用户名: 密码: 验证码:
特高压输电塔风振响应及等效风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电塔线体系的抗灾害性研究尚处于初期,无论是灾害荷载作用机理,还是结构分析方法、设计理论、振动控制等方面均存在很多缺陷,致使输电塔的倒塔破坏时有发生,经济损失巨大,严重影响国民经济建设和生活秩序。风荷载又是其主要的动力荷载,动力风效应分析的正确性和精度将直接影响到结构的安全与合理。因此有必要对输电塔线体系的风荷载作用模型、风振响应、等效风荷载及风洞实验进行深入研究。本文围绕输电塔的风振响应和等效风荷载,主要开展了以下几个方面的工作:
     (1)初步解决了格构式输电塔气弹模型设计的难题。由于格构式输电塔结构质量轻、刚度大,采用传统的气动弹性模型设计方法无法实现输电塔结构的气弹模型设计,刚性节段加“V”型弹簧片法能很好地模拟输电塔结构的动力特性。
     (2)气动阻尼是输电塔结构风振响应分析的重要参数,通过HHT方法结合RDT法实现了输电塔线体系环境激励下的气动阻尼的识别,为输电塔线体系的风振响应分析提供了基础。
     (3)根据高频天平技术原理及基于准定常假设条件下,推导了输电塔风荷载空间分布的计算公式,为输电塔的风致振动研究提供了一条重要途径,也是对高频天平测力实验局限性的一种可靠方便的扩展。
     (4)通过自振特性分析确定了弯剪型层模型作为输电塔动力计算的简化模型;根据准定常假设认为来流在结构表面重分布可以忽略,结构上一点所受的顺风向脉动风荷载只与该点来流的风速有关,确定了输电塔顺风向风荷载作用模型。作用在结构上的横风向风荷载和扭转风荷载主要由紊流风、分离剪切流与结构侧面相互作用、尾流激励以及漩涡随机脱落等共同作用的结果,结构自身的形状对其影响较大,因此横风向风荷载及扭转风荷载不在适用于用横风向风速谱直接转化得到,根据高频天平测力实验得到的基底弯矩,通过分段估计法得到了横风向风荷载的分布。发展了用于输电塔耦合抖振分析的有限元CQC法、SRSS法和虚拟激励法。
     (5)谐波合成法是一种精度较高且无条件稳定的随机过程模拟方法,本文在单维多变量随机风场合成方法的基础上,引入了纵向与竖向脉动风速的交叉谱的影响;经过对模拟样本的谱密度函数、相关函数检验验证,该方法能准确有效地模拟出符合要求的多维多变量随机样本;在此基础上实现了输电塔线体系时域抖振分析。
     (6)发展了基于荷载响应相关法的输电塔顺风向的等效风荷载研究。考虑输电塔结构截面收缩的影响,推导了简单输电塔结构顺风向、横风向及扭转方向的一阶广义荷载谱的振型修正系数。基于分段估计法推导的三维风荷载互谱,研究了输电塔结构三个正交方向的等效风荷载。
The study on the disaster tolerance of transmission tower-line system is still in the initial stage, hence a lot of defects in many aspects, such as mechanism of disaster load, structure analysis method, design theory and vibration control; consequently, the collapse and damage of transmission tower happen occasionally, resulting in huge economic losses and thus serious impacts on national economic construction and life orders. Wind load is the primary dynamic load of transmission tower-line system, so the correctness and accuracy of analysis on dynamic wind effect will directly affect the safety and rationality of structure. Therefore, it is necessary to further research transmission tower-line system in aspects of wind load action model, wind-induced response, equivalent wind load as well as wind tunnel experiment. Focusing on wind-induced response and equivalent wind load of transmission tower, this article mainly reaches achievements as following:
     (1) This article initially solves the problem about aeroelastic model design of lattice transmission tower. Owing to the light structure and big stiffness of lattice transmission tower, it is impossible to realize aeroelastic mode design for lattice transmission tower in traditional aeroelastic model design method, but the method of rigid section plus V-shape spring strip can simulate the dynamic characteristics of transmission power structure.
     (2) Aerodynamic damping is an important parameter for wind-induced response analysis on transmission tower structure. Through the combination of HHT method and RDT method, this article realizes aerodynamic damping identification of transmission tower-line system under ambient excitation, providing a basis for the wind-induced response analysis of transmission tower-line system.
