Analytic Foundation for the Toyota Prius THS-Ⅱ Powertrain with a Comparison to a Strong Parallel Hybrid-Electric Powertrain.SAE 2006-01-0666,2006
    [37]Bridges,J.,C.E.Wartnaby,D.Stannard,et al.Frameworks for Power and Systems Management in Hybrid Vehicles:Challenges and Prospects.SAE 2006-21-0005,2006
    [38]曾小华,王庆年,李胜,王伟华.正向仿真模型与反向软件ADVISOR的集成开发.汽车工程,2007.29(10):851-854.
    [39]邹广才,罗禹贡,杨殿阁,等.基于ADVISOR二次开发的混合动力越野车仿真分析.汽车工程,2007.29(5):404-408.
    [40]Walter,T.Mark,David Knott,and Joel Walter.Transitioning Automotive Testing from the Road to the Lab.SAE 2004-01-1770,2004
    [41]王伟华,金启前,曾小华,等.混合动力汽车动力总成试验台研究.中国公路学报,2005.18(2):103-106.
    [42]Kaisheng,Huang,Jiang Dinan,Jin Zhenhua,et al.Design of Testbed System for Parallel HEV Powertrain.in Second IEEE Conference on Industrial Electronics and Applications.2007:1374-1377.
    [43]Chu,Liang,Shaomin Ming,Yongsheng Zhang,et al.Development and Validation of New Control Strategy of Hybrid Power Train with ISG for Family Sedan.SAE 2006-01-3291,2006
    [44]Chu,Liang,Shaomin Ming,Yongsheng Zhang,et al.Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus.sAE 2006-01-3571,2006
    [45]Aoki,Kaoru,Shigetaka Kuroda,Shigemasa Kajiwara,et al.Development of Integrated Motor Assist Hybrid System:Development of the 'Insight',a Personal Hybrid Coupe.SAE 2000-01-0079,2000
    [46]Rahman,Z.,K.L.Butler,and M.Ehsani.A Comparison Study Between Two Parallel Hybrid Control Concepts.SAE 2000-01-0994,2000
    [47]Li,Weimin,Guoqing Xu,Zhancheng Wang,et al.A Hybrid Controller Design For Parallel Hybrid Electric Vehicle.in IEEE International Conference on Integration Technology.2007.Shenzhen,China:450-454.
    [48]Zeng,Qun and Juhua Huang.The Design and Simulation of Fuzzy Logic Controller for Parallel Hybrid Electric Vehicles.in IEEE International Conference on Automation and Logistics.2007:908-912.
    [49]Ao,Guoqiang,Hu Zhong,Lin Yang,et al.Fuzzy Logic Based Control for ISG Hybrid Electric Vehicle.in Sixth International Conference on Intelligent Systems Design and Applications(ISDA '06).2006
    [50]Bathaeet.S.M.T,A.Hajizadeh Gastaj,S.R.Emami,et al.A Fuzzy-based Supervisory Robust Control For Parallel Hybrid Electric Vehicles.in IEEE.2005:694-700.
    [51]Dazhi,Wang,Yan Jle,Yang Qing,et al.Estimation and control of hybrid electric vehicle using artificial neural networks,in IEEE.2007:35-40.
    [52]Mohebbi,M.,M.Charkhgard,and M.Farrokhi.Optimal neuro-fuzzy control of parallel hybrid electric vehicles.in IEEE Vehicle Power and Propulsion Conference,VPPC.2005.Chicago,IL,United states:252-256.
    [53]Prokhorov,Danil V.Toyota Prius HEV neurocontrol and diagnostics.Neural Networks,2008
    [54]Hyoung,Lee,Jin Yoon,and Se Jin.An optimized control strategy for parallel hybrid electric vehicles.SAE 2003-01-1329,2003
    [55]Koot,Michiel,J.T.B.A.Kessels,and Bram De Jager.Fuel reduction of parallel hybrid electric vehicles,in IEEE Vehicle Power and Propulsion Conference,VPPC.2005.Chicago,IL,United states:26-31.
    [56]Johannesson,Lars,Bo Egardt,and Mattias Asbogard.Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains using Stochastic Dynamic Programming.in IEEE conference on intelligent transportation systems.2005
    [57]Won,Jong-Seob,Reza Langari,and Mehrdad Ehsani.An Energy Management and Charge Sustaining Strategy for a Parallel Hybrid Vehicle With CVT.IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2005.13(2):314-320.
    [58]Pierluigi Pisu,Kerem Koprubasi and Giorgio Rizzoni.Energy Management and Drivability Control Problems for Hybrid Electric Vehicles.44th IEEE Conference on Decision and Control,and the European Control Conference 2005,2005
    [59]Huang,Miaohua and Houyu Yu.Optimal control strategy based on PSO for powertrain of parallel Hybrid Electric Vehicle.2006.Shanghai,China:352-355.
