用户名: 密码: 验证码:
五元环状碳酸酯的合成,聚合及其纳米复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳是主要的温室气体,作为主要温室气体的CO_2的排放量正以每年4%的速率递增,这给人类的生产、生活造成了严重的影响。在“原子经济”、“可持续发展”和“绿色化学”的潮流下,如何在相对温和的条件下实现CO_2的化学固定成为国际上竞相研发的热点课题。
     近年来,有关五元环状碳酸酯的合成研究已经成为了国内外学术界的研究热点,并且引起了人们的高度重视,本论文主要运用二氧化碳气体与环氧化合物开展了五元环状碳酸酯的合成工作并运用合成的单体进行了开环聚合反应。五元环状碳酸酯具有非常好的电绝缘性能,光学性能,合成成本低,环保等多种优点,预计五元环状碳酸酯的合成以及运用五元环状碳酸酯开发新型高分子材料在未来的研究中会有非常好的前景。
     本文,在自己对单体合成以及聚合研究的基础上,对聚碳酸酯/无机复合材料制备方面做了一定的探讨与研究。
     在五元环状碳酸酯的合成与聚合工作中:主要合成了B5CC和五元环状碳酸丙烯酯两种单体;B5CC单体与1,6-己二胺进行共聚反应;在五元环状碳酸酯与二胺的开环聚合的基础上,又采用五元环状碳酸丙烯酯为封端剂,研究了封端聚合一些性能的变化:加入不同量的封端剂以后,可以得到不同分子量的聚碳酸酯;随着封端剂加入比例的增大,得到的聚碳酸酯的分子量降低,并且玻璃化转变温度以及热稳定性也随之降低。
     本文在复合材料研究方面,制备了二氧化硅/聚碳酸酯、埃洛石/聚碳酸酯纳米复合材料;同时以蛭石为原料制备了聚碳酸酯/蛭石插层复合材料以及聚碳酸酯/剥离型蛭石复合材料。
     在二氧化硅、埃洛石/聚碳酸酯复合材料的制备研究中,首先对二氧化硅、埃洛石两种粒子表面进行有机化处理,然后通过原位聚合法制备了两种复合材料。复合后的材料不但使聚碳酸酯的热稳定性能得到了一定的提高,同时二氧化硅和埃洛石纳米粒子在有机溶剂中的分散性能也得到了明显的改善,纳米粒子本身有比较大的比表面积,比较容易发生团聚,接枝聚合以后明显地减少了粒子之间的团聚现象。
     在蛭石复合材料的研究方面,本文主要采取了两种方式制备聚碳酸酯/蛭石复合材料:聚碳酸酯/蛭石插层复合材料以及聚碳酸酯/剥离型蛭石复合材料。
     聚碳酸酯/蛭石插层复合材料与聚碳酸酯/剥离型蛭石复合材料两者相比,剥离型蛭石复合材料对热性能的影响稍好于插层方法所得到的复合材料。另外,通过扫描电镜的观察,可以看出两种方法制得的复合材料中,蛭石都能够很好地被剥离,并且能够比较均一地分散到聚合物当中。
Carbon dioxide is the main greenhouse gas.With the increasing of the discharging of carbon dioxide as the main greenhouse gas,our life and the production have been affected.We all pay attention to make good use of the carbon dioxide under mild condition.
     In recent years,much attention has been paid to five-membered cyclic carbonates because of their extraordinarily high optical and thermal properties.In our paper, five-membered cyclic carbonates can be prepared from oxiranes and carbon dioxide under mild conditions.The prospect is extremely good to prepare some advanced materials with the five-membered cyclic carbonates in the future.
     In our paper,firstly,we synthesized the five-membered cyclic carbonates based on a wide variety of cyclic compounds and we also prepared the polymerization with the synthesized cyclic carbonates.Five-membered cyclic carbonates can react with diamine.So we prepare the polymers by the reaction theory.Based on the theory,we can change the Molecular weight by adjusting the ratio of the blocked compounds and also research the change of the properties.With the increasing of the ratio of the blocked compounds,the molecular weight is decreasing,and the glass transition temperature is also decreasing.The thermal decomposition is decreasing with the increasing of the ratio of the blocked compounds.
     In our work,we also prepared the inorganic particles/PHU nanocomposites, SiO_2/PHU,halloysite/PHU,Vermiculite/PHU and exfoliated vermiculite/PHU nanocomposites,etc.
     In the processing of preparing SiO_2/PHU,halloysite/PHU nanocomposites,firstly, the nanocompositewas prepared by the in situ surface-initiated polymerization of a five-membered cyclic carbonate,2,2-bi[p-(1,3-dioxolan-2-one-4-yl-methoxy)phenyl] propane(B5CC) and hexamethylene diamine,from the surfaces of the aminopropyl nanoparticle.s
     The thermal decomposition behavior of the polymers was evaluated by TGA. When the inorganic particles were added into the polymers,thermal decomposition behavior of the polymers was increasing,and the aggregates of the particles were better.
