用户名: 密码: 验证码:
川东—渝北地区石炭系白云岩成因与成岩系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白云岩的成因问题是碳酸盐岩岩石学中最复杂、争论时间最久、最难解决的岩石学难题之一,成岩系统研究是成岩作用研究发展进程中与盆地动力学相结合的前沿研究领域。川东―渝北地区黄龙组碳酸盐岩在漫长的成岩历史中经历了准同生期孔隙水成岩系统、早成岩埋藏期压释卤水成岩系统、古表生期大气水成岩系统和再埋藏中―晚成岩期温压水成岩系统的复杂改造,最终形成了以晶粒白云岩、颗粒白云岩和白云质岩溶角砾岩为主的碳酸盐岩储层,可见研究该地区白云岩成因和成岩系统两大基础地质问题是评价黄龙组碳酸盐岩储层形成机理的关键,因此,对黄龙组储层的白云岩成因和成岩系统开展研究,不仅具有重要理论意义,更具实践意义。
     本论文在总结国内外相关研究最新成果的基础上,结合区域地质背景,采用岩矿鉴定技术以及碳氧锶稳定同位素、微量元素、稀土元素和包裹体等测试手段,对黄龙组白云岩成因和成岩系统及其与储层的发育关系进行了系统深入的研究,取得以下几点主要成果和新认识:
     1.通过野外剖面、岩心观察和室内岩矿分析结果,识别出微晶白云岩、粉-细晶白云岩、颗粒白云岩、白云质岩溶角砾岩、淡水白云石和热液白云岩等白云岩(石)类型,按照结构―成因分类,将其划分为准同生期白云岩、早成岩期埋藏白云岩、古表生期溶蚀白云岩和淡水白云石胶结物,以及再埋藏期的热液白云岩四种成因类型,不同期次和成因的白云岩(石),具有随着成岩强度加强,白云石有序度增高和MgCO3/CaCO3比值逼近1的演化趋势。
     2.层序―岩相古地理特征分析认为,黄龙组层序低位体系域时发育的萨勃哈、海侵体系域时间歇性海退期在局限区域形成的干旱蒸发环境提供了大量的封存地层卤水,为早成岩阶段的埋藏白云岩化作用提供了流体来源物质条件,海侵体系域发育的障壁滩和滨外粒屑滩相是早成岩期埋藏白云岩化作用最活跃区域,也是最有利储层发育的相带。
     3.碳、氧同位素地球化学特征分析结果,表明成岩期埋藏白云岩化流体来源于早期萨勃哈环境封存的地层卤水,古表生期的岩溶作用和淡水白云石和方解石的成因与大气水溶蚀有关,而再埋藏成岩期的异形白云石为深源热液溶蚀白云质基质岩的沉淀物。
     4.锶同位素地球化学特征分析结果,进一步证明了成岩期埋藏白云岩流体来源于黄龙组一段的海源地层卤水,岩溶岩的溶蚀与沉淀于孔洞缝的淡水白云石和方解石胶结物的流体来源于古表生期的大气淡水,而异形白云石是深部热液流体参与成岩作用的产物。
     5.稀土元素地球化学特征分析结果,表明准同生期和成岩期白云岩化过程中强烈的REE迁移贫化过程,是在性质相似的成岩流体中进行的,即成岩埋藏白云岩流体来源于准同生期封存在地层中的卤水,岩溶岩的溶蚀与淡水白云石和方解石胶结物的沉淀,形成于弱氧化的低温大气水流体中,而异形白云石的稀土元素特征也反映其为再埋藏期热液溶蚀基质白云岩后沉淀的热水矿物。
     6.根据不种成因类型的白云岩(石)各项地球化学特征及其所反映的成岩流体性质,按“水文体制”与相对应的成岩作用方式和相应的产物与组合特征,将黄龙组白云岩(石)的成岩演化历史划分为四个流体来源、性质、水―岩石相互作用过程各不相同,但连续演化的成岩系统,即准同生期孔隙卤水成岩系统、早成岩期压释地层卤水成岩系统、古表生期下渗大气水成岩系统和再埋藏期深部温压水成岩系统
     7.讨论了成岩体系与储层发育的关系,认为与储层发育关系最密切的是早成岩阶段压释卤水成岩系统的埋藏白云岩化作用、古表生期下渗大气水成岩系统的岩溶作用和再埋藏期中、晚成岩阶段的构造破裂作用。
Dolomite genesis problem is one of the most complex,disputing and difficultly resolving carbonate petrology difficulty,and diagenesis system study is a new frontier field combined with Sedimentary Basin Dynamics during developing diagenesis study. By the complex reconstruction of the penecontemporaneous pore water diagenetic stage,atmospheric water diagenesis system at ancient epigenenesis,early diagenetic burial stage of compaction brine diagenesis system and the middle to late re-buried temperature and pressure water diagenetic stage in eastern Sichuan-northern Chongqing area,carbonate of Huanglong Formation ultimately form carbonate reservoir which included three main rock types of grain dolomite ,crystalline doloston and corrosion-brecciated of karst rock. Dolomite genesis and Hydrological system are the key of evaluating carbonate reservoir of Huanglong Formation. So,the study of dolomite genesis and diagenesis system of Huanglong Formation reservoir not only important for theory significance, but also for practice significance.