     (3) According to the technical principles of high frequency balance and based on the quasi-steady assumption condition, this article derives a computing formula of space distribution of wind load on transmission tower, providing an important channel for the study on wind-induced vibration of transmission tower as well as a kind of convenient and reliable development of force measurement range of high frequency balance.
     (4) Through analysis on natural vibration characteristics, this article determines the simplified model of shear-bending storey model as used for dynamical computation; according to quasi-steady assumption, it is considered that the redistribution of incoming flow in structure surface can be ignored, the along-wind fluctuating wind load on one point of the structure is merely related to the wind speed at this very point, and thus the along-wind load action model of transmission tower is defined. Across-wind load and torsional wind load acting on the structure mainly result from the interaction of turbulent wind and separated shear flow with structure aspect and the combined action of wake excitation and random vortex shedding, and furthermore are significantly affected by the structural shape itself; therefore, across-wind load and torsional wind load are no longer applicable to the across-wind load distribution that is transformed directly from across-wind speed spectrum and derived through section estimation method according to the base bending moment from HFFB experiment. This article also develops finite-element CQC method, SRSS method and pseudo excitation method that can be used for transmission tower coupled buffeting analysis.
     (5) Harmonic synthesis is a simulation method of stochastic process, which is of high precision and unconditional stability. Based on the synthetic method of single-dimensional multivariable stochastic wind field, this article introduces the impact of cross spectrum of vertical and longitudinal turbulent wind velocity; after examination of spectrum density function and other related functions of simulation samples, it is verified that with this method, multi-dimensional multivariate stochastic samples meeting relevant requirements can be simulated accurately and effectively; on above basis, time domain buffering analysis of transmission tower-line system is realized.
     (6) This article develops the study on along-wind equivalent wind load of transmission tower based on LRC method. Considering the affect of cross-section contraction of transmission tower structure, this article derives a correction coefficient of mode shape for the generalized force spectrum of the first mode of simple transmission tower in along-wind, across-wind and torsional directions. In the three dimensional wind load cross-spectrum derived based on section estimation method, this article studies the equivalent wind load in three orthogonal directions of transmission tower structure.
引文
白海峰.2007.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学.
    曹映泓,项海帆,周颖.1998.大跨度桥梁随机风场的模拟[J],土木工程学报,31(3):72-79.
    陈艾荣,王毅.2005.基于小波方法的随机脉动风模拟[J].同济大学学报(自然科学版),33(4):427-431.
    陈波,武岳,沈世钊.2006.大跨度屋盖结构等效静力风荷载背景分量的确定方法探讨[J].工程力学.23(11):21-7.
    陈波,武岳,沈世钊.2007.大跨度屋盖结构等效静力风荷载中共振分量的确定方法研究[J].工程力学.24(1):51-56.
    陈贤川.2005.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[D].杭州:浙江大学.
    陈亦.2003.大跨越输电线路塔体系风振响应及控制[D].上海:同济大学.
    程志军.2006.架空输电线路静动力特性及风振研究[D].杭州:浙江大学.
    邓洪洲,朱松晔,陈晓明,王肇民2003b.大跨越输电塔线体系气弹模型风洞试验[J].同济大学学报.31(2):132-137.
    邓洪洲,朱松晔,苏速,王肇民.2003a.大跨越输电塔线体系风振控制风洞试验[J].同济大学学报,31(9):1009-1013.
    邓洪洲,朱松晔,王肇民.2004.大跨越输电塔线体系动力特性及风振响应[J].建筑结构,34(7):25-28.
    丁泉顺,陈艾荣,项海帆.2006.大跨度桥梁空间脉动风场的计算机模拟[J].力学季刊,27(2):184-189.
    杜柏松,葛耀君,朱乐东.广义位移控制法在结构几何非线性分析中的应用[J].长沙理工大学学报(自然科学版).2006(4),3(1):31-35.
    付国宏,程志军,孙炳楠,等.2001.架空输电线路风振试验研究[J].流体力学实验与测量,15(1) :15-21.
    龚靖,贾瑞庆.1998.薄壁钢管输电塔架风载响应研究[J].东北电力学院学报,18(4):76-84.
    顾明,周暄毅.2007.大跨度屋盖结构等效静力风荷载方法及应用[J].建筑结构学报.28(l):125-29.