     We also prepared two kinds of vermiculites/PHU nanocomposites in our paper by intercalating and exfoliating vermiculite.Comparing with the two kinds of composites,the results of the latter is better on the thermal decomposition.The pristine vermiculites can be exfoliated by the two kinds of ways and can also dispersed well.
引文
[1]Roy R,KomarRneni S,Roy D M.Mult-Phasic Ceramic Composites Made by Sol-Gel Technique.Mater.Res.Proc.1984,32,347-359.
    [2]赵文元,王亦军,功能高分子材料化学.化学工业出版社.2003.
    [3]Arakawa H,Aresta M,Armor J N.Catalysis uresearch of relevance to carbon management:progress,challenges,and opportunities.Chem.Rev.2001,101,953-996.
    [4]Leitner W,Angew.Carbon dioxide as a raw material:The synthesis of formic acid and its derivatives from CO_2.Chem.Int.Ed.Engl.1995,34,2207-2221.
    [5]Leitner W.The coordination chemistry of carbon dioxide and its relevance for catalysis:a critical survey.Coord.Chem.Rev.1996,153,257-284.
    [6]Yang S Y,Fang X G,Chen L B.Polym.Adv.Technol.1996,7,605-608.
    [7]Okada M.Chemical syntheses of biodegradable polymers.Prog.Polym.Sci.2002,27,87-133.
    [8]田杰生,王金泉,杜亚,何良年,二氧化碳与环氧化物的共聚反应.化学进展,2006,18,74-79.
    [9]Baba A,Kashiwagi H,Matsuda H.Cycloaddition ofoxetane and carbon dioxide catalyzed by tetraphenylstibonium iodide.Tetrahedron.Lett.1985,26,1323-1329.
    [10]Darensbourg D J,Holtcamp M W.Catalysts for the reactions of epoxides and carbon dioxide.Coord.Chem.Rev.1996,153,155-164.
    [11]Baba A,Kashiwagi H,Matsuda H.Reaction of carbon dioxide with oxetane catalyzed by organotin halide complexes:control of reaction by ligands.Organometalics.1987,6,137-142.
    [12]Aresta M,Dibenedetto A.Carbon dioxide as builiding block for the synthesis of organic carbonates:Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation ofolefins.J.Mol.Catal.A:Chem.2002,182,399-408.
    [13]Tomishige K,Yasuda H,Yoshida Y,Nrunnabi M,Li B.T.K.Kunimori,Eu~(3+)and lysine Co-intercalated a-Zirconium phosphate and its catalytic activity for copolymerization of propylene oxide and carbon dioxide. Green Chem. 2004, 6,206-217.
    [14] Du Y, Kong D L, Wang H Y, Cai F, Tian J S, Wang J Q, He L N. Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO_2 under supercritical conditions. J. Mol. Catal. A: Chem. 2005, 241, 233-237.
    [15] Aresta M, Dibenedetto A, Dileo C, Tommasi I, Amodio E. The first synthesis of a cyclic carbonate from a ketal in SC-CO_2. J. Supercrit. Fluid. 2003, 25, 177-182.
    [16] Nicolaou K C, Yang Z, Liu J J, Ueno H, NantermeP G t R K Guy C F Claiborne, J Renaud, E A Couladouros, K Paulvannan, E J Sorensen. Total Synthesis of Taxol. Nature. 1994, 367, 630-645.
    [17] Takata T, Furusho Y, Murakawa K -i, Endo T, Matsuoka H, Hirasa T, Matsuo J,Sisido M. Optically Active Poly(aryl carbonates) Consisting of Axially Chiral Units. Chiral Binaphthyl Group Induced Helical Polymer. J. Am. Chem. Soc.1998,120,4530-4531.
    [18] Chang H T, Sharpless K B. A practical route to enantiopure 1, 2-aminoalcohols.Tetrahedron. Lett. 1996, 37, 3219-3222.
    [19] Biggadike K, Angell R M, Burgess C M, Farrell R M, Hancock A P, Harker A J,W R Irving, C Ioannou, P A Procopiou, R E Shaw, Y E Solanke, O M P Singh, M A Snowden, R J Stubbs, S Walton, Weston H E. Selective Plasma Hydrolysis of Glucocorticoid γ-Lactones and Cyclic Carbonates by the Enzyme Paraoxonase:An Ideal Plasma Inactivation Mechanism. J. Med. Chem. 2000, 43, 19-21.
    [20] Barbarini A, Maggi R, Mazzacani A, Mori G, Sartoria G, Sartorio R,Cycloaddition of CO_2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett. 2003, 44, 2931-2934.
    [21] Rokicki G, Kuran W. An Easy Method of Preparing Cyclic Carbonate of Polyhydroxy Compounds by Transesterification with Ethylene Carbonate. Bull.Chem. Soc. Jpn. 1973, 46, 550-553.
    [22] Kruper W J, Dellar D D. Catalytic Formation of Cyclic Carbonates from Epoxides and CO_2 with Chromium Metalloporphyrinates. J Org Chem, 1995,60(3), 725-727.
