用户名: 密码: 验证码:
变压器负载可控的新型消弧线圈接地系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结当前谐振接地系统研究现状的基础上,针对中性点经消弧线圈接地电网存在的主要问题,重点从消弧线圈本体、即可调电抗器的结构和控制,谐振接地系统的自动调谐和单相接地故障选线三个方面展开研究。
     现有的消弧线圈主体结构及控制方式均存在一定的缺陷,如电感不能快速连续调节或是谐波比较严重等,影响了消弧线圈的补偿效果,使其应用受到一定的限制。针对这些问题,本文提出了一种新型的可调电抗原理及控制方法。这种新颖的电抗调节方法的基本原理是:使用电压型PWM逆变器作为变压器二次侧的负载,通过对负载电流的控制,可以实现变压器一次侧等效阻抗的任意调节。其核心是PWM逆变器的输出电流对变压器一次侧电流的跟踪控制,本文对逆变器及变压器建立了整体的控制系统模型,推导了系统的稳定判据及该控制方式下逆变器直流母线电压的设计原则,并运用仿真工具分析了电流跟踪的稳态性能和动态性能,提出了适用于本系统的电流跟踪控制方法。通过采用变压器二次侧多绕组的结构,还可以大大提高可调电抗器的容量。实验结果证明该新型可调电抗器具备电感线性连续可调、响应速度快、谐波电流小的优良性能,这也是消弧线圈补偿装置所追求的理想性能。
     准确检测电网对地电容是谐振接地系统有效补偿的基础。注入变频信号法具有不需要启动电感调节装置,不改变系统运行状态,二次回路测量等诸多优点,是目前应用较多的一种检测方法。但中性点位移电压的存在会影响注入信号的质量,同时给注入信号的相位判断带来困难。针对这些问题,结合变压器负载可控型消弧线圈的结构特点,首次构建了电网不对称时注入信号的电路和控制系统模型。基于对控制模型的分析,提出了一种新的注入变频信号的消弧线圈自动调谐方法:通过电压前馈校正控制的引入,有效抑制了50Hz工频电压对注入信号的干扰,使得注入信号不受电网不对称及中性点位移电压的影响;提出以中性点注入信号电压幅值最大做为新的谐振判据,有效提高了谐振状态判断的灵敏度和准确度。实验结果证明,所提方法极大的提高了不对称电网及中性点位移电压异常升高系统的电容检测精度,对各种形式的电网均具有良好的适应性。
     谐振接地电网的故障选线问题一直以来没有得到很好的解决。本文在总结了谐振接地电网现有的选线方法及最新进展的基础上,对应用广泛的基于零序电流有功分量的选线方法进行了重点分析,论述了线路对地电容不平衡对零序有功电流方向的影响,以此提出了一种新的基于零序有功分量的选线方法。该方法以线路瞬时功率的直流分量作为零序有功判据,解决了传统零序有功分量法信号小、检测困难等问题;针对线路不平衡电流对零序有功方向辨别存在的干扰问题,提出利用零序电流变化量与零序电压变化量之间的相角作为辅助判据的解决方法,并提出了一种计算该相角的算法。
     消弧线圈补偿与选线一体化并协调控制是谐振接地电网的发展方向。结合本文提出的基于瞬时功率的直流分量的选线方法及变压器负载可控型消弧线圈所具备的电阻调节特性,提出接地故障后微调消弧线圈等效电阻的控制方法,以增大故障线路的零序有功分量,使得故障特征更为明显,有利于提高选线判据的准确性。仿真研究证明所提方法原理可行、实现简单,对于高阻接地和线路不平衡的情况,亦能准确选线。在补偿电容电流的同时实现故障选线,构成了一体化的接地补偿与保护装置。
     研制了一套800kVA变压器负载可控型消弧线圈补偿装置,设计了基于DSP和CPLD微处理器的数字控制系统。对系统软硬件设计方面的关键问题进行了研究,提出了多种实用的硬件改进方法和软件优化算法,包括PWM触发脉冲抗干扰、开关噪声抑制、缓冲电路设计以及提高电流跟踪性能的核心控制算法等,理论分析和实测波形验证了所提方法的有效性。
     首次对800kVA消弧线圈样机进行了完整的三相动模试验,试验结果表明,该新型消弧线圈成套装置具备电容检测精度高、补偿范围广、响应速度快、谐波电流小等一系列的特点。经国家权威鉴定机构认定,其各项性能均能满足国家标准。目前10kV系列产品已挂网运行,情况良好。可以预见这种新型消弧线圈接地系统在我国城网改造中有着广阔的应用前景。
On the basis of comprehensively summarizing the current development and unsolved problems in neutral resonant grounding power system, this dissertation focus on following three parts to carry out studying, these are: new structure and control method of variable reactor, automatic tuning of resonant grounding system and fault line detection in single phase to ground faults.
