用户名: 密码: 验证码:
并网型交流励磁双馈电机风力发电系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从可持续发展的观点看,化石能源终将耗竭,充分开发和利用可替代清洁能源是解决能源和环境问题的必然选择。风能作为一种取之不尽、用之不竭的清洁可替代能源,风力发电作为目前最具规模化开发和商业化发展前景的新能源发电技术,已成为全球发展最快的可再生能源。并网运行的风力发电由于可以得到大电网的补偿和支撑,成为风力发电的主流。双馈式风力发电机具有变速运行、有功无功可解耦控制、降低机械应力和噪声、提高电能质量、转差功率小(约为额定值的30%)等优点成为工业应用最广泛的变速恒频风力发电机型。
     本文以交流励磁变速恒频双馈电机风力发电系统作为研究对象,对其进行了必要的运行原理分析、控制策略实现、系统建模以及风电场并网仿真,主要研究内容包括以下几个方面:
     1、介绍交流励磁变速恒频双馈电机运行的基本原理后,对功率不变和绕组匝数不变约束条件下的坐标变换特点及应用进行了说明,详细推导了三相静止坐标系上交流励磁双馈电机的数学模型,以及两相同步旋转参考坐标系下交流励磁双馈电机在发电机惯例和电动机惯例下的动态模型。对从事双馈电机的仿真和建模研究者提供了一定的理论参考依据。
     2、在研究风力机风功率捕获、传递和最大风能追踪控制算法的基础上,建立风力机系统仿真模型,针对850kw的变速恒频双馈风力发电系统在转速变化时的响应特性进行了仿真研究。研究结果表明风机可实现最大风能追踪控制且风力机动态响应性较好。
     3、交流励磁变速恒频双馈电机风力发电系统并网前后双馈电机的运行状态和控制策略有所不同,并网前空载运行,实施并网控制策略;并网后发电运行,实施最大风能追踪控制策略。变速恒频双馈电机风力发电是一个受并网前后发电机运行状况影响的暂态过程,利用MATLAB的S-Function编写DFIG的仿真程序,然后结合Simulink和SimPowerSystems工具箱,开发了基于S-Function的空载运行和发电运行的变速恒频双馈电机风力发电子系统模型,在仿真过程中可对双馈电机进行精确控制,然后对其进行了系统整合,本文开发的模型具有可移植性,只要再设计相应的控制器,就可应用于不同功率等级的双馈电机风力发电系统。不同运行工况下的仿真结果验证了系统模型的有效性。
     4、对比研究了电流内环和转速外环采用常规PI控制器、内模控制器以及只有转速环节采用模糊控制器的系统主要参数仿真结果。研究结果验证了转子侧变流器在超同步速时以单位功率因数运行于整流状态,在亚同步速时以单位功率因数运行于逆变状态,改变无功给定时可处于非单位功率因数运行状态。仿真结果验证了三种控制策略均可实现有功、无功功率的解耦控制及交流励磁变速恒频运行,相比而言模糊控制具有更好的控制性能。
     5、本文在对比研究风电并网系统网侧变换器和并联型电能质量控制器的电路拓扑结构、系统功能、能量流动关系、控制方法的基础上,尝试在不改变系统电路拓扑结构的基础上提出了将网侧变换器进行基于并网发电与谐波抑制和无功功率补偿相结合的统一协调控制方案,建立了7.5 kw变速恒频DFIG风力发电系统和并联型电能质量控制器统一协调控制仿真系统,验证了控制策略的可行性。
     6、随着风电场容量的不断增大,其并网冲击电流已不容忽视,必须对并网风电场进行深入研究。在电力系统分析中,常常用标么值系统来规格化系统量,可减小计算量且使计算简单,同时更加容易理解系统特性。本文详细推导了双馈电机的完备标么值方程,并在此基础上结合具体风电场并网算例参数,设计了仿真试验系统,应用MATLAB/SimPowerSystems对含5台2MW DFIG风力发电场接入电力系统运行进行了系统建模,并深入分析了转速变化、电压跌落、单相和三相短路故障工况的动态仿真结果。
     本文的研究工作对并网型交流励磁变速恒频DFIG风力发电系统的分析、建模与控制具有现实指导意义。
With the gradual exhaustion of the fossil fuel and serious environment pollution, sustainable energy plays an important role in distributed generation, and its percentage in the energy supply system will be ever increasing. The exploitation and utilization of renewable energy is inevitable choice for solving energy and environment issue. Wind energy, as one kind of clean, renewable energy, has a promising future of being developed and used in large scale. Grid connected wind power generation has become main technology because of compensation and sustentation from large power grid. The AC-excited doubly-fed induction generator (DFIG) has recently become the most widely used wind turbines for variable speed constant frequency (VSCF) wind power generation systems in industry, since it presents noticeable advantages such as: the variable speed generation, the decoupled control of active and reactive power, the reduction of mechanical stresses and acoustic noise, the improvement of power quality, and the use of a power converter with a rated power of about 30% of total system power.