    [23] Paddock R L, Nguyen S T. Chemical CO_2 Fixation: Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO_2 and Epoxides. J Am Chem Soc,2001, 123(46), 11498-11499.
    [24] Lu X B, He R, Bai C. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J Mol Catal A.2002,186,1-11.
    [25] Lu X B, Feng X J, He R. Stereochemistry Control of the Alternating Copolymerization of CO_2 and Propylene Oxide Catalyzed by SalenCrX Complexes. Appl Catal A. 2002, 234(12), 25-33.
    [26] Lu X B, Zhang Y J, Liang B, Li X, Wang H. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J Mol Catal A. 2004,210(12): 31-34.
    [27] Lu X B, Zhang Y J, Jin K, Luo L M, Wang H. Highly active electrophile-nucleophilecatalyst system for the cycloaddition of CO. J Catal,2004, 227(2), 537-541
    [28] Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. Chem Rev, 1999, 99(8), 2071-2084.
    [29] Dupont J, deSouza R F, Suarez P A Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem Rev 2002, 102(10), 3667-3692.
    [30] Peng J J, DengY Q. Cycloaddition between propylene oxide and carbon dioxide catalysed by ionic liquids..New J Chem, 2001, 25(4), 639-641.
    [31] Shiels R A, Jones C W. Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. J Mol Catal A. 2007, 261(2), 160-166.
    [32] Zhang X H, Zhao N, Wei W, Sun Y H. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal Today,2006, 115(14), 102-106.
    [33] Shi F, Zhang Q H, Ma Y B, He Y D, Deng Y Q. From CO Oxidation to CO_2 Activation: An Unexpected Catalytic Activity of Polymer-Supported Nanogold.J Am Chem Soc, 2005, 127(12), 4182.
    [34] Jagtap S R, Raje V P, Samant S D, Bhanage B M. Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J Mol Catal A, 2007, 266(12),69-74.
    [35] Du Y, Wang J Q, Chen J Y, Cai F, Tian J S, Kong D L, He L N. A polyethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO_2 with epoxides under supercritical conditions. Tetrahedron Lett, 2006, 47(8), 1271-1275.
    [36] Wang J Q, Kong D L, Chen J Y, Cai F, He L N. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J Mol Catal A, 2006, 249(12), 143-148.
    [37] Xiao L F, Li F W, Peng J J, Xia C G Immobilized ionic liquid/zinc chloride:Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J Mol Catal A, 2006, 253(12), 265-269.
    [38] Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T. Synergistic hybrid catalyst for cyclic carbonate synthesis: remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem Commun, 2006, (15),1664-1666.
    [39] GleGrand D, Bendler J. T. Hand book of Polycarbonate Science and Technology,Marcel Dekker, New York, 2000.
    [40] Darensbourg D J, Ganguly P, Billodeaux D. Ring-Opening Polymerization of Trimethylene Carbonate Using Aluminum(Ⅲ) and Tin(Ⅳ) Salen Chloride Catalysts. Macromolecules 2005, 38, 5406-5410.
    [41] Ling J, Shen Z, Huang Q. Novel Single Rare Earth Aryloxide Initiators for Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate.Macromolecules 2001, 34, 7613-7616.
    [42] Endo T, Shibasaki Y, Sanda F, Acid-Promoted Living Ring-Opening Polymerization of Cyclic Carbonates with B(OR)3. Macromolecules. 2000, 33,3630-3633.
    [43] Snda F, Kamatani J, Endo T. Synthesis and Anionic Ring-Opening Polymerization Behavior of Amino Acid-Derived Cyclic Carbonates.Macromolecules 2001,34,1564-1569.
    [44]Haba O,Tomizuka H,Endo T,Anionic Ring-Opening Polymerization of Methyl 4,6-O-Benzylidene-2,3-O-carbonyl-α-D-glucopyranoside:A First Example of Anionic Ring-Opening Polymerization of Five-Membered Cyclic Carbonate without Elimination of CO_2.Macromolecules 2005,38,3562-3563.
    [45]Kihara N,Hara N,Endo T.Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure.J.Org.Chem.1993,58,6198-6202.
    [46]Yamaguchi K,Ebitani K,Yoshida T,Yoshida H,Kaneda K.Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides.J.Am.Chem.Soc.1999,121,4526-4527.
    [47]Burgel T,Fedtke M.Epoxy resins with cyclic carbonate structures:Model studies for amine curing.Polym.Bull.1993,30,61-68.
    [48]Tomita H,Sanda F,Endo T.Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines:Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine.J.Polym.Sci.:Polym.Chem.2001,39,3678-3685.
    [49]Tomita H,Sanda F,Endo T.Structural analysis ofpolyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction.J.Polym.Sci:Polym.Chem.2001,39,851-859.
    [50]Wu M,Guo J S,Jing H W.Organic base catalyzed oligomerization ofpropylene carbonate and bisphenol A:Unexpected polyether diol formation.Cata Commu.2008,9,120-125
    [51]张立德.纳米材料研究的新进展及在21世纪的战略地位.中国粉体技术,2000,6.1-7.