    郭惠勇,李正良.2008.大跨越高压输电塔线体系风致振动的研究与进展[J].河海大学学报,36(1):106-111.
    郭绍宗.1998.国内外输电线铁塔的发展及展望[J].特种结构,15(3): 43-46.
    郭勇,孙炳楠,叶尹.2006.大跨越输电塔线体系风振响应的时域分析[J].土木工程学报,39(12):12-17.
    郭勇.2006.大跨越输电塔线体系的风振响应及振动控制研究[D].杭州:浙江大学.
    郭勇.大跨越输电塔线体系风振响应及振动控制研究[D].杭州:浙江大学,2006.
    韩大建,邹小江,苏成.2003.大跨度桥梁考虑桥塔风效应的随机风场模拟[J].工程力学,20(6):18-22.
    韩艳,陈政清.2007.利用小波逆变换模拟随机风场的脉动风[J].振动工程学报,20(1):52-56.
    何敏娟,杨必峰.2003.江阴500kV拉线式输电塔脉动实测[J].结构工程师.3:74-79.
    贺德馨,朱国琳,王橄勋,周瑜平.2002.中国空气动力研究与发展中心风工程研究试验近况.第五届全国风工程及工业空气动力学学术会议论文集[M].
    贺德馨.2006.风工程与工业空气动力学[M].北京:国防工业出版社.
    胡白雪,周浩.2005.我国发展特高压交流输电的必要性和可行性[J].能源工程,4:1-4.
    胡骅,虞海泓.2006.特高压交流输电技术的研究与发展[J].科技通报,22(5):675-680.
    胡亮,李黎,樊剑.2008.基于特征正交分解的桥梁风场模拟[J].武汉理工大学学报(交通科学与工程版),32(1):16-19.
    胡松.2006.大跨越输电线路的风振反应分析及振动控制研究[D].上海:同济大学.
    胡雪莲,李正良,晏致涛.2005.大跨度桥梁结构风荷载模拟研究[J].重庆建筑大学学报,27(3):63-67.
    胡宇滨,马人乐.2002.江阴500kV输电塔动力性能测试[J].结构工程师. 62(2):62-66.
    黄本才,王国砚,林颖儒,等.2000.体育场屋盖结构静动力荷载实用分析方法[J].空间结构,6(3): 33-39.
    黄斌,唐家祥.1998.大跨越输电塔的风振响应[J] .力学与实践,20(5):12-13.
    黄汉杰.2004.大跨度悬索桥成桥及施工态颤振、抖振时域分析[D].博士学位论文.绵阳:中国空气动力研究与发展中心.
    金虎.2008. X型超高层建筑三维风荷载与风致响应研究[D]。博士学位论文.杭州:浙江大学.
    李国豪.1997.桥梁结构稳定与振动[M].北京:中国铁道出版社.
    李惠彬.2007.大型工程结构模态参数识别技术[M].北京:北京理工大学出版社.
    李杰,刘章军.2008.随机脉动风场的正交展开方法[J].土木工程学报,41(2):49-53.
    李黎,胡亮,樊剑,方秦汉.2007.具有桥塔风效应的桥梁风场数值模拟[J].振动与冲击,26(5):14-18.
    李永乐,周述华,强士中.2003.大跨度斜拉桥三维脉动风场模拟[J].土木工程学报. 36(10):60-65.
    李元齐,沈祖炎.2006.本征正交分解法在曲面模型风场重构中的应用[J].同济大学学报,34(1):22-26.
    李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001,9(7):3-11.
    林志兴,葛耀君,曹丰产,庞加斌.2002.钢箱梁桥的抗风问题及其对策研究[J].同济大学学报,30(5)614-617.
    刘静.2007.大跨越输电塔线体系静动力研究[D].上海:同济大学.
    刘齐茂.2002.用随机减量技术及ITD法识别工作模态参数[J].广西工学院学报,13(4):23-26.
    刘群,杨进春,周粼波.1997.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究[J].中国电力,30(9): 50-52.
    刘群,杨进春,周粼波.1998.架空输电线路塔架绝缘子串与导线风致作用模型研究[J].试验力学,13(2):185-189.
    楼文娟等.1996a.高耸格构式结构风振数值分析及风洞试验[J].振动工程学,9(3):318-322.