     Based on the new conclusion of inland and overseas , and combined with the palaeogeographical setting of the study area,used instrumentations of lithology-mineral identification techniques;Carbon,Oxygen ,strontium stable isotopes;trace elements;rare earth elements and inclusion,by study of Dolomite genesis and diagenesis system and there relations with reservoir of Huanglong Formation ,the may conclusions and new recognitions as follows:
     1. Through comprehensive analysis of field section, well core description and lithology-mineral in house,dolomite styles of dolomicrite,crystal powder-fine dolomite, grain dolomite , corrosion-brecciated of karst rock , the fresh water dolomization , hydrothermal dolomization have been recognized. By classify with composition-genesis,the four models of dolomization have been set up:the penecontemporaneous dolomization,the burial diagenetic dolomization , the fresh water dolomization of epidiagenesis and hydrothermal dolomization of late diagenetic stage. Dolomite with different stages and genesis have the evolutionary trend of strengthen by diagenesis intensity,dolomite degree of order get higher,MgCO3/CaCO3 ratio arise trend of 1.
     2. Through the characteristics of sequence-based lithofacies and paleogeography,sabkha facie which developed on period of The low system tract sequence,the evaporation environment which developed on period of episodic regression stage of transgression system tract in limitate area,and layer brine water which seal up in this environment offer fluid original source material condition for early diagenetic stage burial dolomitization . The barrier grain beach and offshore grain beach in TST period are the most active area of the early burial diagenetic,And are thought the most favourite reservoir facies.
     3. Based on the characteristics of Carbon,Oxygen stable isotopes, the diagenetic burial dolomitizing fluids came from burial brine water of early stage sabkha environment,the genesis of karstification of epidiagenetic stage and limnic-dolomite and limnic-Calcite have related with atmospheric water corrosion,hydrothermal dolomite of reburial period is the precipitate of deep hydrothermal fluid corroded dolomitic matrix rock.
     4. By the synthetical analysis of geochemical characteristics of Sr isotope,further demonstrate that the diagenetic burial dolomitizing fluids came from sea origin brine water of Huanglong FormationⅠ, fluids of karstification of karst rocks and the cement of limnic-dolomite and limnic-Calcite came from atmospheric water of epidiagenetic stage,and hydrothermal dolomite is the result of deep hydrothermal fluid participated in diagenesis.
     5. By the synthetical analysis of geochemical characteristics of rare earth elements,the conclusion that the removing of the REE at dolomitization process strongly in the penecontemporaneous stage and diagenetic burial stage,the diagenetic burial dolomitizing fluids came from brine water of penecontemporaneous stage,karstification of karst rocks and the cement of limnic-dolomite and limnic-Calcite take shape from weak oxygenated low temperature atmospheric water fluids. Rare earth elements characteristics of hydrothermal dolomite reflected it’s the hydrotherm mineral of hydrothermal fluid corroded matrix dolomite rock on reburial period.
     6. According to geochemical behavior and diagenetic fluid property of different genetic types dolomite,though“Hydrological system”and the manner of diagenesis,researching of corresponding product of geology,combination,evolution stage of diagenesis in Huanglong Formation are divided into four fuild origin,property,water-rock interaction process,the effect of them to the reservoir development are also different. So the diagenesis systems and manner of diagenesis,are mainly as follows:the penecontemporaneous stage pore water diagenesis system;early diagenetic burial stage of compaction brine diagenesis system;ancient epigenenesis atmospheric water diagenesis system at and re-buried deep temperature and pressure water diagenetic stage.
     7. Discussed the relations of the diagenesis systems and reservoir development, which related to the reservoir development closely,are mainly as follows:the role of burial dolomitization of compaction brine diagenesis system at early diagenetic stage ; the karstification of atmospheric water diagenesis system at ancient epigenenesis; the role of tectonic disruption at the middle to late re-buried diagenetic stage.
引文
1. Anderson T F and Arthur M A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems (in Stable isotopes in sedimentary geology)[J]. SEPM Short Course,1983,10 1.1-1.151.
    2. Badiozamani K. The Dorag dolomitization model-Application to the Middle Ordovician of Wisconsin[J].Journal of Sedimentary Petrology,1973,43(4):965-984.
    3. Banner J L,Hanson G N and Meyers W J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian);implications for REE mobility during carbonate diagenesis[J]. Journal of Sedimentary Research,1988,58(3):415-432.
    4. Bertram C J,Elderfield H and Aldridge R J. 87Sr/86Sr,143Nd/144Nd and REEs in Silurian phosphatic fossils[J].Earth and Planetary Science Letters,1992,113(1-2):239-249.
    5. Bjorlykke K,Mo A and Palm E.Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions[J].Marine and Petroleum Geology , 1988,5(4):338-351.
    6. Boles J R,Franks S G.Clay diagenesis in Wileox sandstones of southwest Texas:implications of smeclite diagenesis on sandstone cementation[J].Journal of Sedimentary Petrology,1979,49:55-70.
    7. Boni M,Iannace A,Bechstaedt T,et al.Hydrothermal dolomites in SW Sardinia(Italy)and Cantabria(NW Spain);evidence for late- to post-Variscan widespread fluid-flow events ( in Proceedings of GeofluidsⅢ; third international conference on Fluid evolution,migration and interaction in sedimentary basins and orogenic belts)[J].Journal of Geochemical Exploration,2000,69-70:225-228.
    8. Boni M,Parente G,Bechstaedt T,et al.Hydrothermal dolomites in SW Sardinia(Italy); evidence for a widespread late-Variscan fluid flow event(in Paleofluid flow and diagenesis during basin evolution)[J].Sedimentary Geology,2000,131(3-4):181-200.