    [52]张晟卯,高永建,张治军等.TiO_2/聚丙烯酸丁酯纳米复合膜的制备及摩擦性能.应用化学2002,19,914-917.
    [53]龙威,顾媛娟.碳纳米管的力学性能及聚合物碳纳米管复合材料.材料导报2002,16,54-58.
    [54]李玲,龚克成.超声波在纳米材料合成中的应用.材料导报 1998,4,18-20.
    [55]Mson T J,Lor J.P,Imer Pan,Iwnyk K L.Ultrasound starts quiet revolution in materials science.Mater.World.1999,7,167-175.
    [56]李春喜,王子镐.超声技术在纳米材料制备中的应用.化学通报2001,5,268-271.
    [57]敖宁建,陈美,周慧玲,等.红粘土/天然橡胶纳米复合材料的结构与性能研究.电子显微学报2001,21,204-209.
    [58]Warrier K G K.Anikumar G M.Densification ofmullite-SiC nanocomposite sol-gel precursors by pressureless sintering.Mater.Chem.Phys.2001,67,263-266.
    [59]洪从胜,黄海龙,徐春样等.聚对苯撑亚乙烯/SiO_2块状溶胶.凝胶非线性光学材料的研究.发光学报2002,23,62-66.
    [60]王旭,黄锐,濮阳南.聚合物基纳米复合材料的研究进展.塑料2000,29,25-28.
    [61]王德宪.溶胶.凝胶法的化学原理简述.玻璃2000,25,35-38.
    [62]吕建坤,柯毓才,漆宗能,等.插层聚合制备粘土/环氧树脂纳米复合材料过程中粘土剥离行为的研究.高分子学报2000,1,85-89.
    [63]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究.高分子通报1997,3,135-143.
    [64]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酷修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征.高分子学报2000,5,599-603.
    [65]Tang Z B,Liu P,Guo J S,Su Z X.Preparation of polyaniline/clay nanocomposites by in situ chemical oxidative grafting polymerization.Polymer international.2009,58,552-556.
    [66]朱军,李毕忠.聚合物/无机纳米复合材料研究进展.化工新型材料2000,28,3-8.
    [67]Mson T J,Lor J p,Imer Pan.Iwnyk K L.Ultrasound starts quiet revolution in materials science.Materials World.1999,7,167-175.
    [68]李春喜,王子镐.超声技术在纳米材料制备中的应用.化学通报2001,5,268-271.
    [69]敖宁建,陈美,周慧玲,等.红粘土/天然橡胶纳米复合材料的结构与性能研究.电子显微学报2001,21,204-209.
    [70]王丽萍,洪广言.无机一有机纳米复合材料 功能材料1998,29(4),343-347.
    [71]Zhao X,Fondler J,Study of loeal molecular ordering in layered surfactant-silieate mesophase composites.Journal of physical chemistry B.2003,107(2),443-450.
    [72]曾戎,章明秋,曾汉民,“高分子纳米复合材料研究进展(Ⅰ)-高分子纳米复合材料的制备、表征和应用前景”.宇航材料工艺1999,3,1-6.
    [73]黄锐,徐伟平.纳米级无机粒子对聚乙烯的增强与增韧.塑料工业 1997,25,106-107.
    [74]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构.高分子材料科学与工程,1998,14,12-15.
    [75]徐国财,张立德.纳米复合材料.化学工业出版社2002,9-10.
    [76]周重光,李桂芝,宋洁.SiO_2/聚碳酸酯纳米相复合材料的制备与性能.高分子材料科学与工程2000,16,109-111.
    [77]征茂平,金燕苹,顾明元等.Sol-Gel法制备TiO_2/PVP复合材料及其显微硬度研究.功能材料2000,31,431-433.
    [78]徐国财,马家举,邢宏龙,等.原位分散紫外光固SiO_2纳米复合材料的性质.应用化学2000,17,450-452.
    [79]欧玉春,杨锋,漆宗能,等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究.高分子学报1997,2,199-203.
    [80]Hooks J.Innovative bridge researeh and construction program.Composite Industry Monthly 2002,19,58-60.
    [81]黄美荣,李新贵,曾剑峰.聚苯胺纳米复合材料的特异性能及应用前景.玻璃钢复合材料2004,1,8-9.
    [82]Gilman JW,Kashiwagi T,Lichtenhan J D.Nanoeomposites:A revolution new flame retardant approaeh.Sample Joumal 1997,33,40-46.
    [83]李颖,王建祺.阻燃聚酰胺的发展现状.高分子材料科学与工程1999,15,18-23.
    [84]舒中俊,陈光明,漆宗能.聚合物/黏土纳米复合材料及其特殊阻燃性能.塑料工业2000,28,24-26.
    [85]葛易一,王继辉.纳米材料改性不饱和聚酯树脂的研究.玻璃钢复合材料1999,3,13-14.
    [86]彭红瑞,孙凤,张志煜.纳米TiO_2改性塑料的抗菌及分解内毒素特性研究.机械工程材料2004,28,46-48.