     The existing structures and control strategies of variable reactor have some drawbacks, such as the inductance can not be regulated rapidly and continuously or generate serious harmonics. These shortages take negative influence on arc-suppression coil, which limit the compensation effect in practical application. Aim at these problems, a novel variable reactor structure with its control method has been proposed in this dissertation. The reactance tuning principle of this reactor is: using voltage source PWM inverter to be the secondary load of linear transformer, by controlling the inverter’s output current, which is also the transformer’s load current, the equivalent impedance of transformer’s primary winding can be regulated arbitrarily. The key point of this method is real-time control of inverter’s output current, which should trace transformer’s primary current rapidly and accurately. The holistic control model concerning the inverter with the transformer is founded. By analyses on the model, the criterion of system stabilization and design principle of the inverter’s DC link voltage are derived. Furthermore, the steady-state performance and dynamic performance of current tracing are analyzed by simulation tools, on the basis of which an effective arithmetic for this control system is presented. Large capacity variable reactor can be realized by adopting the structure of transformer with multiple secondary windings. Experimental results verified the excellent characteristic of this new type reactor, such as reactance linear and continuous tuning, fast response and few harmonic currents, which are also the ideal performance pursuing in arc-suppression coil application.
     Accurately detection of distribution network line-to-earth capacitance is the fundamental of effective compensation in neutral resonant grounding system. Injecting variable-frequency signal method has many advantages such as no need to adjust inductance of arc-suppression coil, unchanging running status of power utility, secondary measurement, etc, which is a widely used method in capacitive current detection. However, the existence of neutral point displacement voltage could take influence on the injected signal, which may make the phase judgement inaccurate. These problems have been analyzed basing on the presented novel arc-suppression coil. The equivalent circuit and control model of injecting signal method in unbalanced power networks are given out for the first time. With analysis on the control model, an improved automatic tuning method for arc-suppression coil is proposed, that is: adopting voltage feed forward control to restrain interfere of 50Hz displacement voltage, which can improve the characteristic of the injected signal significantly, make the injected signal without reference to unbalanced network and neutral displaced system. Another innovation is detecting the magnitude of neutral point signal-frequency voltage to judge the resonant state, which improves the sensitivity and accuracy of resonant judgement effectively. The experiments verified that the proposed method faithfully enhanced the capacitance detection capability and precision in unbalanced network or neutral with high displacement voltage network, which proved to have excellent adaptability in all type distribution networks.
     The fault line selection problem in neutral resonant grounding distribution network has not been well settled until now. On summarizing current fault line selection techniques and state-of-art developments in resonant grounding system, the technique based on zero-sequence active current is mainly researched in this dissertation. By analyzing the influence on the zero-sequence active current polarity while line-to-earth capacitance is unbalance in distribution network, a new fault-line selection method based on zero-sequence active power have been proposed. This method uses the DC component in line instantaneous power to be the criterion, which effectively solved the problem of precise detection of small active signal. To eliminate the interfere of inherent unbalanced current in the feeder, an auxiliary criterion is presented, which used the angle between zero-sequence varied current with zero-sequence varied voltage to judge the direction of active power. Additionally, arithmetic to calculate the phase angle has been proposed in the dissertation.
     A trend in the resonant grounding system is to make an integrated and coordinated control between the compensation of arc-suppression coil and the single phase to ground fault line selection. A new control strategy is presented by combining the proposed fault line selection method with the unique feature of resistance tuning capability of the novel arc-suppression coil. The fundamental principle is that properly varying the equivalent resistance of the arc-suppression coil to increase the active component in the fault line, which make the character of the fault line more evident, lead to the advance of high selection accuracy. Simulation results proved the validity and practicability of the presented method, the accuracy is satisfactory even in high-resistance grounding situation and in unbalanced system. The fault line selection is synchronous with capacitive current compensation, which fulfills an integrated compensation and protection equipment.