    9. Boynton W V. Geochemistry of the rare earth elements : meteorite studies[A].Henderson P. Rare Earth Element Geochemistry[C]. Elservier,1984,63-114.
    10. Brand U. Strontium isotope diageneais of blogenic aragonite and low-Mg calcite[J].Geochim Cosmochim Acta,1991,55:505-513.
    11. Brass G W. The variation of the marine 87Sr/86Sr ratio during Phanerozoic time[J].Geoehim Cosmochim Acta,1976,40:721-730.
    12. Breesch L,Stemmerik L,Wheeler W,et al.Fluid flow reconstruction in a complex paleocave system reservoir in Wordiekammen,Central Spitsbergen[J]. Journal of Geochemical Exploration,In Press, Accepted Manuscript,Available online 13,2008.
    13. Burke W H ,Benison R E,Hetherington E A,et a1. Variation of 87Sr/86Sr throughour Phanerozoic time[J].Geology,1982,10:516-519.
    14. Choquette P W and James N P. Diagenesis;limestones;3,The deep burial environment[J]. Geoscience Canada,1987,14(1):3-35.
    15. Choquette P W and James N P. Paleokarst[M]. New York:Springer Verlag,1988.
    16. Clayton R N. Oxygen isotope composition of the Luna 16 soil[J].1972,13(2):455-456.
    17. Clyde H. Moore Intertidal carbonate cementation,Grand Cayman,West Indies[J]. Journal of Sedimentary Research,1973,43:591-602.
    18. Crame J A,McArthur J M,Pirrie D,et al. Strontium isotope correlation of the basal Maastrichtian Stage in Antarctica to the Ruropean and US biostratigrapic scheme[J].Jorunal of the Geological Society,London,1999,156:957-964.
    19. Curtis C D.Possible link between sandstone diagenesis and depth-ralate geochemical reactions occurring in enclosing mudstone[J].J. Geol. Soc. Lond.,1978,135:107-114.
    20. Davies G R and Smith Jr. L B. Structurally controlled hydrothermal dolomite reservoir facies:An overview[J].AAPG Bulletin,2006,90(11):1657.
    21. Denison R E,Koepnick R B,Burke W H,et a1.Construction of the Mississippian,Pennsylvanian and Permian seawater 87Sr/86Sr curve[J].Chem. Geol. 1994,112:145-167.
    22. Derry L A ,Keto L S,Jacobsen S B,et a1. Sr isotope variations in Upper Proterozoic carbonates from Svalbard and East Greenland[J]. Geochim Cosmochim Acta,1989,53:2331-2339.
    23. Dorobek S L and Filby R H. Origin of dolomites in a downslope biostrome,Jefferson Formation (Devonian),central Idaho;evidence from REE patterns,stable isotopes,and petrography[J]. Bulletin of Canadian Petroleum Geology,1988,36(2):202-215.
    24. Duggan J P,Mountjoy E W and Stasiuk L D. Fault-controlled dolomitization at Swab Hill Simonette oil field(Devonian),deep basin west-central Alberta,Canada[J]. Sedimentology,2001,48(2):301-323.
    25. Feng Zengzhao and Jin Zhenkui.Types and origin of dolostones in the Lower Palaeozoic of the North China Platform[J].Sedimentary Geology,1994,93(3-4):279-290.
    26. Feng Zengzhao,Zhang Yongsheng and Jin Zhenkui.Type,origin,and reservoircharacteristics of dolostones of the Ordovician Majiagou Group,Ordos,North China Platform[J].Sedimentary Geology,1998,118(1-4):127-140.
    27. Folk R L and Land L S. Mg/Ca Ratio and Salinity; Two Controls over Crystallization of Dolomite[J]. AAPG Bulletin,1975,59:60-68.
    28. Galimov E M, Botkunov A I,Bannikova L A,et al.Isotopic composition of carbon from bitumens in igneous and metamorphic rocks[J].Acad. Sci. USSR,Dokl.,Eacrth Sci. Sect. 1968,181-183.
    29. Galloway W E. Hydrogeologic regimes of sandstone diagenesis ( in Clastic diagenesis) [J].AAPG Memoir,1984,37:3-13.
    30. Garven G,Appold M S,Toptygina V I,et al. Hydrogeologic modeling of the genesis of carbonate-hosted lead-zinc ores[J].Hydrogeology Journal,1999,7(1):108-126.
    31. Gebelein C D,Steinen R P,Garrett P,et al. Subsurface dolomitization beneath the tidal flats of central West Andros Island,Bahamas(in Concepts and models of dolomitization)[J].Special Publication-Society of Economic Paleontologists and Mineralogists,1980,(28):31-49.
    32. Goldstein R H.Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement[J].Geology,1986,14:792-795.
    33. Graustein W C. Stable isotopes in ecological research[M]. New York:Springer,1989,491-512.
    34. Green D G and Mountjoy E W. Fault and conduit controlled burial dolomitization of the Devonian West-central Alberta Deep Basin[J]. Bulletin of Canadian Petroleum Geology,2005,53(2):101-129.
    35. Hairou Qing,Bosence D W and Rose E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates , Gibraltar , Western editerranean[J].Sedimentology,2001,(48):153-163.
    36. Hairuo Qing and Mountjoy E W. Formation of coarsely crystalline,hydrothermal dolomite reservoirs in the Presqu'ile barrier,Western Canada sedimentary basin[J]. AAPG Bulletin,1994,78:55-77.