    [87]张金柱,汪信,陆路德.纳米无机粒子在塑料高性能化改性中的应用.工程塑料应用2001,29,44-46.
    [88]张泰.纳米材料的制备技术及进展.辽宁化工1999,28,3-8.
    [89]Giarmelis E P.Polymer layered silicate nanocomposites.Advanced Materials 1996,8(1),29-35.
    [90]Alexandre M,Dubois P.Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials.Materials Science and Engineering:R:Reports 2000,28(1-2),1-63.
    [91]Vaia R A,Giannelis E P.Polymer nanocomposites:Status and opportunities.MRS Bull 2001,26(5),394-401.
    [92]Hammel E,Tang X,Trampert M,Schmitt T,Mauthner K,Eder A,Potschke P.Carbon nanofibers for composite applications.Carbon 2004,42(5-6),1153-1158.
    [93]Zhu J,Kim J,Peng H,Margrave J L,Khabashesku V N,Barrera E V.Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization.Nano Letters 2003,3(8),1107-1113.
    [94]Safadi B,Andrews R,Grulke E A.Multiwalled carbon nanotube polymer composites:synthesis and characterization of thin films.Journal of Applied Polymer Science 2002,84(14),2660-2669.
    [95]Fengge Gao.Clay/polymer composites:the story.Materials Today 2004,7(11),50-55.
    [96]Nicole Grobert.Carbon nanotubes-becoming clean.Materials Today 2004,10(1-2),28-35.
    [97]Somasuundaran K.Adsorption of surfactants and polymers at t he solid-liquid interface.Colloids and Surfaces A:Physico Chem Eng Aspects 1997,123-124(1-3),491-513.
    [98]Chi Jen,Shi H.Lungbor-hwa,Hon,Min-hsiung.Colloidal processing of titanium nitride with poly-(methacrylic acid)polyelectrolyte.Materials Chemistry and Physics 1999,60(2),150-157.
    [99]Bijsterbosch H D,Cohen O S,Fleer G J.Adsorption of graft copolymers onto silica and titanium.Macromolecules 1998,31(11),8981-8987.
    [100]张淑霞,李建保,张波,等.TiO_2表面无机包覆的研究进展.化学通报2001,(2),71-75.
    [101]祖庸,王训,敦晓英,等.超细二氧化钛分散性研究.涂料工业1999,29(6),6-8.
    [102]袁荞龙,应圣康.Al_2O_3-SiO_2溶胶制备及在水溶性聚氨酯中分散行为.华东理工大学学报1998,24(5),526-531.
    [103]Teofil J E,Krysztafkie W A.Influence of silane coupling agents on surface properties of precipitated silicas.Applied Surface Science 2001,172(1),18-27.
    [104]李爱元,徐国材,邢宏龙.纳米粉体表面改性技术及应用.化工新型材料2002,30(10),25-28.
    [105]李国辉,李春忠,吕志敏.纳米氧化钛颗粒表面处理及表征.华东理工大学学报2000,26(6),639-641.
    [106]吴行,陈家钊,涂铭旌.电磁屏蔽涂料镍填料的表面偶联处理研究.功能材料2000,31(3),262-265.
    [107]章文贡,陈田安,陈文定.铝酸酯偶联剂改性碳酸钙的性能与应用.中国塑料1988,2(1),23-27.
    [108]Feket E.Pukanszkyb T A.et al.Surface modification and characterization of particulate mineral fliers.Journal of Colloid Interface Science 1990,35(1),201-209.
    [109]邹玲,乌学东,陈海刚,等.表面修饰二氧化钛纳米粒子的结构表征及形成机理.物理化学学报2001,17(4),305-309.
    [110]杜振霞,贾志谦,饶国瑛,等.改性纳米碳酸钙表面性质的研究.现代化工,2001,21(4),42-44.
    [111]李宗威,朱永法.TiO_2纳米粒子的表面修饰研究.化学学报2003,61(9),1484-1487.
    [112]徐僖,蔡燎原.聚烯烃的改性方法和成型基础理论的研究进展.现代塑料加工应用1995,7(1),1-8.
    [113]Michiel L C.Molsterling A S.et al.Grafting of polystyrene and poly(styrene-block-iso-prene)onto microparticulate silica and glass slides.Polymer 1992,33(20),4394-4400.
    [114]Liu P,Guo J S.Organo-modified magnesium hydroxide nano-needle and its polystyrene nanocomposite.Journal of Nanoparticle Research 2007,9(4),669-673.
    [115]Watson K J.Zhu J.Nguyen S T.Mirkin C A.Hybrid Nanoparticles with Block Copolymer Shell Structures.Journal of the American Chemical Society 1999,121(2),462-463.
    [116]SkaffH.Ilker M F.Coughlin E B.Ema-ick T.Preparation of Cadmium Selenide-Polyolefin Composites from Functional Phosphine Oxides and Ruthenium-Based Metathesis.Journal of the American Chemical Society 2002,124(20),5729-5733.