     A prototype based on the transformer with load controllable theory has been constructed, the capacity of which is up to 800kVA. A full digital control system based on DSP and CPLD microchip has been developed. The pivotal aspects in hardware and software design have been researched and discussed. Manifold optimized techniques in system design have been proposed, e.g. anti-jamming of PWM trigger signal, suppression of switching noise, design of snubber circuit and some kernel control arithmetic. The actual waveforms verified the validity of the proposed improvements.
     Three phase simulative experiments have been carried out on the 800kVA prototype. Experimental results proved that the novel arc-suppression apparatus has the characteristic of high precision in capacitance detection, wide compensation range, fast response and few harmonics. Authorized by national professional identify institution, the performances of this new type arc-suppression coil satify national standards. Now the 10kV series products have been well running in the power utility, it can be anticipated that this new arc-suppression coil grounding system have expectable future in medium-level distribution networks.
引文
[1]要焕年,曹梅月.电力系统谐振接地.北京:中国电力出版社,2000
    [2]李福寿.中性点非有效接地电网的运行.北京:水利电力出版社,1993
    [3]李润先.中压电网系统接地实用技术.北京:中国电力出版社, 2002
    [4] IEEE recommended practices for grounding of industrial and commercial power system. IEEE std. 142-2007
    [5] System Neutral Grounding and Ground Fault Protection Guide. Westinghouse Electric Corp., Ind. Commercial Power System Applications Series, Oct. 1984
    [6] Owen E L. The historical development of neutral grounding practices. IEEE Industry Application Magazine, 1997,3(2): 10-20
    [7]王一宇.城市配电网中性点接地方式讲座,第三讲:配电网中性点接地方式的应用.供用电,1997,14(1): 53-56
    [8] Detjen E.R, Shah K.R. Grounding transformer applications and associated protection schemes. IEEE Trans on Industrial Application, 1992,28(4): 788-796
    [9] Newbould A, Chapman K. Improving UK power quality with arc suppression coil. Seventh IEE International Conference on Developments in Power System Protection, April 2001, pp: 487-490
    [10] Climent M. Development in MV neutral control at EDF. 2.14 CIRED, 1991
    [11] D Griffel, Y Harmand. MV Networks: New Neutral Grounding at EDF. 1993
    [12]中压配电网:法国电力公司采用新的中性点接地方式.曹梅月译.沈阳电力技术,1997(1): 29-36
    [13] Mazon A J, Zamora I, Zabala L, et al. First resonant neutral grounding implantation in Spanish distribution system. Power Tech Proceedings, 2001 IEEE Porto vol.4, pp: 6-8
    [14] Kadomskaja K P, Wishtibeev A V. On resistive grounding of the neutral in networks from 6 to 35kV. The Third Russian-Korean International Symposium on Science and Technology, KORUS’99, vol.2, pp: 738-740
    [15]徐浩强,薛磊. 10kV城市配电网中性点接地方式的研讨.高电压技术,1993,19(2): 58-61
    [16] I Zamora, A J Mazon, et al.Verifying Resonant Grounding in Distribution Systems.Seventh International Conference on Developments in Power System Protection, April, 2001: 9-12
    [17]要焕年.用系统工程观点看城市电网中性点接地方式问题.中国电机工程学会:电力系统与电网技术综合学术年会论文集. 1993,11
    [18]郑红英.消弧线圈在我局配电网中的应用.浙江电力,2003(6): 52-53,70