    37. Hairuo Qing and Mountjoy E W. Rare earth element geochemistry of dolomites in the Middle Devonian Presquile barrier,Western Canada Sedimentary Basin:implications for fluid-rock ratios during lomitization[J]. Sedimentology,1994,41:787-804.
    38. Hanshaw B B , William Back and Deike R G.A geochemical hypothesis for dolomitization by ground water[J].Economic Geology,1971,66:710-724.
    39. Hess J,Stott L D,Bender M L K,et al. The Oligocene marine microfossil record:age assessments using strontium isotopes[J].Paleoceanography,1989,4:655-679.
    40. Heydari E. Hydrotectonic models of burial diagenesis in platform carbonates based on formation water geochemistry in North American sedimentary basins(in Basin-wide diagenetic patterns; integrated petrologic,geochemical,and hydrologic considerations)[J].Special Publication-Society for Sedimentary Geology,1997,57:53-79.
    41. Howarth R J and McArthur J M. Statistics for strontium isotope stratigraphy:a robust LOWESS fit to marine Sr isotope curve for 0 to 206 Ma ,with look2up table for derivation of numeric age[J].J. Geol. 1997,105:441-456.
    42. Hsu K J and Siegenthaler C.Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem ( in Lithification of carbonate sediments)[J].Sedimentology,1969,12(1-2):11-25.
    43. James N P and Choquette P W.Paleokarst[J].Springer-Verlag,New York,NY,United States,1988,416.
    44. Jones C E,Jenkyns H C,Coe A L,et a1.Strontium isotopic variations in Jurassic and Cretaceous seawater[J].Geochim Cosmochim Acta,1994,58:3061-3074.
    45. Kaufman A J ,Jacobsen S B and Knoll A H. The Vendtan record of Sr and C isotopic variations in seawater.Implications for tectonic and paleoclimate[J].Earth Planet,SciLETT,1993,120:409-430.
    46. Kaufman J.Numerical Models of Fluid Flow in Carbonate Platforms Implications for Dolomitization[J].Sediment. Res.,Sect. A,1994,64(1):128-139.
    47. Keith M L and Weber J N.Carbon and oxygen isotopic composition of selected limestones and fossils[J].Geochimica et Cosmochimica Acta,1964,28(11):1787-1816.
    48. Land L S. Contemporaneous dolomitization of middle Pleistocene reefs by meteoric water,north Jamaica(in Coral Reef Project)[J]. Bulletin of Marine Science,1973,23(1):64-92.
    49. Land L S. The isotopic and trace element geochemistry of dolomite;the state of the art (in Concepts and models of dolomitization)[J].Special Publication - Society of Economic Paleontologists and Mineralogists,1980,(28):87-110 .
    50. Land L S.Limestone diagenesis;some geochemical considerations(in Studies in diagenesis)[J]. U. S. Geological Survey Bulletin,1986,129-137.
    51. Lawrence A. Hardie Dolomitization;a critical view of some current views[J]. Journal of Sedimentary Research,1987,57:166-183.
    52. Loucks R G. Paleocave carbonate reservoirs:Origins,burial depth modification,spatial complexity,and reservoir implications[J].AAPG Bulletin,1999,83(11):1795-1834.
    53. Loucks,R G,Mescher P K and McMechan G A.Three dimensional architecture of a coalesced, collapsed paleocave system in the Lower Ordovician Ellen burger Group, Central Texas[J]. AAPG Bulletin,2004,88(5):545-564.
    54. McArthur J M,Kennedy W J,Chen M,et a1.Strontium isotope stratigraphy for theLate Creataceous:direct numerical age calibration of the Sr2isotope curve for the U. S.Western interior Seaway. Palaeogeogr. Palaeoclim[J].Palaeoecol,1994,108:95-119.
    55. McMechan G A, Loucks R G,Zeng X X,et al. Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite,central Texas[J]. Journal of Applied Geophysics,1998,39(1):1-10.
    56. McMechan G A,Loucks R G,Mescher P,et al. Characterization of a coalesced ,collapsed paleocave reservoir analog using GPR and well core data[J].Geophysics,2002,67(4):1148-1158.
    57. Miller K G ,Feigenson M D,Wright J D,et al. Miocene isotope reference section,Deep Sea Drilling Project Site 608:an evaluation of isotope and biostratigraphic resolution[J]. Paleoceanography,1989,6:33-52.
    58. Montanez I P. Late diagenetic dolomitization of Lower Ordovician,upper Knox carbonates; a record of the hydrodynamic evolution of the southern Appalachian Basin[J].AAPG Bulletin,1994,78:1210-1239.
    59. Morrow D W.Distribution of porosity and permeability in platform dolomites:Insight from the Permian of west Texas:Discussion[J].AAPG Bulletin,2001,85(3):525-529.
    60. Müller D W,Mckenzie J A and Mueller P A. Abu Dhabi sabkha,Persian Gulf,Revisited:Application of strontium isotopes to test an early dolomitization model[J]. Geology,1990,18:618-621.
    61. Olivarez A M and Owen R M. The europium anomaly of seawater:implications for fluvial versus hydrothermal REE inputs to the oceans[J]. Chemical Geology,1991,92:317-328.
    62. Oslick J S , Miller K G and Feigenson M D. Oligocene Miocene Sr isotopes;correlations to an inferred glacioeustatic record[J].Eos ,Transactions,American Geophysical Union,1994,75(16,Suppl):202.