    [117]Sieval A B.Demirel A L.Nissink J W M.Linford M R.Van der Maas J H.Dejeu W H.Zuilhof H.Sudholter E J R.Highly Stable Si-C Linked Functionalized Monolayers on the Silicon(100)Surface.Langmuir 1998,14(7),1759-1768.
    [118]Huang X.Wirth M J.Surface Initiation of Living Radical Polymerization for Growth of Tethered Chains of Low Polydispersity.Macromolecules 1999,32(5),1694-1696.
    [119]Huang X.Wirth M J.Surface-initiated radical polymerization on porous silica.Analytical Chemistry 1997,69(22),4577-4580.
    [120]Jiang W.Irgum K.Tentacle-type zwitterionic stationary phase prepared by surface-initiated graft polymerization of 3-[N, N-dimethyl-N-(methacryloxylethyl)-ammonium] propanesulfonate through peroxide groups tethered on porous silica. Analytical Chemistry 2002, 74(18),4682-4687.
    [121] Luzinov I. Minko S. Senkovsky V. Voronov A. Hild S. Marti O. Wilke W.Synthesis and Behavior of the Polymer Covering on a Solid Surface. 3.Morphology and Mechanism of Formation of Grafted Polystyrene Layers on the Glass Surface. Macromolecules 1998, 31(12), 3945-3952.
    [122] Ejaz M. Tsujii Y. Fukuda T. Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer 2001,42(16), 6811-6815.
    [123] Huang W. Skanth G Baker G L. Bruening M L. Surface-Initiated Thermal Radical Polymerization on Gold. Langmuir 2001, 17(5), 1731-1736.
    [124] Watson K J. Zhu J. Nguyen S T. Mirkin C A. Hybrid Nanoparticles with Block Copolymer Shell Structures. Journal of the American Chemical Society 1999,121(2), 462-463.
    [125] Sidorenko A. Minko S. Gafijchuk G Voronov S. Radical Polymerization Initiated from a Solid Substrate. 3. Grafting from the Surface of an Ultrafine Powder. Macromolecules 1999, 32(14), 4539-4543.
    [126] Ingall M DK. Honeyman C H. Mercure J V. Bianconi P A. Kunz R R. Surface Functionalization and Imaging Using Monolayers and Surface-Grafted Polymer Layers. Journal of the American Chemical Society 1999, 121(15), 3607-3613.
    [127] Jaworek T. Neher D. Wegner G. et al. Electromechanical Properties of an Ultrathin Layer of Directionally Aligned Helical Polypeptides. Science 1998,279, 57-60.
    [128] Von Werne T. Patten T E. Preparation of Structurally Well-Defined Polymer-Nanoparticle Hybrids with Controlled/Living Radical Polymerizations.Journal of the American Chemical Society 1999, 121(32), 7409-7410.
    [129] Shirai Y. Kawatsura K. Tsubokawa N. Graft polymerization of vinyl monomers from initiating groups introduced onto polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups. Journal of Engineering Mathematics 1999,36(4),217-224.
    [130]Vestal C R.Zhang Z J.Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe_2O_4/Polystyrene Core/Shell Nanoparticles.Journal of the American Chemical Society 2002,124(48),14312-14313.
    [131]Carrot G.Rutot-Houze D.Pottier A.Degee P.Hilborn J.Dubois P.Surface-Initiated Ring-Opening Polymerization:A Versatile Method for Nanoparticle Ordering.Macromolecules 2002,35(22),8400-8404.
    [132]Carlmark A.Malmstrom E.Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature.Journal of the American Chemical Society 2002,124(6),900-901.
    [133]Zhou Q.Fan X.Xia C.Mays J.Advincula R.Living Anionic Surface Initiated Poly-merization(SIP)of Styrene from Clay Surfaces.Chemistry of the Materials 2001,13(8),2465-2467.
    [134]Fan X.Xia C.Fulghum T.Park M-K.Locklin J.Advincula R C Polymer Brushes Grafted from Clay Nanoparticles Adsorbed on a Planar Substrate by Free Radical Surface-Initiated Polymerization.Langrnuir 2003,19(3),916-923.
    [135]Gert Boven,Michiel L C M.Oosterling Ger Challa,Arend Jan Schouten.Grafting kinetics of poly(methyl methacrylate)on microparticulate silica.Polymer 1990,31(12),2377-2383.
    [136]Norio Tsubokawa,Hisanori Ishida.Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface.Journal of Polymer Science Part A:Polymer Chemistry 1992,30(10),2241-2246.
    [137]王勇,李瑞海,王贵恒.碳酸钙的表面辐照处理——丙烯酰胺在碳酸钙粉末上的接枝聚合.四川大学学报(工程科学版)1994,(4),19-24.
    [138]Korth B D.Keng P.Shim I.Bowles S E.Tang C.Kowalewski T.Nebesny K W.Pyun J.Polymer-Coated Ferromagnetic Colloids from Well-Defined Macromolecular Surfaetants and Assembly into Nanoparticle Chains.Journal of the American Chemical Society 2006,128(20),6562-6563.