    楼小峰.2002.桥梁断面气动特性的数值模拟[D].上海:同济大学硕士学位论文.
    卢文生,陈亦.2004.大跨越输电线体系风荷载模拟[J].特种结构,21(3):12-14.
    罗俊杰,韩大建.2007.谐波合成法模拟随机风场的优化算法[J].华南理工大学学报,35(7):105-109.
    罗俊杰,韩大建.2008.大跨度结构随机脉动风场的快速模拟方法[J].工程力学,25(3):96-101.
    潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004.
    秦云,张耀春,王春刚.2004.数值风洞模拟结构静力风荷载的可行性研究[J].哈尔滨工业大学学报.36(12):593~1597.
    全涌,顾明.2006.高层建筑横风向风致响应及等效静力风荷载的分析方法[J].工程力学.23(9):84-88.
    沈国辉,孙炳楠,楼文娟.2006.屋盖结构背景响应等效风荷载的一种简化算法[J].工程力学.23(增舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,12(9):27-32.
    苏继龙.1998.高压输电铁塔外伸臂振动力学模型及其振型局部化研究[J].振动与冲击,17(3): 62-65.
    汪秀丽.2006.特高压输电技术的发展[J].水利电力科技,32(2):6-16.
    汪之松,李正良,肖正直.2008.输电塔线体系风洞试验模型的变比例问题研究[J].重庆大学学报(待刊).
    王世村,孙炳楠,楼文娟,等.2005.单杆输电塔气弹模型风洞试验研究和理论分析[J].浙江大学学报(工学版),39(1):87-91.
    王世村,孙炳楠,楼文娟,叶尹.单杆输电塔气弹模型风洞试验研究和理论分析[J].浙江大学学报(工学版),2005(1),Vol39(1):87-91.
    王世村.2005.高耸结构风振响应和风振疲劳研究[D].杭州:浙江大学.
    王修琼,崔剑峰.2002.Davenport谱中系数K的计算公式及其工程应用[[J].同济大学学报,30(7):849-852.
    王毅,陈艾荣.2003.基于小波方法的随机脉动风模拟[A].第11届全国结构风工程学术会议论文集[C].三亚,91-96.
    项海帆,陈艾荣等.2003.特大跨度桥梁抗风研究的新进展[J].土木工程学报,36(4), 1~8.
    谢壮宁,倪振华,石碧青.2007.大跨度屋盖结构的等效风荷载[J].建筑结构学报.28(l):113-118.
    徐安,谢壮宁,倪振华.2004.用瞬态测压法研究高层建筑的等效设计风荷载[J].土木工程学报.37(9)11-17.
    晏致涛.2006.大跨度中承式拱桥风致振动研究[D].重庆:重庆大学.
    杨靖波,李正,杨风利,黄廷政.2008.2008年电网冰灾覆冰及倒塔特征分析[J].电网与水力发电进展,24(4):4-8.
    杨伟,黄鹏,顾明.2004.高层建筑风致静力干扰效应的试验和数值研究[J].同济大学学报. 32(2)152-156.
    叶丰,顾明.2002.高层建筑顺风向背景响应及其等效风荷载的计算方法[J].建筑结构学报.23(l):58-61.
    叶丰,顾明.2003.估算高层建筑顺风向等效风荷载和响应的简化方法[J].工程力学.20(l):63-67.
    曾宪武,韩大建.大跨度桥梁风场模拟方法对比研究地震工程与工程振动[J].Vo124 (1): 135~140.
    张伯荫,钮珍南,诸乾康等.1997.中国第一座桥梁风洞的研制[J].空气动力学报. 15(2):161~168.
    张树京,齐立心.时间序列分析简明教材[M].北京:清华大学出版社,2003.
    张文亮,五维宁,胡毅.2003.特高压输电技术的研究与我国电网的发展[J].高电压技术,29(9):16-18.
    张相庭.1985.结构风压和风振计算[M].上海:同济大学出版社,1985.
    张相庭.2004.结构顺风向风振的规范表达式及有关问题的分析[J].建筑结构.2004,34(7):21,33-35.
    张郁山.2003.希尔伯特—黄变换(HHT)与地震动时程的希尔伯特谱[D].北京:中国地震局地球物理研究所.
    张章奎.2006.国内外特高压电网技术发展综述[J].华北电力技术,1:1-2.