     The key technology of AC-excited VSCF DFIG wind power generation system has been deeply studied in this dissertation. This thesis covers the operation principle analysis, control strategy realization, dynamic modeling and simulation of wind farm connected to grid for DFIG driven by a variable speed wind turbine. Main contents include as follows:
     1. The operation principle of AC-excited VSCF DFIG is introduced. Using the coordinate transformation theory, the application of power and turns invariance are discussed respectively. The dynamic machine model is derived simply in three-phase stationary frame, and the mathematical model of DFIG is derived according to generator and electromotor convention in d-q synchronous rotating reference frame in details. The work is important for other researchers, particularly for those who do computer simulation study of DFIG.
     2. Wind turbine drive train model is built based on mechanical power extracted from the wind, transfer and maximum power point tracking (MPPT) control algorithm. The response characteristics of an 850kw VSCF DFIG wind power generation system are simulated during variations of rotating speed. The MPPT control and excellent dynamic response is demonstrated by the simulation results.
     3. There are different operation states and control strategies of AC-excited VSCF DFIG wind power generation system before and after grid connected. The rotor converter adopts no-load connected grid control strategy and no-load run before cutting-in, maximum wind energy tracking control and generator run after cutting-in. The VSCF DFIG wind power generation is transient response proceeding, which is influenced by operation characteristics of generator before and after grid connected. A novel S-Function is adopted to describe the mathematic model of DFIG based on state equation. A complete simulation model of VSCF DFIG wind power generation system based on MATLAB/Simulink and SimPowerSystems is established, which can be used to not only simulate subsystems of no-load operation and generation operation, as well as can be used to but also accurate control parameters of DFIG in simulation. The simulation model have excellent transportability, and can be used DFIG of different power rated if only design relevant controller. At the same time, simulation confirms the effectiveness of the proposed dynamic model during variations of rotating speed.
     4. The current inner loop and the speed outer loop controllers was designed based on typical PI control and internal model control (IMC) controllers, as well as fuzzy controller adopted in speed outer loop. Simulation result comparison was conducted on using the traditional PI, IMC and fuzzy control for rotor side converter. Simulation waveforms in variation of control strategies demonstrate that rotor side converter can operate in sub-synchronous rectify and super-synchronous inverter with unit power factor respectively. In addition, rotor side converter can also operate non-unit power factor when reactive current reference is changing. The simulation results demonstrate decoupling control ability of active power and reactive power, and AC-excited VSCF operation under three control strategies. The fuzzy controller has better performance than other two controllers.
     5. The main circuit topology, system function, energy flow and control approach of grid side converter and parallel power quality controller (PPQC) were comparatively studied. A novel combined control strategy for both wind power grid connected generation and PPQC is proposed under circuit topology invariant. A 7.5kw system configuration and control strategy are analyzed and verified by simulation. The results of simulation prove the feasibility presented in this thesis.
     6. With the increasing capacity of wind farm, the current impact on connected to grid could not be ignored, thus wind farm grid connection should be investigated in depth. In power system analysis, it is usually convenient to use a per unit system to normalize system variables. A well-chosen per unit system can minimize computational effort, simplify evaluation, and facilitate understanding of system characteristics. A full per unit equation of DFIG is derived according to electromotor convention. Taking the parameters of wind farm with 5 DFIGs integrated into the weak grid for example, the simulation model is developed using MATLAB/SimPowerSystems. This thesis analyses in depth the impacts of grid connected wind farm, including wind speed varieties, voltage sags, single-phase short circuit and three-phase faults.
     The research work of dissertation has realistic guiding significance for analysis, modeling and control of grid connected AC-excited VSCF DFIG wind power generation system.
引文
[1]严陆光,夏训诚,周凤起,等.我国大规模可再生能源基地与技术的发展研究[J].电工电能新技术, 2007, 26(1): 13~24.