    [19]符信勇,万军彪.消弧线圈在配电网的应用及其效果.江西电力,2004,28(2): 4-7,18
    [20]中华人民共和国电力行业标准DL/T 620-1997:《交流电气装置的过电压保护和绝缘配合》
    [21]连鸿波.谐振接地电网单相接地故障消弧及选线技术一体化研究.博士学位论文.华北电力大学,2005
    [22]刘和平.新型快速可调消弧线圈接地系统研究.博士学位论文.重庆大学,2004
    [23] Griffel D, Harmmand Y. A new deal for safety and quality on MV networks. IEEE Trans on Power Delivery, 1997,12(4):1428-1433
    [24]李锋,傅正财,江秀臣等.调匝式消弧线圈的自动调谐.上海交通大学学报,1996,30(1): 70-77
    [25] S. Sugimoto, S. Neo, H. Arita, J. Kida. Thyristor Controlled Ground Fault Current Limiting System for Ungrounded Power Distribution Systems. IEEE Transaction on Power Delivery, 1996, 11(2): 940-945
    [26]李景禄,林玉怀,陈忠仁,等.ZXB系列自动跟踪补偿消弧装置.电网技术,1998,22(2): 77-79
    [27]李润先.谐振接地是我国中压电网最理想的接地方式.高电压技术,1994,20(1): 40-43
    [28]蔡旭,李伟民.自动跟踪电网电容电流动态补偿系统研究.电力系统自动化,1995,19(8): 57-61
    [29]蔡旭.新型偏磁式消弧线圈及其控制.电力系统自动化,2002,26(10): 32-35
    [30] Cai Xu. A new arc-suppression coil with magnetic bias and its characteristics analysis. Sixth International Conference on Electrical Machines and Systems, ICEMS 2003, Nov. 2003, Vol 2, pp: 903-906
    [31]刘虹,尹忠东,陈柏超等.新型可控自动消弧成套装置的应用研究.电力系统自动化,1998,22(2): 9-12
    [32]尹忠东,程行斌,刘虹.可控电抗器在电网电容电流自动补偿中的应用.高电压技术,1996,22(3): 85-87
    [33]徐玉琴,陈志业,李鹏.晶闸管投切电容式消弧线圈的设计与应用研究.电力系统自动化,2001,28(7): 38-41
    [34]常思哲,杨学昌,闫兴中.查表式可控硅投切电容消弧线圈的研制.高电压技术,2004,30(4): 11-13
    [35]陆国庆,姜新宇,欧阳旭东,等.高短路阻抗变压器式自动快速消弧系统.电网技术,2000,24(7): 25-28
    [36] Wang Chonglin, Liang Rui, Liu Jianhua. Analysis on principle of operation of arc-suppression coil based on thristor controlled reactor. Proceedings of the 8th International Conference on Electrical Machines and Systems. ICEMS 2005, Sep. 2005, vol.2, pp: 1305-1308
    [37] Liu Zhichen, Chen Hongyan, Yu Zhihao. Harmonic Analysis of Arc Suppression Coil Based on Transformer with High Short Circuit Impedance. 2002 International Conference on Power System Technology, PowerCon 2002, Vol. 1, Oct. 2002: 130-133
    [38] Lian Hongbo, Yang Yihan, Zhu Xukai. Tan Weipu. Research on the Compensation Mode and New Principal-auxiliary Arc-suppression Coil in the Resonant Grounded System. 2004 International Conference on Power System Technology ( PowerCon2004 ) . Nov. 2004: 723-728
    [39] Lian Hongbo, Tan Weipu, Li Wenfeng, Yang Yihan. Research on a New Compensation Mode in MV Power Network. 2004 Power Systems Conference and Exposition (PSCE 2004 ) . Oct. 2004: 1234-1238
    [40]王崇林,梁睿,刘建华,等.基于变耦电抗法的新型消弧线圈.电力系统自动化,2005,29(20): 81-84
    [41]陆国庆,姜新宇.影响消弧线圈应用效果的重要性能.电网技术,2001,25(11): 62-65
    [42]中华人民共和国电力行业标准DL/T 1057-2007:《自动跟踪补偿消弧线圈成套装置技术条件》
    [43]齐郑,杨以涵.中性点非有效接地系统单相接地选线技术分析.电力系统自动化,2004,28(14): 1-5
    [44]李孟秋,王耀南,王辉,等.小电流接地系统单相接地故障点探测方法的研究.中国电机工程学报,2001,21(10): 6-9,23
    [45]蔡建新,刘健.基于故障投诉的配电网故障定位不精确推理系统.中国电机工程学报,2003,23(4): 57-61
    [46] W. H, Edwin Liu, Weili Zhong. A Fuzzy Set Method for Fault Location Identification in Power Distribution Systems. Proceedings of the 35th Conference on Decision and Control Kobe, Japan Dec. 1996, pp: 2208-2212
    [47]连鸿波,杨以涵,潘永刚,等.小电流接地系统中面向单相接地故障的自动重合闸技术.电力系统自动化,2004,28(6): 73-77
    [48]辜承林,陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2001