    63. Palmer M R and Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth Planet. Sci. Lett. 1989,92:11-26.
    64. Palmer M R and Elderfield H.Sr isotope composition of sea water over the past 75 Myr[J]. Nature,1985,314:526-528.
    65. Paytan A,Kastner M,Martin E E,et a1. Marine barite as a monitor of seawater strontium isotope composition[J]. Nature,1993,366:445-449.
    66. Popp N B,Podosek F A,Brannon J C,et a1. 87Sr/86Sr in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells[J].Geochimica at Cosmochimica Acta. 1986,50:l321-1328.
    67. Reeder R J. Crystal chemistry of the rhombohedral carbonates[J]. Reviews in Mineralogy and Geochemistry,1983,11:1-47.
    68. Reeder R J. Electron optical investigation of sedimentary dolomites[J]. Contributions to Mineralogy and Petrology,1981,76(2):148-157.
    69. Schmidt V and McDonald D A.The role of secondary porosity in the course of sandstone diagenesis (in Aspects of diagenesis)[J].Special Publication - Society of Economic Paleontologists and Mineralogists,1979, (26):175-207.
    70. Sun S Q.A reap praisal of dolomite abundance and occurrence in the Phanerozoic[J]. Sediment. Res. Sect.,1994,64(2):396-404.
    71. Surdam R C, Boese S W and Crossey L J.The chemistry of secondary porosity (in Clastic diagenesis)[J].AAPG Memoir,1984,37:127-149.
    72. Surdam R C,Crossey L J,Hagen E S,et al..Organic-inorganic and sandstone diagenesis[J].AAPG Bulletin,1989,73:1-23.
    73. Vail P R,Mitchum R M and Thompson M S. Seismic stratigraphy and global changes of sea level,Part 4:Global cycles of relative changes of sea level. ln:Seismic Stratigraphy.Applications to Hydrocarbon Exploration.Edited by Ch E Payton[J]. Bull,A.A.P.G.Memoir,1977,26:83-97.
    74. Vail P R,Mitchum R M and Thonpson SⅢ. Seismic stratigtaphy and global changes of sea level,part3,relative changes of sea level from coastal onlap.In C.E.Payton , ed. , Seismic stratigraphy application to hydrocarbon exploration[J].AAPG,Memoir,1977,26:63-82.
    75. Veizer J and Hoefs J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks[J].Geochimica et Cosmochimica Acta. 1976,40(11):1387-1395.
    76. Veizer J,Ala D,Azmy K B,et al. 87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater[J].Chem.Geo1,1999,161:59-88.
    77. Veizer J,Holser W T and Wilgus C K. Correlation of 13C/12C and 34S/32S secular variations[J]. Geochimica et Cosmochimica Acta. 1980,44(4):579-588.
    78. Warren J. Dolomite : occurrence , evolution and economically important associations[J]. Earth Science Reviews,2000,52:181.
    79. Whitaker F F and Smart P L.Dolomitization;from conceptual to numerical models( in The geometry and petrogenesis of dolomite hydrocarbon reservoirs )[J].Geological Society Special Publications,2004,235:99-139.
    80. Wojcik K M,Goldstein R H and Walton A W.History of diagenetic fluids in a distant foreland area,Middle and Upper Pennsylvanian,Cherokee Basin,Kansas,USA;fluid inclusion evidence[J].Geochimica et Cosmochimica Acta,1994,58(3):1175-1191.
    81. Wolf K H and Chilinger G V.DiagenesisⅢ[M].Amsterdam:Elsevier,1992:790.
    82. Wolf K H and Chilinger G V.DiagenesisⅣ[M].Amsterdam:Elsevier,1992:519.
    83. Worden R H,Burley S D.Sandstone diagenesis:the evolution of sand to stone.In:Burley S D , Worden R H ( eds. ) .Sandstone diagenesis : recent andancient[M].Blacewell Pub.,2003:1-44.
    84. Ye Ping,Zhou Aiguo,Liu Cunfu,et al.Genesis of Sr Isotopes in Ground water of Hebei Plain[J].Journal of China University of Geosciences,2007,18(2):177-184.
    85. Zarasvandi A,Charchi A,Carranza E J M,et al. Karst bauxite deposits in the Zagros Mountain Belt,Iran[J]. Ore Geology Reviews,2008,34(4):521-532.
    86. Zenger D H and Dunham J B. Concepts and models of dolomitization; an introduction(in Concepts and models of dolomitization)[J].Special Publication-Society of Economic Paleontologists and Mineralogists,1980,(28):1-9.
    87. Zenger D H , Dunham J B and Ethington R L. Concepts and models of dolomitization[J].Special Publication-Society of Economic Paleontologists and Mineralogists,1980,(28):320.
    88.蔡勋育.普光气田下三叠统飞仙关组储层特征[J].石油天然气学报,2005,27(1):43-45.
    89.陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社,1990,59-172.
    90.陈更生,曾伟,杨雨,等.川东北部飞仙关组白云石化成因探讨[J].天然气工业,2005,25(4)40-41.
    91.陈洪德,刘文均,郑荣才,等.层序地层学理论和研究方法[M].成都:四川科学技术出版社,1994,1-5.
    92.陈骏,仇纲,杨杰东.黄土碳酸盐Sr同位素组成与原生和次生碳酸盐识别[J].自然科学进展,1997,7(6):731-734.
    93.陈骏,王鹤年.地球化学[M].科学出版社,2004,1-417.
    94.杜定全,任军平,王约,等.古岩溶起伏对黔北铝土矿的控制作用[J].矿物学报,2007,27(3/4):473-476.