    [2] Sun Y, Wu J, Li G. Influence research of wind power generation on power systems [J]. Power System Technology, 2007, 31(20): 55~62.
    [3] Akhmatov V, Knudsen H, Nielsen A H, et al. Modeling and transient stability of large wind farms [J].Electrical Power and Energy System,2003, 25 (1): 123~144.
    [4] Petersson A, Thiringer T, Harnefors L. Modeling and experimental verification of grid interaction of a DFIG wind turbine [J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 878~886.
    [5] Chen Z, Spooner E. Grid power quality with variable speed wind turbines [J]. IEEE Transactions on Energy Conversion, 2001, 16(2): 148~154.
    [6] Hansen A D, Iov F, Blaabjerg F, et al. Review of contemporary wind turbine concepts and their market penetration [J]. Wind Engineering, 2004, 28(3): 247~263.
    [7] Reed G, Paserba J, Salavantis P. The FACTS on resolving transmission gridlock [J]. IEEE Power and Energy Magazine, 2003, 1(5): 41~46.
    [8] Sun T, Chen Z, Blaabjerg F. Flicker study on variable speed wind turbines with doubly fed induction generators [J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 896~905.
    [9] Hansen A D, S?rensen P, Iov F, et al. Centralised power control of wind farm with doubly fed induction generators [J]. Renewable Energy 2006, 31(7): 935~951.
    [10] Spachic E, Balzer G. Control possibility for offshore wind farms [J]. 15th PSCC, August 2005.Liege.
    [11] Tapia G, Tapia A, Ostolaza X. Two alternative modeling approaches for the evaluation of wind farm active and reactive power performances [J]. IEEE Transactions on Energy Conversion, 2006, 21(4): 909~920.
    [12] Lei Y, Mullane A, Lightbody G, et al. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies [J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 257~264.
    [13] de Almeida R G, Pecas Lopes J A, Barreiros A L. Improving power system dynamic behavior through doubly fed induction machines controlled by static converter using fuzzy control [J]. IEEE Transactions on Power Systems, 2004, 19(4): 1942~1950.
    [14] Ekanayake J B, Holdsworth L, Wu X G, et al. Dynamic modelling of doubly fed induction generator wind turbines [J].IEEE Transactions on Power Systems, 2003, 18(2): 803~809.
    [15] Freitas W, Vieira J C M, Morelato A, et al. Comparative analysis between synchronous and induction machines for distributed generation applications [J]. IEEE Transactions on Power Systems, 2006, 21(1): 301~311.
    [16] Hughes F M, Anaya-Lara O, Jenkins N, et al. Control of DFIG-based wind generation for power network support [J]. IEEE Transactions on Power Systems, 2005, 20(4): 1958~1966.
    [17] Rodriguez-Amenedo J L, Arnalte S, Burgos J C. Automatic generation control of a wind farm with variable speed wind turbines [J]. IEEE Transactions on Energy Conversion, 2002, 17(2): 279~284.
    [18] Morren J, De Haan W H S. Ride through of the wind turbines with doubly-fed induction generator during a voltage dip [J]. IEEE Transactions on Energy Conversion, 2005, 20(1): 435~441.
    [19] Seman S, Niiranen J, Arkkio A. Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance [J]. IEEE Transactions on Power Systems, 2006, 21(4): 1782~1789.
    [20] Muljadi E, Butterfield CP, Parsons B, et al. Effect of variable speed wind turbine generator on stability of a weak grid [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 29~36.
    [21] Morren J, De Haan W H S. Short circuit of wind turbines with doubly fed induction generator [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 174~180.
    [22] Xiang D, Li R, Peter J, et al. Control of a doubly fed induction generator turbine during grid fault ride-through [J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 652~662.
    [23] Mullane A, Lightbody G, Yacamini R. Wind-turbine fault ride-through enhancement [J]. IEEE Transactions on Power Systems, 2005, 20(4): 1929~1937.
    [24]施鹏飞.中国风电装机容量迅猛增加及存在的问题[J].可再生能源, 2007, 25(3): 4~5.
    [25]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术, 2003, 27(11): 60~63.
    [26]吴俊玲,周双喜,孙建锋,等.并网风力发电场的最大注入功率分析[J].电网技术, 2004, 28(20): 28~32.
    [27] Liserre M, Teodorescu R, Blaabjerg F. Stability of photovoltaic and wind turbine grid-connection inverters for a large set of grid impedance values [J]. IEEE Transactions on Power Electronics, 2006, 21(1): 263~271.