    [139]Huang X.El-Sayed I H.Qian W.El-Sayed M A.Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society 2006, 128(6), 2115-2120.
    [140] Hong R. Emrick T. Rotello, V M. Monolayer-Controlled Substrate Selectivity Using Noncovalent Enzyme-Nanoparticle Conjugates. Journal of the American Chemical Society 2004, 126(42), 13572-13573.
    [141] Medintz Igor L. Uyeda H. Tetsuo. Goldman Ellen R. Mattoussi Hedi. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 2005,4(6), 435-446.
    [142] Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. The Proceedings of the National Academy of Sciences Online (US) 2005,102,7583-7588.
    [143] Leibler L. Nanostructured plastics: joys of self-assembling. Progress in Polymer Science 2005, 30(8-9), 898-914.
    [144] Bhattacharya A, Misra B N. Grafting: a versatile means to modify polymers. Techniques, factors and applications. Progress in Polymer Science 2004, 29(8),767-814.
    [145] Ruckenstein E. Li Z F. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science 2005,113,43-63.
    [146] Hult A, Johansson M, Malmstrom E. Hyperbranched polymers. Advances in Polymer Science 1999, 143, 1-34.
    [147] Rozenberg BA, Sigalov G, editors. Heterophase network polymers: synthesis,structure, characterization. New York, London: Francis & Taylor. 2002.
    [148] Liu P. Modifications of carbon nanotubes with polymers. European Polymer Journal 2005,41(11), 2693-2703.
    [149] Denes F S, Manolache S. Macromolecular plasma-chemistry: an emerging field of polymer science. Progress in Polymer Science 2004, 29(8), 815-885.
    [150] Kickelbick G Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science 2003, 28(1),83-114.
    [151] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chemical Review 2006,106(3),1105-1136.
    [152]Koshio A,Yudasaka M,Zhang M,Iijima S.A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication.Nano Letters 2001,1(7),361-363.
    [153]Wu W,Zhang S,Li Y,Li J,Liu L,Qin Y,et al.PVK modified single-walled carbon nanotubes with effective photoinduced electron-transfer.Macromolecules 2003,36(17),6286-6288.
    [154]Blake R,Gunko Y K,Coleman J,Cadek M,Fonseca A,Nagy J B,et al.A generic organometallic approach toward ultra-strong carbon nanotube polymer composites.Journal of the American Chemical Society 2004,1269(33),10226-10227.
    [155]Wang W,Lin Y,Sun Y-P.Poly(N-vinyl carbazole)functionalized single-walled carbon nanotubes:synthesis,characterization,and nanocomposite thin films.Polymer 2005,46(20),8634-8640.
    [156]Wang Y,Igbal Z,Malhotra SV.Functionalization of carbon nanotubes with amines and enzymes.Chemical Physics Letters 2005,402,96-101.
    [157]Bustos E,Mannquez J,Orozco G,Godinez LA.Preparation,characterization,and electrocatalytic activity of surface anchored,Prussian Blue containing starburst PAMAM dendrimers on gold electrodes.Langrnuir 2005,21(7),3013-3021.
    [158]Masahiko Arai,Kunio Arai,Shozaburo Saito.Soapless emulsion polymerization of methyl methacrylate in water in the presence of calcium sulfite.Journal of Polymer Science Part A:Polymer Chemistry Edition 1982,20(4),1021-1029.
    [159]Mikio Konno,Koichi Shimizu,Kunio Arai,Shozaburo Saito.Soapless emulsion polymerization of methyl methacrylate in water in the presence of barium sulfate.Journal of Polymer Science Part A:Polymer Chemistry Edition 1987,25(1):223-230.
    [160]陈立,林静,林敏,黄海水.硫酸钡粉末存在下无乳化剂的聚合研究.高分子学报1993,(3),338-341.
    [161]Wolf-Dieter Hergeth,Uwe-Jens Steinau,Hans-Joachim Bittrich,Gerald Simon, Klaus Schmutzler.Polymerization in the presence of seeds.Part Ⅳ:Emulsion polymers containing inorganic filler particles.Polymer 1989,30(2):254-258.
    [162]成国祥,马林荣,刘静,沈锋,姚康德.立德粉/聚(甲基丙烯酸甲酯-共-甲基丙烯酸)复合微粒颜料的制备及其分散特性.中国皮革1998,27(5),7-10.
    [163]孙长高,孟宪铎,阚成友,孔祥正.乳液聚合法制备碳酸钙/聚苯乙烯复合粒子.胶体与聚合物1999,10(1),54-59.
    [164]Yong Yang,Xiang Zheng Kong,Cheng You Kan,Chang Gao Sun.Encapsulation of calcium carbonate by styrene polymerization.Polymers for Advanced Technologies 1999,10(1-2),54-59.
    [165]Wolf-Dieter Hergeth,Peter Starre,Klaus Schmutzler,Siegfried Wartewig.Polymerizations in the presence of seeds:3.Emulsion polymerization of vinyl acetate in the presence of quartz powder.Polymer 1988,29(7),1323-1328.