    95.方少仙,董兆雄,侯方浩,等.层状白云岩储层特征与成因[M].北京:地质出版社,1999,1-115.
    96.冯增昭,鲍志东.鄂尔多斯奥陶纪马家沟期岩相古地理[J].沉积学报,1999,17(1):1-8.
    97.冯增昭.沉积岩石学[M].北京:石油工业出版社,1993,305-316.
    98.冯增昭.单因素分析综合作图法―岩相古地理学方法论[J].沉积学报,1992,10(3):70-77.
    99.高进.深部岩溶[J].工程勘察,1987,(1):47-54.
    100.高梅生,郑荣才,文华国,等.川东北下三叠统飞仙关组白云岩成因:来自岩石结构的证据[J].成都理工大学学报(自然科学版),2007,34(3):297-302.
    101.顾家裕,朱筱敏,贾进华,等.塔里木盆地沉积与储层[M].北京:石油工业出版社,2003,1-400.
    102.郭一华.川东地区石炭系储层成岩作用和天然气成藏规律[J].西南石油学院学报,1994,16(1):1-10.
    103.韩贵琳,刘丛强.贵阳地区雨水化学与Sr同位索地球化学[J].第四世纪研究,2003,23(2):231.
    104.何莹,郭旭升,张克银,等.川东北飞仙关组优质储层形成研究[J].天然气工业,2007,27(1):12-16.
    105.何自新,杨奕华.鄂尔多斯盆地奥陶系储层图册[M].北京:石油工业出版社,2004,1-244.
    106.贺秀斌.微量元素锶及其同位素的地球化学研究与应用前景[J].地球科学进展,1997,12(1):15-19.
    107.亨德森.稀土元素地球化学[M].北京:地质出版社,1989,195-213.
    108.胡光灿,谢姚祥.中国四川东部高陡构造石炭系气田[M].北京:石油工业出版社,1999,16-19.
    109.胡忠贵,郑荣才,胡九珍,等.川东―渝北地区黄龙组白云岩储层稀土元素地球化学特征[J].地质学报,2009,83(6),定稿待刊.
    110.胡忠贵,郑荣才,文华国,等.川东邻水―渝北地区石炭系黄龙组白云岩成因[J].岩石学报,2008,24(6):1369-1378.
    111.胡忠贵,郑荣才,周刚,等.川东邻水―渝北地区石炭系古岩溶储层稀土元素地球化学特征[J].岩石矿物学杂志,2009,28(1):37-44.
    112.黄尚瑜,宋焕荣.油气储层的深岩溶作用[M].中国岩溶,1997,16(3):189-197.
    113.黄思静,Hairuo Qing,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J].岩石学报,2006,22(8):2123-2132.
    114.黄思静,石和,刘洁,等.锶同位素地层学研究进展[J].地球科学进展,2001,16(2):195-200.
    115.黄思静,石和,毛晓冬,等.早古生代海相碳酸盐的成岩蚀变及其对海水信息的保存性[J].成都理工大学学报(自然科学版),2003,30(1):9-18.
    116.黄思静,石和,张萌,等.上扬子石炭―二叠纪海相碳酸盐的锶同位素演化与全球海平面变化[J].沉积学报,2001,19(4):481-487.
    117.黄思静,孙治雷,吴素娟,等.三叠纪全球海水的锶同位素组成及主要控制因素[J].矿物岩石,2006,26(1):43-48.
    118.黄思静,吴素娟,孙治雷,等.中新生代海水锶同位素演化和古海洋事件[J].地学前缘,2005,12(2):133-141.
    119.黄思静.川西北甘溪中、上泥盆统海相碳酸盐岩的碳、锶同位素组成及其地质意义[J].岩石学报,1993,9(增刊):214-221.
    120.黄文辉,杨敏,于炳松,等.塔中地区寒武系―奥陶系碳酸盐岩Sr元素和Sr同位素特征[J].地球科学―中国地质大学学报,2006,31(6):839-845.
    121.贾疏源,冯先智,易运昭,等.川南阳新灰岩(古)岩溶发育特征及其与天然气勘探关系[J].四川智力开发,1988,3(1):33-52.
    122.江茂生,朱井泉,陈代钊,等.塔里木盆地奥陶纪碳酸盐岩的碳、锶同位素特征及其对海平面变化的响应[J].中国科学(D辑),2002,32(1):36-42.
    123.姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社,1996.
    124.姜在兴.沉积学[M].北京:石油工业出版社,2003,423-424.
    125.蓝江华.1999四川盆地大池干井构造带石炭系古岩溶储层成因模式[J].成都理工学院学报,26(1):23-27.
    126.雷卞军,强子同,文应初.川东及邻区上二叠统生物礁的白云岩化[J].地质论评,1999,40(6):534-543.
    127.雷国良,王长生,钱志鑫,等.贵州岩溶沉积物稀土元素地球化学研究[J].矿物学报,1994,14(3):298-308.
    128.李淳.川东地区上石炭统碳酸盐岩成岩作用[J].石油大学学报(自然科学版),1998,22(5):19-22.
    129.李定龙.古岩溶和古岩溶地球化学概念与研究展望[J].高校地质学报,1999,5(2):232-240.
    130.李定龙.皖北奥陶系古岩溶及其环境地球化学特征研究[M].北京:石油工业出版社,2001,20-55.
    131.李国会,卜维,樊守忠.X射线荧光光谱法测定硅酸盐中硫等20个主、次、痕量元素[J].光谱学与光谱分析,1994,14(1):105-110.