    [28]王承凯,许洪华,赵斌.基于SIMULINK的失速型风力发电机组软并网控制系统研究[J].太阳能学报, 2004, 25(5): 599~605.
    [29]陈实,谢少军.大型并网风力发电机组动态无功补偿装置的研究[J].华北电力技术, 2004, (4): 26~29.
    [30]陈树勇,申洪,张扬,等.基于遗传算法的风电场无功补偿及控制方法的研究[J].中国电机工程学报, 2005, 25(8): 1~6.
    [31]魏晓云,魏晓光,徐凤阁.基于VSC-HVDC的风力发电场交直流混合并网技术[J].中国电力, 2006, 39(9): 45~48.
    [32]雷亚洲, Lightbody G.国外风力发电导则及动态模型简介[J].电网技术, 2005, 25(12): 27~32.
    [33]李刚,文劲宇,程时杰,等.多功能柔性功率调节器的启动和并网研究[J].电力系统自动化, 2006, 30(3): 17~22.
    [34]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报, 2004,24(3): 6~11.
    [35]赵栋利,许洪华,赵斌,等.变速恒频风力双馈发电机并网电压控制研究[J].太阳能学报, 2004, 25(5): 587~591.
    [36]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机并网控制策略[J].电力系统自动化, 2006, 30(3): 51~55.
    [37]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化, 2007, 31(23): 84~89.
    [38]姚骏,廖勇.基于Crowbar保护控制的交流励磁风电系统运行分析[J].电力系统自动化, 2007, 31(23): 79~83.
    [39] Muller S, Deicke M, De Doncker R W. Doubly fed induction generator systems for wind turbines [J].IEEE Industry Applications Magazine, 2002, 8(3): 26~33.
    [40]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].湖北:华中科技大学博士论文. 2005.
    [41]王承熙,张源.风力发电[M].北京:中国电力出版社,2003.
    [42]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [43]叶启明.大型风力发电机组系统的结构与特点[J].华中电力,2002,15(2):67~68.
    [44] Soder L[ryf3], Ackermann T. Wind energy technology and current status: a review. Renewable and Sustainable Energy Review, 2000, 4:315~374.
    [45]徐锦才,许大中.多相励磁发电机的控制原理与性能分析[J].电工电能新技术, 1997,16(1):55~58
    [46]徐锦才,许大中.多相励磁发电技术的研究概述[J].电力系统自动化,1997,21(4):44~46.
    [47] Hansen L H, Blaabjerg F, Christensen H C, et al. Generators and power electronics technology for wind turbines [C]. IEEE Proceeding of IECON’01, 2001.
    [48]宋军英,黄险峰,刘涤尘,等.一种发电型FACTS控制器[J].湖南电力,2001,21(3):6~10.
    [49]邓先明,姜建国.无刷双馈电机的工作原理及电磁设计[J].中国电机工程学报,2003,23(11), 126~132.
    [50]谢震.变速恒频风力发电模拟平台的研究[D].安徽:合肥工业大学博士学位论文.2005:7~8.
    [51]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江:浙江大学博士学位论文.2005.
    [52]卞松江.变速恒频风力发电关键技术研究[D].浙江:浙江大学博士学位论文.2003.
    [53] Holmes P G, Elsonbathy N A. Cycloconvertor-excited divided-winding doubly-fed machine as a wind power converter[J]. IEE Proceedings B: Electric Power Applications, 1984, 131(2): 61~69.
    [54] Zhang L, Watthanasarn C. A matrix conerter excited doubly-fed induction machine as a wind power generator [C]. Seventh International Conference on Power Electronics and Variable Speed Drives, London, UK , 1998, 532~537.
    [55] Zuckerberger A, Weinstock D, Alexandrovitz A. Simulation of three-phase loaded matrix converter[J]. IEE Proceedings: Electric Power Applications, 1996, 131(4): 294~300.
    [56] Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation [J]. IEE Proceedings: Electric Power Applications, 1996, 131(3): 231~241.
    [57]贺益康,何鸣明,赵仁德等.双馈风力发电机交流励磁用变频电源拓扑浅析[J].电力系统自动化, 2006, 30(4): 105~112.
    [58] Bose B K.现代电力电子学与交流传动[M].王聪,赵金,于庆广等译.北京:机械工业出版社,2005.
    [59] Park R H. Two-reaction theory of synchronous machines-generalized method of analysis-part I [J]. AIEE Transactions, 1929, (48): 716~727.