    中华人民共和国建设部.2002.中华人民共和国国家标准.建筑结构荷载规范(GB50009-2002) .
    周述华,廖海黎,李永乐,王晋栋.2002.大跨度拱桥全桥气动弹性模型风洞试验研究[A],第五届全国风工程及工业空气动力学学术会议论文集.
    潘昌实.1995.隧道力学数值方法[M].北京:中国铁道出版社.
    Ahsan Kareem, Yin Zhou. 2003. Gust loading factor-past, present and future[J]. Journal of Wind Engineering and Industrial Aerodynamics. 91:1301-1328.
    Albermani F, Mahendran M, Kitipornchai S. 2004. Upgrading of transmission towers using a diaphragm bracing system[J]. Engineering Structures. 26:735-744.
    Ameriean Conerete Institute.1988. Standard Practice for the design and construction of cast-in-place reinforced concrete chimneys. ACI307-88, ACI Detroit.
    Anita Coulter Flowe, Ashok kumar. 2000. Analysis of velocity fields and dispersive cavity parameters as a function of building width to building height ratio using a 3-D computer model for squat buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics 86 :87~122.
    Anselment F, Gangne Y, Hopfinger E J, et al. 1984. High-order velocity structure functions inturbulence shear flow[J]. J. Fluid Mech.,140:63-89.
    Architectural Institute of Japan.1996. Reconmmendations for Loads on buildings. Australian Standards. 1989. SAA Loading Code, Part2:wind force, AS1170.2-89.
    Ballio G., Meberini F., Solari G. 1992. A 60-year-old 100m high steel tower: Limit states under wind action[J]. J. Wind Eng. Ind. Aerodyn. 41-44:2089-2100.
    Battista R C, Rodrigues R S, Pfeil M S. 2003. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 91: 1051-1067.
    Berand, M.Leilal, P.Kastner-klein. 1997. Concentration and flow distributions in the vicinity of U-shaped buildings:Wind-tunnel and computational data[J]. Journal of Wind Engineering and Industrial Aerodynamics 67&68:745-755.
    Borgman L E. 1969. Ocean wave simulation for engineering design[J]. J.Wtrway Hard. Div., ASCE, 95(4):557-583.
    Braun A L, Awruch A M. 2005. Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation[J]. Journal of Sound and Vibration, 284: 51-73.
    Chen Xinzhong, Ahsan Kareem. 2004. Equivalent static wind loads on buildings: New Mode[J]. Journal Structural Engineering. ASCE, 130(10):1425-1435.
    Chen Xinzhong, Ahsan Kareem. 2005. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes[J]. Journal of structral Engineering. ASCE, 131(7): 1071-1082.
    Davenport A G. 1961. The spectrum of horizontal gustiness near the ground in high winds[J]. J. Royal Meteorol, soc, 87:194~211.
    Davenport A G. 1962. The response of slender, link-like structures to a gust wind[J]. Proc.Inst.Civ.Eng,23:389-409.
    Davenport A G. 1968. The dependence of wind load upon meteorological parameters. In proceedings of the international research seminar on wind effects on building and structures[D], University of Toronto Press, Toronto, 19-82.
    Davenport A.G. 1967. Gust Loading Factors[J]. Journal of Structure Division.93(3):11-34.
    Deodatis G. 1996. Simulation of ergodic multivariate stochastic processed[J]. J.Engrg. Mech. ASCE,122(8):778-787.
    Desai Y M, Yu P, Popplewell N et al. 1995.Finite element modeling of transmission line galloping[J]. Computers & Structures,57(3): 407-420.
    Diana G, Bruni S, Cheli F et al. 1998. Dynamic analysis of the transmission line crossing“Lago de Maracaibo”[J]. Journal of Wind Engineering and Industrial Aerodynamics, 74: 977-986.
    DIANA G, BRUNI S,CHELI F, et al. 1998. Dynamic analysis of the transmission line crossing "Lago de Maracaibo"[J]. Journal of Wind Engineering and Industrial Aerodynamics , 74 :977-986.
    Dubrulle B. 1994. Intermittency in fully developed turbulence: log-poisson statistics and generalized scale covariance[J]. Phys. Rev. Lett.,73:959-962.
    EDSU 85020. 1993. Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds (neutral atmosphere), Engineering Sciences Data Unit, London.