    132.李铁生.华南石炭系碳酸盐岩成岩后生作用及白云岩的成因[J].化工地质,1993,15(1):33-41.
    133.李文博,黄智龙,张冠.云南会泽铅锌矿田成矿物质来源:Pd,S,C,H,O,Sr同位素制约[J].岩石学报,2006,22(10):2567-2580.
    134.李忠,陈景山,关平.含油气盆地成岩作用的科学问题及研究前言[J].岩石学报,2006,22(8):2113-2122.
    135.李忠,韩登林,寿建峰.沉积盆地成岩作用系统及其时空属性[J].岩石学报,2006,22(8):2151-2164.
    136.刘宝珺,曾允孚.岩相古地理基础和工作方法[M].北京:地质出版社,1985.
    137.刘宝珺.沉积岩石学[M].北京:地质出版社,1979.
    138.刘传联,成鑫荣.渤海湾盆地早第三纪非海相钙质超微化石的锶同位素证据[J].科学通报,1996,41(10):908-910.
    139.刘集银,林锡锦,李秀华,等.青海小柴旦原白云石PROTODOLOMITE的X射线衍射特征[J].矿物岩石,1986,6(2):128-131.
    140.刘建清,贾保江,杨平,等.羌塘盆地中央隆起带南侧隆额尼―昂达尔错布曲组古油藏白云岩稀土元素特征及成因意义[J].沉积学报,2008,26(1):28-38.
    141.刘小平,吴欣松,张祥忠.轮古西地区奥陶系碳酸盐岩古岩溶储层碳、氧同位素地球化学特征[J].西安石油大学学报(自然科学版),2004,19(4):69-76.
    142.刘秀明,王世杰,孙承兴,等.(古)盐度研究的一种重要工具―锶同位素[J].矿物学报,2000,20(1):91-96.
    143.路中侃,刘划一,魏小薇,等.川东石炭系的勘探新领域[J].天然气工业,1993,13(4):7-11.
    144.马永生,牟传龙,谭钦银,等.达县―宣汉地区长兴组―飞仙关组礁滩相特征及其对储层的制约[J].地学前缘,2007,14(01):182-192.
    145.马永生,田海芹.碳酸盐岩油气勘探[M].东营:石油大学出版社,1999,206.
    146.梅冥相,周丕康.贵阳地区早、中三叠世成因岩石地层系统[J].贵州地质,1992,9(3):269-278.
    147.穆曙光,周茂华,永川.川东北地区下三叠统飞仙关组白云岩成因类型[J].天然气工业,1994,14(3):23-27.
    148.钱一雄,邹远荣,陈强路,等.塔里木盆地塔中西北部多期、多成因岩溶作用地质―地球化学表征[J].沉积学报,2005,2(4):596-603.
    149.钱峥,黄先雄.碳酸盐岩成岩作用及储层―以中国四川东部石炭系为例[M].北京:石油工业出版社,2000,1-119.
    150.钱峥.川东石炭系碳酸盐岩沉积环境探讨[J].天然气工业,1999,19(4):19-22.
    151.强子同,文应初,雷卞军,等.川东鄂西上二叠统生物礁白云石化岩石学和地球化学[J].地球化学,1992,(2):158-168.
    152.强子同,文应初,唐杰,等.四川及邻区晚二叠世沉积作用及沉积盆地的发展[J].沉积学报,1990,8(1):79-90.
    153.强子同.碳酸盐岩储层地质学[M].山东:中国石油大学出版社,2007,138-157.
    154.邵龙义,何宏,彭苏萍,等.塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J].古地理学报,2002,4(2):19-30.
    155.宋来明,彭仕宓,穆立华,等.油气勘探中的碳酸盐岩古岩溶研究方法综述[J].煤田地质与勘探,2005,33(3):15-18.
    156.孙钰,钟建华,姜在兴,等.松辽盆地南部坳陷期层序地层研究[J].中国石油大学学报(自然科学版),2006,30(5):1-7.
    157.陶士振,邹才能,张宝民,等.川东北飞仙关鲕滩气藏储层流体包裹体与成藏特征[J].矿物岩石地球化学通报,2006,25(1):42-48.
    158.田景春,陈洪德,侯明才,等.右江盆地晚古生代白云岩与层序地层的关系及其储集性[J].成都理工大学学报,2004,31(1):34-39.
    159.田景春,陈洪德,覃建雄,等.层序―岩相古地理图及其编制[J].地球科学与环境学报,2004,26(1):6-12.
    160.佟景贵,李胜荣,李向辉,等.单颗有孔虫化石Sr同位素测定及定年[J].科学通报,2006,51(15):1817-1820.
    161.汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002.
    162.王大锐.塔里木盆地中、上奥陶统烃源岩的碳同位素宏观证据[J].地质评论,2000,46(3):328-334.
    163.王兰生,陈盛吉,杨家静,等.川东石炭系储层及流体的地球化学特征[J].天然气勘探与开发,2001,24(3):28-38.
    164.王黎栋.塔中地区T74界面碳酸盐岩古岩溶储层形成机理与分布预测[博士论文].北京:中国地质大学,2007.
    165.王身建,郑超,雷卞军,等.川东铁山地区飞仙关组鲕粒白云岩成因分析[J].河南石油,2004,18(6):13-15.
    166.王世杰,董丽敏,林文祝,等.泥河湾组有孔虫化石群的锶同位素研究[J].科学通报,1995,40(22):2072-2074.
    167.王维斌.川东地区北部飞仙关组储层特征及分布[J].天然气工业,1993,13(2):22-28.