    [60] Park R H. Two-reaction theory of synchronous machines-generalized method of analysis-part II [J]. AIEE Transactions, 1933, (52): 352~355.
    [61] Stanley H C. An analysis of induction motor [J]. AIEE Transactions, 1938, (57): 751-755.
    [62] Kron G. Equivalent circuit of electric machinery [M]. New York: John Wiley, 1951.
    [63] Adkins B, Harley R G.交流电机统一理论-在实际问题上的应用[M].唐任远,朱维衡译.北京:机械工业出版社,1980.
    [64] Blaschke F. The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines [J]. Siemens Review, 1972(39): 217~220.
    [65]陈伯时.电力拖动自动控制系统—运动控制系统(第三版) [M].北京:机械工业出版社,2003.
    [66]王正元,周美文.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1995.
    [67]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,1996:178.
    [68] Takahashi I, Noguchi T. A new quick-response and high-efficiency control strategy of an induction motor [J]. IEEE Transactions on Industrial Applications, 1986, 22(5): 820~827.
    [69] Depenbrock M. Direct self control (DSC) of inverter-fed induction machines [J]. IEEE Transactions on Power Electronics, 1988, 3(4): 420~429.
    [70] Ludtke I, Jayne M G. Vector control and direct torque control of induction motors [J]. IEE colloquium on 27 Oct, 1995: 6/1-6/6
    [71] Ludtke I, Jayne M G. A new direct torque control strategy-advances in control systems for electric drives [J]. IEE Colloquium on 24 May, 1995:5/1-5/4.
    [72] Yamamoto M, Motoyoshi O. Active and reactive power control for doubly-fed wound rotor induction generator [J]. IEEE Transactions on Power Electronics, 1991, 6(4): 624~629.
    [73] Pena R, Clare J C, Asher G M. A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable-speed wind turbine [J]. IEE Proceedings-Electric Power Applications, 1996, 143(5): 380~387.
    [74] Pinto J O, Bose B K, da Silva L E B. A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks [J]. IEEE Transactions on Industry Applications, 2001, 37(5): 1308~1318.
    [75] Peresada S, Tilli A, Tonielli A . Indirect stator flux-oriented output feedback control of a doubly fed induction machine [J]. IEEE Transactions on Control System Technology, 2003, 11(6): 875~888.
    [76] Anaya-Lara O, Hughes F M, Jenkins N, et al. Rotor flux magnitude and angle control strategy for doubly fed induction generators [J]. Wind Energy, 2006, 9(5): 479~495.
    [77]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159~162.
    [78] Krzeminski Z. Control system of doubly fed induction machine based on multiscalar model [J]. IFIC 1990, 8.
    [79] Liu Z, Mohammed O A, Liu S. A novel direct torque control of doubly-fed induction generator used for variable speed wind power generation [C]. Power Engineering Society General Meeting, Tampa, FL, USA, 2007: 1~6.
    [80] Xu L, Cartwright P. Direct active and reactive power control of DFIG for wind energy generation [J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 750~758.
    [81] Noguchi T, Tomiki H, Kondo S, et al. Direct power control of PWM converter without power source voltage sensors [J]. IEEE Transactions on Industrial Applications, 1998, 34(3): 473~479.
    [82] Datta R, Ranganathan V T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors [J]. IEEE Transactions on Power Electronics, 2001, 16(3): 390~399.
    [83] Malinowski M, Kazmierkowski M P, Hansen S, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers [J]. IEEE Transactions on Industrial Applications, 2001, 37(4): 1019~1027.
    [84] Escobar G, Stankovic A M, Carrasco J M, et al. Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces [J]. IEEE Transactions on Power Electronics, 2003, 18(3): 823~830.
    [85] Tang Y, Xu L. A flexible active and reactive power control strategy for a variable speed constant frequency generating system [J]. IEEE Transactions on Power Electronics, 1995, 10(4): 472~478.
    [86] Zhi D, Xu L, Morrow J. Improved direct power control of doubly-fed induction generator based wind energy system [J]. Electric Machines & Drives Conference, Antalya, Turkey, 2007: 436~441.
    [87] Zhi D, Xu L. Direct power control of DFIG with constant switching frequency and improved transient performance [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 110~118.
    [88] Harnefors L, Nee H. Model-based current control of AC machines using the internal model control method [J]. IEEE Transactions on Industry Applications, 1998, 34(1): 133-141.