    [60]Salman,Mutasim,Man-Feng Chang,and Jyh-Shin Chen.Predictive energy management strategies for hybrid vehicles.2005.Chicago,IL,United states:21-25.
    [61]P'erez,Laura V.,Guillermo R.Bossio,Diego Moitre,et al.Optimization of power management in an hybrid electric vehicle using dynamic programming.Mathematics and Computers in Simulation,2006.73:244-254.
    [62]Gong,Qiuming,Yaoyu Li,and Zhong-Ren Peng.Optimal Power Management of Plug-in HEV with Intelligent Transportation System.IEEE,2007:1-6.
    [63]Johannesson,Lars,Mattias,(?)sbog(?)rd,et al.Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2007.8(1):71-83.
    [64]Fang,Li-Cun and Shi-Yin Qin.Concurrent Optimization for Parameters of Powertrain and Control System of Hybrid Electric Vehicle Based on Multi-Objective Genetic Algorithms.SICE-ICASE International Joint Conference,2006
    [65]Liu,Xudong,Yanping Wu,and Jianmin Duan.Optimal Sizing of a Series Hybrid Electric Vehicle Using a Hybrid Genetic Algorithm.in IEEE International Conference on Automation and Logistics.2007.Jinan,China:1125-1129.
    [66]Wimalendra,R.Sudath,Lanka Udawatta,Edirisinghe,et al.Determination of Maximum Possible Fuel Economy of HEV for Known Drive Cycle:Genetic Algorithm Based Approach.IEEE,2008:289-294.
    [67]Opila,Daniel F.,Deepak Aswani,Ryan McGee,et al.Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles.in IEEE Conference on Decision and Control.2008.Cancun,Mexico:4382-4389.
    [68]Koprubasi,Kerem.MODELING AND CONTROL OF A HYBRID-ELECTRIC VEHICLE FOR DRIVABILITY AND FUEL ECONOMY IMPROVEMENTS:[Doctor of Philosophy].United States:The Ohio State University,2008.
    [69]Voshioka,Tacayoshi and Hiroshi Sugita.Noise and Vibration Reduction Technology in Hybrid Vehicle Development.SAE 2001-01-1415,2001
    [70]Moriya,Kazunari,Yoshiaki Ito,and Yukio Inaguma.Design of the Surge Control Method for the Electric Vehicle Powertrain.SAE 2002-01-1935,2002
    [71]Kuang,Ming L.An Investigation of Engine Start-Stop NVH in A Power Split Powertrain Hybrid Electric Vehicle.SAE2006-01-1500,2006
    [72]Fazal U.Syed,Hao Ying.Rule-Based Fuzzy Gain-Scheduling P1 Controller to Improve Engine Speed and Power Behavior in a Power-split Hybrid Electric Vehicle.IEEE,2006
    [73]Berriri,M.,P.Chevrel,and D.Lefebvre.Active damping of automotive powertrain oscillations by a partial torque compensator.Control Engineering Practice,2008(16):874-883.
    [74]Masterson,Dan Colvin and Brandon.Challenges of Engine Starts and Drivability in a Parallel Hybrid-Electric System.SAE2004-01-0063,2004
    [75]严运兵.并联混合动力电动汽车的动态控制研究:[博士学位论文].武汉:武汉理工大学,2008.
    [76]Gokasan,Metin.A Diesel Engine Map Model Based Observer for HEVs.IEEE,2005
    [77]Kaisheng,Huang,Wang Shuaiyu,Jin Zhenhua,et al.Feedforward Method of Engine Torque Estimiation.IEEE,2006
    [78]Urs Christen,Katie J.Vantine and Nick Collings.Event-Based Mean-Value Modeling of DI Diesel Engines for Controller Design.SAE2001-01-1242,2001
    [79]Kolmanovsky,Alexander Stotsky and Ilya.Computationaily Efficient Filtering Algorithms for Engine Torque Estimation.IEEE American Control Conference,2005
    [80]Javier Francoa,Matthew A.Franchekb,Karolos Grigoriadis.Real-time brake torque estimation for internal combustion engines.Mechanical Systems and Signal Processing,2008.22:338-361.
    [81]Richeb,A.Rakotomamonjya R.Le,D.Gualandrisc,and Z.Harchaoui.A comparison of statistical learning approaches for engine torque estimation.Control Engineering Practice,2008(16):43-45.