    [49]李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器的新原理.中国电机工程学报,2003,23(2): 116-120
    [50] Marian P K, Luigi M. Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Trans on Industrial Electronics, 1998,45(5): 691-703
    [51] Buso S, Malesani L, Mattavelli P. Comparision of current control techniques for active filter applications. IEEE Trans on Industrial Electronics, 1998,45(2): 722-729
    [52] Luis A M, Juan W D, Rogel R W. Three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation, IEEE Trans on Industrial Electronics, 1995,42(4): 402-408
    [53]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.中国电机工程学报,2002,22(2): 99-102
    [54] Malesani L, Mattavelli P, Tomasin P. High-performance hysteresis modulation technique for active filters. IEEE Trans on Power Electronics, 1997,12(5): 876-884
    [55] Malesani L, Mattavelli P, Tomasin P. Improved constrant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction. IEEE Trans on Industry Applications, 1997,33(5): 1194-1202
    [56] Rahman K M, Rezwan M, Choudhury M A, et al. Variable-band hysteresis current controllers for PWM voltage-source inverters. IEEE Trans on Power Electronics, 1997,12(6): 964-970
    [57]李玉梅,马伟民.无差拍控制在串联电力有源滤波器中的应用.电力系统自动化,2001,25(8): 28-30
    [58] Kukrer O. Deadbeat control of a three-phase inverter with an output LC Filter. IEEE Trans on Power Electronics, 1996,11(1): 16~23
    [59]盛建科.基于磁通控制的可调电抗理论及其在消弧线圈中的应用研究.博士学位论文.华中科技大学,2005
    [60]徐德鸿.电力电子系统建模及控制.北京:机械工业出版社,2006
    [61]王建辉,顾树生.自动控制原理.北京:清华大学出版社,2007
    [62] F Z Peng, J W Mckeever, D J Adams. A power line conditioner using cascade multilevel inverters for distribution systems. IEEE Trans on Industrial Application, 1998, 34(6): 1293-1298
    [63] Ortuzar M E, Carmi R E, Dixon J W, et al. Voltage-source active power filter based on multilevel converter and ultracapacitor DC link. IEEE Trans on Industrial Electronics, 2006,53(2): 477-485
    [64] Inzunza R, Akagi H. A 6.6-kV transformerless shunt hybrid active filter for installation on a power distribution system. IEEE Trans on Power Electronics, 2005,20(4): 893-900
    [65] Schauder C, Gernhardt M, Stacey E, et al. Development of a 100Mvar static condenser for voltage control of transmission system. IEEE Trans on Power Delivery, 1995,10(3): 1-8
    [66] D Li, Q Chen, Z Jia, et al. A high-power active filtering system with fundamental magnetic flux compensation. IEEE Trans on Power Delivery, 2006,21(2): 823-830
    [67]瓦修京斯基.变压器的理论与计算.崔立君,杜恩田等译.北京:机械工业出版社,1983
    [68]赵牧函,纪延超.消弧线圈自动调谐原理的研究.电力系统及其自动化学报, 2002,14(4): 50-54
    [69]高朝晖,赵靖英,李玲玲,等.自动跟踪补偿消弧装置的调谐原理.中国仪器仪表,2003(11): 8-10
    [70]江渝.快速可连续调节消弧线圈谐振接地系统的研究.博士学位论文.重庆大学,2005
    [71]曾祥君,尹项根,于永源,等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法.中国电机工程学报,2000,20(1): 29-32,36
    [72]曾祥君,于永源,尹项根,等.基于注入信号法的消弧线圈自动调谐新技术.电力系统自动化,2000,24(10): 38-41
    [73]程骏,陈柏超,黄甫成.基于注入信号法的TSC消弧线圈动态调谐接地装置.高压电器,2006,42(1): 63-65
    [74]刘力,孙结中.一种测量配电网电容电流的新方法.电网技术,2001,25(5): 63-65
    [75]董涛,夏小飞,刘铁.外加信号法测量配电网电容电流.电力自动化设备,2005,25 (11): 38-40
    [76]江渝,刘和平,冉立等.连续调节消弧线圈接地系统单相接地故障谐振状态在线监测的研究.中国电机工程学报,2005,25(13): 35-40