    [89] Zhao Y, Zou X, Xu Y, et al. Maximal power point tracking under speed-mode control for wind energy generation system with doubly fed introduction generator [J]. IEEE 5th Power Electrics andiMotion Control Conference, Portoroz, 2006, (1): 1~5.
    [90] Hu J, He Y, Zhu J. The internal model current control for wind turbine driven doubly-fed induction generator [J]. Industry Applications Conference- 41st IAS Annual Meeting, 2006 (1): 209~ 215.
    [91] Patin N, Naassani A, Monmasson Eric, et al. Sliding mode control of a doubly-fed induction generator [J]. European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007:1~9.
    [92] Rashed M, Goh K B, Dunnigan M W, et al. Sensorless second-order sliding-mode speed control of a voltage-fed induction-motor drive using nonlinear state feedback [J]. IEE Proceedings- Electric Power Applications, 2005, 152(5): 1127~1136.
    [93]李岚,王秀丽.风力发电系统有功功率模糊控制器的设计[J].太阳能学报, 2007, 28(11): 1272~1277.
    [94] Koutiva X I, Vrionis T D, Vovos N A, et al. Optimal integration of an offshore wind farm to a weak AC grid [J]. IEEE Transactions on Power Delivery, 2006, 21(2): 987~994.
    [95] Soloumah H M, Kar N C. Fuzzy logic based vector control for induction motor drive [J]. Wind Engineering, 2006, 30(3): 201~223.
    [96] Jabr H M, Kar N C. Fuzzy gain tuner for vector control of doubly-fed wind driven induction generator [J]. Electrical and Computer Engineering Conference, Ottawa, Canadian, 2006: 2266~2269.
    [97] Lascu C, Boldea I, Blaabjerg F. Direct torque control of sensorless induction motor drives: a sliding-mode approach [J]. IEEE Transactions on Industry Applications, 2004, 40(2): 582~590.
    [98] Lin F J, Wang D H, Huang P K. FPGA-based fuzzy sliding-mode control for a linear induction motor drive [J]. IEE Proceedings- Electric Power Applications, 2005, 152(5): 1137~1148.
    [99] Shahnazi R, Shanechi H M, Pariz N. Position control of induction and DC servomotors : A Novel Adaptive Fuzzy PI Sliding Mode Control [J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 138~147.
    [100] Lin F J, Wang D H, Huang P K. Recurrent fuzzy neural network controller design using sliding-mode control for linear synchronous motor drive[J]. IEE Proceedings- Control Theory and Applications, 2004, 151(4): 407~416.
    [101]陆城,许洪华.风力发电用双馈感应发电机控制策略的研究[J].太阳能学报, 2004, 25(5): 606~611.
    [102]郎永强,徐殿国, Hadianmrei S. R,等.交流励磁双馈电机分段并网控制策略[J].中国电机工程学报, 2006, 26(19):133~138.
    [103]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报, 2006, 26(5): 43~50.
    [104] Chowdhury B H, Chellapilla S. Double-fed induction generator control for variable speed wind power generation [J]. Electric Power Research, 2006, 76 (9) : 786~800.
    [105]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报, 2006, 26(23): 109~114.
    [106] Mei F, Pal B. Model analysis of grid-connected doubly fed induction generators [J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 728~736.
    [107]郭金栋,赵栋利,林资旭,等.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报, 2006, 27(6): 1~6.
    [108] Chai C, Lee W, Fuangfoo P, et al. System Impact study for the Interconnection of wind generation and utility System [J].IEEE Transactions on Industry Applications,2005,41(l):163~168.
    [109] Banakar H, Luo C, Ooi B T. Steady-state stability analysis of doubly-fed induction generators under decoupled P-Q control [J]. IEE Proceedings-Electric Power Applications, 2006 153(2): 300~306.
    [110] Hughes F M, Anaya-Lara O, Jenkins N, et al. A power system stabilizer for DFIG -based wind generation [J]. IEEE Transactions on Power Systems, 2006, 21(2): 763~772.
    [111]魏晓光,汤广福,魏晓云,等. VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报, 2007, 22(4): 150~156.
    [112] Anaya-Lara O, Hughes F M, Jenkins N, et al. Influence of windfarms on power System Dynamic and Transient Stability [J]. Wind Energy, 2006, 30(2): 107~127.
    [113] Arulampalam A, Barnes M, Jenkins N, et al. Power quality and stability improvement of a wind farm using STATCOM supported with hybrid battery energy storage [J]. IEE Proceedings-Generation, Transmission and Distribution, 2006, 153(6): 701~710.