    ENV 1991-2-4, EUROCODE 1: basis of design and actions on structures, Part2.4: wind actions, 1994.
    Gerch W, Yonemoto J. 1977. Synthesis of multi-variate random vibration systems: a two-stage least squares ARMA model approach[J]. J. Sound and vibration. 52(4),553-565.
    Glanville M. J., K. Kwok C.S. 1997. Wind-induced deflections of freestanding lattice towers[J]. Eng. Struct., 19(1):79-91.
    Harris R I. 1971.The nature of wind. In the modern design of wind sensitive structures[J], Construction Industry Research and Information Association, Londaon, U.K.
    HIROSHI K. 1994. Wind tunnel test on 500kV transmission tower with solid web brackets[J] . Journal of Wind Engineering, 58 :54-60.
    Huang Z, Chalabi Z S. Bedford U.K. 1995. Use of time-series analysis to model and forecast wind speed[J]. Joumal of Wind Engineering And Industrial Aerodynamics.56. 311-322.
    Huang, N.E., Shen, Z., Long, S. R., et. 1998. The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J]. Proc. Roy. Soc. Lond., A454:903-995.
    Iazzunni A, Spinell P. 1987. Artificial wind generation and structural response[J]. J. Struct Engrg Div ASCE 113(12),2383-2397.
    Irvine H M. 1981. Cable structures[M].Cambridge:The MIT Press.
    J. Peter, C. King. 2003. The foundation and the future of wind engineering of long span bridges—the contributions of Alan Davenport[J]. Journal of Wind Engineering and Industrial Aerodynamics. 91:1529-1546.
    J.D. Holmes. 1994. Along-wind response of lattice tower: Part I: derivation of expressions for guest factors[J]. Engng Struct., 16:287-292.
    J.D. Holmes. 1996. Along-wind of lattice towers. Part III: Effective load distribution[J]. Engineering Structures, 18:483-488.
    J.D. Holmes. Effective static load distributions in wind engineering[J]. Journal of wind Engineering and Industrial Aerodynamics, 90:91-109.
    K.Gurley, A.Kareem. 1993. Gust loading factor for tension leg platfor[J]. Appl. Ocean Res. 15(3):137-154.
    Kaimal J C. 1972. Spectral characteristics of surface-layer turbulence[J]. J. Royal Meteorol. Soc. 98:563~589.
    Kitagawa T, Nomura T. 2003. A wavelet-based method to generate artificial wind fluctuation data[J]. J. Wind Eng. Ind. Aerodyn.,90:943-964.
    Larsen A.1992.Aerodynamics of large bridges[M].Balkema:Rotteram.
    Li Y, Kareem A. 1995. ARMA representation of wind field[J]. J Wind Engrg Indust Aerodyn. 121(1), 415-427.
    Loredo-Souza A M, Davenport A G. 2003. The influence of the design methodology in the response of transmission towers to wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 91: 995-1005.
    Loredo-Souza A.M.,Davenport A.G. 2001. A novel approach for wind tunnel modelling of transmission lines[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89:1017-1029.
    Loredo-SouzaA.M., Davenport A.G. 1998. The effects of height winds on transmission lines[J]. J. Wind Eng. Ind. Aerodyn., 74-76:987-994.
    Lou Wenjuan, Sun Bingnan, Tan Jinchun. 1996.Wind Tunnel Test and Numerical Computation on Wind-induced Vibration for Tall Lattice Tower[J]. Journal of Vibration Engineering, 9(3): 318-322.
    M.J. Paluch, T.T.O. Cappellari, J.D. Riera. 2007. Experimental and numerical assessment of EPS wind action on long span transmission line conductors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 95:473-492.
    M.Kasperski. 1992. Extreme wind load distribution for linear and nonlinear design[J]. Engineering Structures, 14(1):27-34.
    McClure G, Lapointe M. 2003. Modeling the structural dynamic response of overhead transmission lines[J]. Computers & Structures, 81: 825-834.
    Momomura Y, Marukawa H, Okamura T et al. 1997. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 72: 241-252.
    Owen D R J. 1978. Advanced structural dynamics. Implicit Finite Element Method for Dynamic Transient Analysis of Solids with Particular Reference to Non-Linear Situations[M]. Ispra. Italy.
    P. Harikrishna, J. Shanmugasundaram, S.Gomathinayagam, N. Lakshmanan. 1999. Analytical andexperimental studies on the gust response of a 52 m tall steel lattice tower under wind loading[J]. Computers and Structures, 70:149-160.