    [77]程路,陈乔夫,张宇,等.基于变压器可控负载原理的新型消弧线圈.电力系统自动化,2006,30(21): 77-81
    [78]李玲玲,孙鹤旭,王晓宏.谐振接地电力网自动调谐的新方法.中国电机工程学报,2003,23(6): 77-80
    [79]熊娅俐,陈乔夫,盛建科,等.基于注入信号的消弧线圈电容检测方法.高电压技术,2005,31(3): 36-38
    [80]严干贵,李果雪,张正茂,等.基于扫频法配电网电容电流测量装置研制.电力自动化设备,2007,27(3): 64-68
    [81]李毅敏,蔡旭.中压电网对地电容检测的注入信号源设计.继电器,2007,35(9): 45-51
    [82] Chaari O, Meunier M. Wavelets: a new tool for resonant grounded power distribution system relaying. IEEE Trans on Power Delivery, 1996,11(3): 1301-1308
    [83] Lazkano A, Ruiz J, Aramendi E. A new approach to high impedance fault detection using wavelet packet analysis. Ninth International Conference on Harmonics and Quality of Power, Oct. 2000, vol.3, pp: 1005-1010
    [84] Snider L A, Yuen Y S. The artificial neural networks based relay algorithm for distribution system high impedance fault detection. Fourth International Conference on Advances in Power System Control, Operation and Management, 1997. APSCOM-97. Nov. 1997, vol.1, pp: 100-106
    [85] Ruz F, Fuentes J A. Fuzzy decision making applied to high impedance fault detection in compensated neutral grounded MV distribution systems. IEE Seventh InternationalConference on Developments in Power System Protection, Apr. 2001, pp: 307-310
    [86] Sedighi A R, Haghifam M R, Malik O P, et al. High impedance fault detection based on wavelet transform and statistical pattern recognition. IEEE Trans on Power Delivery, 2005,20(4): 2414-2421
    [87]王祖光.微机小电流接地系统接地选择装置.电力系统自动化,1993,17(6):48-51
    [88]牟龙华.零序有功分量方向接地选线保护原理.电网技术,1999,23(9): 60-62
    [89]何奔腾,胡为进.能量法小电流接地选线原理.浙江大学学报,1998,32(4): 451-457
    [90]曾祥君,尹项根,张哲,等.零序导纳法馈线接地保护的研究.中国电机工程学报,2001,21(4): 5-10
    [91]林湘宁,高艳,刘沛,等.基于零序补偿导纳的小电流接地系统单相故障保护新方法.中国电机工程学报,2006,26(10): 45-49
    [92] Myron G, Ffim L, Roald Z. Zero sequence directional earth-fault protection with improved characteristics for compensated distribution networks. Electric Power Systems Research, 1999,(52): 217-222
    [93]邹浩斌,胡少强,刘利平,等.基于小扰动原理的单相接地选线装置.继电器,2007,35(2): 20-24
    [94]齐郑,刘宝柱,王璐.广域残流增量选线方法在辐射状谐振接地系统中的应用.电力系统自动化,2006, 30(3): 84-88
    [95]桑在中,张慧芬,潘贞存.用注入法实现小电流接地系统单相接地选线保护.电力系统自动化,1996, 20(2): 11-12
    [96]潘贞存,张慧芬,张帆,等.信号注入式接地选线定位保护的分析与改进.电力系统自动化,2007,31(4): 71-75
    [97]王耀南,霍百林,王辉,等.基于小波包的小电流接地系统故障选线的新判据.中国电机工程学报,2004,24(6): 54-58
    [98]戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究.中国电机工程学报,2003,23(5): 44-47
    [99] CHAARI O, PATRICK B, MICHEL M. Prony’s method: An efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks.IEEE Trans on Power Delivery, 1995,10(3): 1234-1241
    [100]曾祥君,尹项根,张哲,等.配电网接地故障负序电流分布及接地保护原理研究.中国电机工程学报,2001,21(6): 84-89
    [101]张庆超,杨金飞.基于两相电流变换的小电流接地系统故障选线新方法.电力系统自动化,2007,31(8): 75-79
    [102]符达.消弧线圈的调谐.北京:水利电力出版社,1960
    [103]陈维江,蔡国雄,蔡雅萍,等. 10kV配电网中性点经消弧线圈并联电阻接地方式.电网技术,2004,28(24): 56-60
    [104]马小亮.数字控制调速系统设计中需要考虑的几个问题.变频器世界,2005,8: 6-12
    [105]陈坚.电力电子学——电力电子变换和控制技术.北京:高等教育出版社,2002
    [106] SEMIKRON’s innovation & service. IGBT basic knowledge. 2007
    [107]贾正春,马志源.电力电子学.北京:中国电力出版社,2002
    [108]程路,郑毅,向先波. Protel 99SE多层电路板设计与制作.北京:人民邮电出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700