    168.王一刚,文应初,刘志坚.川东石炭系碳酸盐岩储层孔隙演化中的古岩溶和埋藏溶解作用[J].天然气工业,1996,16(6):18-23.
    169.王英华,张秀莲,张万中,等.泥晶碳酸盐岩的超微结构分析及其成岩作用[J].北京大学学报,1989,25(2):243-248.
    170.威尔格斯著,徐怀大译.层序地层学原理[M].北京:石油工业出版社,1994.
    171.魏菊英.同位素地球化学[M].北京:地质出版社,1988,129-146.
    172.夏日元,唐建生,邹胜章,等.塔里木盆地北缘古岩溶充填物包裹体特征[J].中国岩溶,2006,25(3):246-249.
    173.夏日元,唐建生,邹胜章,等.碳酸盐岩油气田古岩溶研究及其在油气勘探开发中的应用[J].地球学报,27(5):503-509.
    174.夏日元,唐健生,关碧珠,等.鄂尔多斯盆地奥陶系古岩溶地貌及天然气富集特征[J].石油与天然气地质,1999,20(2):133-136.
    175.徐国盛,刘树根,袁海锋,等.川东地区石炭系天然气成藏动力学研究[J].石油学报,2005,26(4):12-22.
    176.徐世琦,洪海涛,张光荣,等.四川盆地下三叠统飞仙关组鲕粒储层发育的主要控制因素分析[J].天然气勘探与开发,2004,27(1):1-4.
    177.杨华,付锁堂,马振芳,等.天环地区奥陶系白云岩储集体特征[J].天然气工业,2004,24(9):11-15.
    178.杨俊杰,黄思静,张文正,等.表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J].沉积学报,1995,13(4):49-54.
    179.杨晓萍,赵文智,曹宏,等.川东北三叠系飞仙关组鲕滩气藏有利储集层的形成与分布[J].石油勘探与开发,2006,33(1):17-21.
    180.杨雨,张静,张光荣.川东下三叠统飞仙关组鲕滩分布及其天然气勘探前景[J].成都理工学院学报,2000,12(增刊):147-150.
    181.杨郧城,文冬光,侯光才,等.鄂尔多斯白里系自流水盆地地下水锶同位素特征及其水文学意义[J].地质学报,2007,81(3):405-412.
    182.曾伟,黄先平,杨雨,等.川东北下三叠统飞仙关组白云岩成因及分布[J].西南石油大学学报,2007,29(1):19-22.
    183.曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986,165-170.
    184.张虎才,雷国良,杨明生,等.古湖相碳酸盐沉积和化石贝壳的87Sr/86Sr及其意义[J].地球学报,2005,26(增刊):237-238.
    185.张萌,黄思静,谢国刚.LOWESS在铭同位素地层学中的应用[J].地球科学与环境学报,2004,26(2):1-5.
    186.张涛,云露,邬兴威,等.锶同位素在塔河古岩溶期次划分中的应用[J].石油实验地质,2005,27(3):299-303.
    187.郑荣才,陈洪德,张哨楠,等.川东黄龙组古岩溶储层的稳定同位素和流体性质[J].地球科学―中国地质大学学报,1997,22(4):424-428.
    188.郑荣才,陈洪德.川东黄龙组古岩溶储层微量和稀土元素地球化学特征[J].成都理工学院学报,1997,24(1):1-7.
    189.郑荣才,耿威,郑超,等.川东北地区飞仙关组优质白云岩储层的成因[J].石油学报,2008,29(6):815-821.
    190.郑荣才,胡忠贵,冯青平,等.川东北地区长兴组白云岩储层的成因研究[J].矿物岩石,2007,27(4):78-84.
    191.郑荣才,胡忠贵,郑超,等.渝北―川东地区黄龙组古岩溶储层稳定同位素地球化学特征[J].地学前缘,2008,15(6):303-311.
    192.郑荣才,李德敏,张哨楠.川东黄龙组天然气储层的层序地层学研究[J].沉积学报,1995,13(增刊):1-9.
    193.郑荣才,彭军,高红灿.渝东黄龙组碳酸盐岩储层的古岩溶特征和岩溶旋回[J].地质地球化学,2003,31(1):28-35.
    194.郑荣才,史建南,罗爱君,等.川东北地区白云岩储层地球化学特征对比研究[J].天然气工业,2008,28(11):16-21.
    195.郑荣才,张哨楠,李德敏.川东黄龙组角砾岩成因及其研究意义[J].成都理工学院学报,1996,23(1):8-18.
    196.钟大康,朱筱敏,王贵文,等.南襄盆地泌阳凹陷溶孔溶洞型白云岩储层特征与分布规律[J].地质论评,2004,50(2):162-169.
    197.周爱国,甘义群,刘存富,等.河北平原地下水锶同位素特征[J].地球学报,2005,26(增刊):279-282.
    198.周厚云,迟宝泉,关华政.洞穴次生碳酸盐沉积的Sr同位素组成研究:历史与前景[J].中国岩溶,2007,26(1):18-23.
    199.朱井泉.上扬子台地三叠系碳酸盐岩中的特形白云石及其指相意义初探[J].岩相古地理,1996,16(4):32-40.
    200.朱同兴,黄志英,惠兰.上扬子台地晚二叠世生物礁相地质[M].北京:地质出版社,1999,59-60.
    201.朱永刚,蓝贵,张豫,等.川西北部鱼洞梁飞一段储层特征[J].天然气工业,2004,24(7):19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700