    [114] Akhmatov V, S?brink K. Static synchronous compensator for dynamic reactive-compensation of wind turbines [J]. Wind Energy, 2006, 30(1): 43~54.
    [115] Wei Q, Venayagamoorthy G K, Harley R G. Real-time implementation of a Statcom on a wind farm equipped with doubly fed induction generators [J]. Industry Applications Conference, 41st IAS Annual Meeting. 2006, (2): 1073 ~1080.
    [116] Ullah N R, Thiringer T. variable speed wind turbines for power system stability enhancement [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 52~60.
    [117] Morren J, de Haan S W H, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control [J]. IEEE Transactions on Power Systems, 2006, 21(1): 433~434.
    [118] Anaya-Lara O, Hughes F M, Jenkins N, et al. Contribution of DFIG-based wind farms to power system short-term frequency regulation [J].IEE Proceedings-Generation Transmission and Distribution, 2006, 153 ( 2 ): 164~170.
    [119] Holdworth L, Ekanayake J B, Jenkins N. Power system frequency response from fixed speed anddoubly fed induction generator-based wind turbines [J]. Wind Energy, 2004, 7(1): 21~35.
    [120] Lalor G, Mullane A, Oapos, et al. Frequency control and wind turbine technologies [J]. IEEE Transactions on Power Systems, 2005, 20 (4): 1905~1913.
    [121] Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines [J]. IET Renewable Power Generation, 2007,1(1): 3~9.
    [122]李辉,杨顺昌,廖勇等.变速恒频双馈发电机励磁控制策略综述[J].电工技术杂志, 2002,12: 5~8.
    [123]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报, 1998, 18(2): 87~90.
    [124]汤蕴 .电机学-机电能量转换[M].北京:机械工业出版社, 1986.
    [125] Harris M R, Lawrenson P J, Stephenson J M. Per-unit system with special reference to electric machines [M]. IEE Monograph: Cambridge University Press, 1970.
    [126]高景德,王祥珩,李发海.交流电机及其系统的分析(第二版)[M].北京:清华大学出版社, 2005.
    [127] Ekanayake J B, Holdsworth L, Jenkins N. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines[J]. Electric Power Systems Research, 2003, 67(3): 207~215.
    [128] Shafiu A, Anaya-Lara O, Bathurst G, et al. Aggregated wind turbine models for power system dynamic studies [J]. Wind Engineering, 2006, 30(3): 171~186.
    [129] Poddar G, Ranganathan V T. Sensorless double-inverter-fed wound-rotor induction-machine drive [J]. IEEE Transactions on industrial Electronics, 2006, 53(1): 86~95.
    [130] Gagnon R, Sybille G, Bernard S, et al. Modeling and real time simulation of a doubly-fed induction generator driven by a wind turbine[J]. International Conference on Power Systems Transients (IPST’05) in Montreal, 2005.
    [131] Ekanayake J B, Holdsworth L, Wu X, et al. Dynamic modeling of doubly fed induction generator wind turbines [J]. IEEE Transactions on Power Systems, 2003, 18(2): 803~809.
    [132] Tapia A, Tapia G, Ostolaza X, et al. Modeling and control of a wind turbine driven doubly fed induction generator [J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 194~204.
    [133] Fernández L M, Jurado F, Saenz J R. Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines [J]. Renewable Energy, 2008, 33(1): 129-140.
    [134] Schinas N A, Vovos N A, Giannakopoulos G B. An autonomous system supplied only by a Pitch controlled variable-speed wind turbine [J]. IEEE Transactions on Energy Conversion, 2007, 22(2):325-331.
    [135] Slootweg J G, Polinder H, Kling W L. Representing wind turbine electrical generating systems in fundamental frequency simulations [J]. IEEE Transactions on Energy Conversion, 2003, 18(4): 516-524.
    [136] Shi L, Xu Z, Hao J, et al. Modelling analysis of transient stability simulation with high penetration of grid-connected wind Farms of DFIG type [J]. Wind Energy, 2007, 10(4): 303~320.
    [137] Salman S K, AnitaL J T. Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator [J]. IEEE Transactions Power System, 2003, 18(2): 793-802.
    [138]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报, 2005, 25(3): 115~119.
    [139]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化, 2006, 30(8): 21~26.
    [140] Petersson A, Lundberg S, Thiringer T. A DFIG wind-turbine ride-through system influence on the energy production [J].Wind Energy, 2005, 8(3): 251~263.