    Panofsky H.A., et al. 1974. Two-Point velocity statistics over lake Ontario[J]. Bound. Layer Meteorol.7: 309-321.
    Piccardo, G. Solari. 1998. Closed form prediction of 3-D wind-excited response of slender structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,74-76:697-708.
    R. Panneer Selvam. 1997. Finite element modeling of flow around a circular cylinder using LES[J]. Journal of Wind Enginneering and Industrial Aerodynamics,67&68:129~139.
    Rao G V. 1995. Optimum designs for transmission line towers[J]. Computers & Structures, 57(1): 81-92.
    Reed A, Scanlan R H. 1983. Time series analysis of cooling tower wind loading[J]. J. Struct Engrg. Div ASCE.109(2), 538-554.
    Rice S O.1954. Mathematical analysis of random noise. Selected papers on noise and stochastic process[M]. Dover Publish Inc. New York.
    S.Reichrath, T.W.Davis. 2002. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse[J]. Journal of Wind Engineering and Industrial Aerodynamics 90:139–149.
    Samaras E, Shinozuka M, Tsurui A. 1985. ARMA representation of random processes[J]. J. Engrg Mech. ASCE.113(3):449-461.
    Savory Eric, Parke G A R, Zeinoddini M et al. 2001. Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower[J]. Engineering Structure, 23: 365-375.
    She Z, Leveque E. 1994. Universal scaling laws in fully developed turbulence[J]. Phys. Rev. Lett.,72:336-339.
    Shehata AY, El Damatty A A, Savory E. 2005. Finite element modeling of transmission line under downburst wind loading[J]. Finite Elements in Analysis and Design, 42:71-89.
    Shinozuka M, Deotatis G. 1991. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews, 44:191-204.
    Shinozuka M, Jan C M. 1972. Digital simulation of random processes and its application[J]. J. Sound Vibra., 25(1):111-128.
    Shinozuka M. 1971. Simulation of multivariate and multidimensional random process[J]. Journal of the Acoustical. Society of America, 49(1):357-367.
    Simiu E, Scanlan R H. 1986. Wind Effects on Structures (2nd)[M]. New York: JohnWiley&Sons. Simiu.E, Scanlan.R.J. 1978. Wind effect on Structures: An introduction to wind engineering[M]. New York: John Wiley &Sons Inc.
    Solari G, Piccardo G. 2001. Probabilistic 3-D turbulence modeling for gust buffeting of structures[J]. Probabilistic Engineering Mechanics,16:73-86.
    Solari G.. 1993a. Guest buffeting I: peak wind velocity and equivalent pressure[J], Journal of Structural Engineering. ASCE, 119(2):365-382.
    Solari G.. 1993b. Guest buffeting II: dynamic along-wind resonse[J], Journal of Structural Engineering. ASCE, 119(2):365-382.
    Spanos P D, Zeldin B A. 1998. Monte Carlo treatment of random fields: a broad perspective[J]. Appl Meoh Rev. 51(3):219-237.
    Sung-Eun. Kim. 1999. Application of CFD to environmental flows[J]. Journal of Wind Engineering and Industrial Aerodynamics 81: 145-158.
    Von Karman T. 1948. Progress in the statistical theory of turbulence[M]. Proc. Nat. Acad. Sci. Washington D.C. 530-539.
    W.W.Yang, T.Y.P.Chang, C.C.Chang. 1997. AN EFFICIENT WIND FIELD SIMULATION TECHNIQUE FOR BRIDGES[J]. Journal of Wind Engineering and Industrial Aerodynamics 67&68:697-708.
    Yamada M, Ohkitani K. 1991. Orthonormal wavelet analysis of turbulence[J]. Fluid Dyn. Res., 8:101-115.
    Yamazaki F, Shinozuka M. 1988. Digital generation of non-Gaussian stochastic fields[J]. J. Engrg Mech ASCE,114(7):1183-1197.
    Yasui H, Marukawa H, Momomura Y et al. 1999. Analytical study on wind-induced vibration of power transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 83: 431-441.
    Zhang Xiangting. 1988. The current Chinese code on wind loading and comparative study[J]. Journal of Wind Engineering and Industrial Aerodynamics.30:133-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700