    [82]Peron L,Charlet A,Higelin P,et al.Limitations of ionization current sensors and comparison with cylinder pressure sensors.SAE2000-01-2830,2000
    [83]Brigham Erickson,Zac Tselios,Becky Trierweiler,et al.Development of the MTU Automatic Shifting Manual Six Speed Transmission.SAE2006-01-0747,2006
    [84]Chen,Li.Robust Scheduler Design for Automatic Mechanical Transmission Real-time Control.SAE2006-01-1490,2006
    [85]Cikanek,R.C.Baraszu and S.R.Torque Fill-In for an Automated Shift Manual Transmission in a Parallel Hybrid Electric Vehicle.in Proceedings of the American Control Conference Anchorage,AK.2002
    [86]Luigi Glielmo,Francesco Vasca.Optimal Control of Dry Clutch Engagement.SAE2000-01-0837,2000
    [87]Martin J.Hoeijmakers,Member,IEEE,and Jan A.Ferreira,Fellow,IEEE.The Electric Variable Transmission.IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,2006.42(4):1092-1100.
    [88]Shumei Cui,Yuan Cheng,and C.C.Chan,Fellow,IEEE.A Basic Study of Electrical Variable Transmission and Its Application in Hybrid Electric Vehicle.IEEE,2006
    [89]程秀生,毕乾坤,杨建华.基于虚拟现实技术的AMT换挡特性仿真系统.汽车技术,2007(9):1-4.
    [90]廖承林,张俊智,卢青春.混合动力轿车机械式自动变速器换挡过程中的动力系统协调控制方法.机械工程学报,2005.41(12):38-41.
    [91]朱海涛,张俊智,廖承林,等.混合动力电动汽车动力总成换挡过程协调控制仿真.公路交通科技,2005.22(8):131-134.
    [92]Glieimo,Luigi,Luigi Ianneili,Vladimiro Vacca,et al.Speed Control for Automated Manual Transmission with Dry Clutch.43rd IEEE Conference on Decision and Control.2004
    [93]刘志茹,王庆年,王光平.混合动力汽车换挡主动控制技术.吉林大学学报(工学版),2006.36(2)
    [94]曹桂军,葛安林,郑磊.电控机械式自动变速器换挡过程中离合器的接合控制.机械工程学报,2005.41(12):234.
    [95]W.Lhommel,R.Trigui,P.Delaruel,B.Jeanneret,A.Bouscayroll,F.Badin.Switched Causal Modeling of Transmission with Clutch in Hybrid Electric Vehicles.IEEE,2006
    [96]Yong-Sheng Zhao,Li-Ping Chen and Yun-Qing Zhang.Enhanced Fuzzy Sliding Mode Controller for Automated Clutch of AMT Vehicle.SAE2006-01-1488,2006
    [97]Ortmann,Walter,Daniel Colvin,S.Robert Fozo,et al.Incorporating an Electric Machine into the Transmission Control of Ford's Modular Hybrid Transmission.SAE2004-01-0069,2004
    [98]Giorgio R,Yann G,Avra B,et al.A Unified Approach to Energy and Power Flow Modeling Simulation and Analysis of Hybrid Vehicles.SAE 2000-01-1565,2000
    [99]John R,Josephson B,Chandrasekaran,et al.An Architecture for Exploring Large Design Spaces.in National Conference of the American Association for Artificial Intelligence.1998:143-150.
    [100]Rizzoni,Giorgio,Lino Guzzella,and Bernd M.Baumann.Unified Modeling of Hybrid Electric Vehicle Drivetrains.IEEE/ASME TRANSACTIONS ON MECHATRONICS,1999.4(3)
    [101]闻新,周露.MATLAB神经网络仿真与应用.北京:科学出版社,2003.
    [102]黎苏,黎晓鹰.汽车发动机动态过程及控制.北京:人民交通出版社,2001.
    [103]Ito,Yoshiaki,Shuji Tomura,and Kazunari Moriya.Vibration-reducing Motor Control for Hybrid Vehicles.R&D Review of Toyota CRDL,2005.40(2):37-43.
    [104]H,Elbert and Spencer C S.Mean Value Modeling of Spark Ignition Engines.SAE Paper No.900616,1990
    [105]Hendricks E,Jensen M,Michael Jensen,et al.Modeling of the Intake Manifold Filling Dynamics.SAE Paper No.960037,1996
    [106]Hendricks,E.,Vesterholm,T.Nonlinear Transient FuelFilm Compensation.SAE Paper No.930767.1993
    [107]鹿笑冬,欧阳明高,白露.用于发动机控制模型的基于循环的平均值离散建模方法.内燃机学报,2001.19(1):80-83.
    [108]李国勇.智能控制与MATLAB在电控发动机中的应用.北京:电子工业出版社,2007.
    [109]王君艳.交流调速.北京:高等教育出版社,2003.
    [110]孙文凯,严运兵,刘旺.汽车离合器起步结合过程的仿真研究.武汉科技大学学报(自然科学版),2006.29(4):368-371.
    [111]Hideo Tomomatsu,Yoshikazu Tanaka,Katsumi Nakatani,and Tadasu Tomohiro and Tooru Matsubara.Automatic Transmission Control System Developed for Toyota Mild Hybrid System(THS-M).SAE2002-01-1253,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700