    [141]李永东.交流电机数字控制系统[M].北京:机械工业出版社, 2002.
    [142] Simoes M G, Bose B K, Spiegel R J. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system [J]. IEEE Transactions on Power Electronics, 1997, 12(1): 87~95.
    [143]戴增辉,李含善,任永峰,等.并联型电能质量控制器的SVPWM控制[J].高电压技术, 2008, 34(2):298~302.
    [144] Akagi H. New Trends in Active Filters for Power Conditioning [J]. IEEE Transactions on Industry Applications, 1996, 32(6): 1312~1322.
    [145] Hingorani N G. Introducing Custom Power [J]. IEEE Spectrum, 1995, 32(6): 44~48.
    [146]王兆安,刘进军,杨君.谐波抑制和无功功率补偿[M].北京:机械工业出版社, 1998.
    [147] Akagi H, Kanzawa Y, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components [J]. IEEE Transactions on Industry Applications, 1984, 20(3): 625~630.
    [148]任永峰,李含善,胡洪涛,等.并联型电能质量控制器的建模仿真研究[J].系统仿真学报,2007, 19(20): 4620~4623.
    [149]汪海宁,苏建徽,张国荣.光伏并网发电及无功补偿的统一控制[J].电工技术学报, 2005, 20(9):114~118.
    [150]汪海宁,苏建徽,张国荣.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究[J].太阳能学报, 2006, 27(6):540~544.
    [151]张国荣,张铁良,丁明.光伏并网发电与有源电力滤波器的统一控制[J].电力系统自动化, 2007, 31(8): 61~66.
    [152] Wijayakulasooriya J V, Putrus G A, Ng C H. Fast non-recursive extraction of individual harmonics using artificial neural networks[J]. IEE Proceedings- Generation, Transmission and Distribution, 2005, 152(4): 539~543.
    [153] Vazquez J R, Salmeron P. Active power filter control using neural network technologies [J]. IEE Proceedings-Electric Power Applications, 2003, 150(2): 139~145.
    [154]于志豪,刘志珍,徐文尚.基于电路模型和神经网络的谐波电流检测方法[J].电工技术学报, 2004, 19(9): 86~89.
    [155] Ortiz A, Gherasim C, Ma ana M, et al. Total harmonic distortion decomposition depending on distortion origin [J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2651~2656.
    [156]向东阳,王公宝,马伟明,等.基于FFT和神经网络的非整数次谐波检测方法[J].中国电机工程学报, 2005, 25(9): 35~39.
    [157]任永峰,李含善,胡洪涛,等.基于多层前馈神经网络的并联型电能质量控制器研究[J].电工技术学报, 2007, 22(8): 108~113.
    [158] Angrisani L, et al. A measurement method based on wavelet transform for power quality analysis [J]. IEEE Trans. Power Delivery, 1998, 13(4): 990~998.
    [159] Gaouda A M, Salama M M A, Sultan M R, et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J]. IEEE Transactions on Power Delivery, 1999, 14(4):1469~1476.
    [160]梁玉娟,李群湛,赵丽平.基于小波分析的电力系统谐波分析[J].电力系统及其自动化学报, 2003, 15(6): 67~70.
    [161]薛蕙,杨仁刚,罗红,郭永芳.利用小波变换分析配电网电能质量扰动[J].电网技术, 2003, 27(7): 60~65.
    [162]周文晖,李青,周兆经.采用多分辨率信号分解的电能质量检测[J].电工技术学报, 2001, 16(6): 81~84.
    [163] Heydt G T, Galli A W. Transient power quality problems analyzed using wavelets [J]. IEEE Transactions on Power Delivery, 1997, 12(2): 908~915.
    [164]任永峰,李含善,赵卫东,等.基于小波变换的并联型电能质量控制器[J].电力系统及其自动化学报, 2006, 18(5): 21~24.
    [165] Rodriguez J M, Fernandez J L, Beato D, et al. Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case [J]. IEEE Transactions on Power Systems, 2002, 17(4): 1089~1095.
    [166]赵清声,王志新.双馈风力发电机组系统接入与稳定运行仿真[J].电网技术, 2007, 31(22):69~74.
    [167]王伟胜,范高峰,赵海翔.风电场并网技术规定比较及其综合控制系统初探[J].电网技术, 2007, 31(18):73~77.
    [168] Kundur P.电力系统稳定与控制[M].周孝信,宋永华,李兴源等译.北京:中国电力出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700