    [166]谈定生,严年喜,施亚钧.无机粉体的聚合物胶囊化过程研究.高分子材料科学与工程1999,15(6),101-104.
    [167]Masahiro Hasegawa,Kunio Arai,Shozaburo Saito.Effect of surfactant adsorbed on encapsulation of fine inorganic powder with soapless emulsion polymerization.Journal of Polymer Science Part A:Polymer Chemistry Edition 1987,25(12),3231-3239.
    [168]Tagawa T,Yamashita S,Furusawa K.Adsorption behavior of water soluble polymers with lower critical solution temperature.Kobunshi Ronbunshun 1983,40,273-279.
    [169]Kunio Furusawa,Yoshihiro Kimura,Toru Tagawa.Syntheses of composite polystyrene latices with silica particles in the core.Journal of Colloid and Interface Science 1986,109(1),69-76.
    [170]龙复,王伟,许涌深,曹同玉.无机溶胶粒子的有机高分子胶囊化研究.高分子材料科学与工程1999,15(6),101-104.
    [1] Darensbourg D J, Mackiewicz R M, Phelps A L, Billodeaux D R.Copolymerization of CO_2 and epoxides catalyzed by metal salen complexes. Acc.Chem. Res. 2004, 37, 836-844.
    [2] Darensbourg D J, Holtcamp M W. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev. 1996,153,155-174.
    [3] Moore D R, Cheng M, Lobkovsky E B, Coates G W. Angew. Electronic and steric effects on catalysts for CO_2/epoxide polymerization: subtle modifications resulting in superior activities. Chem., Int. Ed. 2002,41,2599-2602.
    [4] Nicolaou K C, Yang Z, Liu J J, Ueno H. Nantermet P G, R K Guy, C F Claiborne, J Renaud, E A Couladouros, K Paulvannanand. E. J. Sorensen, Nature 1994, 367,630.
    [5] Takata T, Furusho Y, Murakawa K -I, Endo T, Matsuoka H, Hirasa T, Matsuo J,Sisido M. Optically active poly(aryl carbonates) consisting of axially chiral units.Chiral binaphthyl group induced helical polymer. J. Am. Chem. Soc. 1998, 120,4530-4531.
    [6] Chang H -T, Sharpless K B. A practical route to enantiopure 1,2-aminoalcohols.Tetrahedron Lett. 1996, 37, 3219-3222.
    [7] Takeda N, Inoue S. Activation of carbon dioxide by tetraphenylporphinato-aluminium methoxide. Reaction with epoxide. Bull. Chem.Soc. Jpn, 1978, 51, 3564-3567.
    [8] Takeda N, Inoue S. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Macromol. Chem. 1978, 179,1377-1381.
    [9] Aida T. Synthesis of polyether-poly-carbonate block copolymer from carbon dioxide and epoxide using a metalloporphyrin catalyst system. Macromolecules 1982, 15,682-684.
    [10] Aida T, Ishikawa M, Inoue S. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system.Synthesis of polycarbonate with well-controlled molecular weight.Macromolecules 1986,19,8-13.
    [11]Jung J H,Ree M,Chang T.Copolymerization of carbon dioxide and propylene oxide using an aluminum porphyrin system and its compoents.J.Polym.Sci.Part A:Polym.Chem.1999,37,3329.
    [12]Aida T,Inoue S.Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide.Studies on(tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group.J.Am.Chem.Soc.1983,105,1304-1309.
    [13]Mang S,Cooper A I,Colclough M E,Chauhan N,Holmes A B.Copolymerization of CO_2 and 1,2-cyclo-hexene oxide using a CO_2-soluble chromium porphyrin catalyst.Macromolecules 2000,33,303-308.
    [14]Stamp L M,Mang S A,Holmes A B,Kinghts K A,Miguel Y R.de McConvey I F.Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide.Chem.Commun.2001,2502-2053.
    [15]乔焜,邓友全.室温离子液体反应介质中叔丁醇氢酯基化反应的研究.化学学报2002,60(6),996-1000.
    [16]彭家建,邓友全.室温离子液体催化合成碳酸丙烯酯.催化学报.2001,22(6),598-600.
    [17]代威力,尹双凤,李文生,周小平CO_2与环氧化物多相催化合成环状碳酸酯的研究进展石油化工.2007,36,92-99.
    [18]Ariga T,Takata T.Endo T.Alkyl halide-initiated cationic polymerization of cyclic carbonateJ Polym Sci Part A:Polym Chem 1993,31,581-584.
    [19]Ariga T.Takata T.Endo T.Cationic ring-opening polymerization of cyclic carbonate with of elimination of carbon dioxide,Macromol Chem Phys 1997,30,737-744.
    [20]Kricheldorf H R.Weegen-Schulz B.Polymers of carbonic acid.11.Reactions and polymerizations of aliphatic cyclocarbonates with boron halogenides Macromolecules 1993,26,5991-5998.
    [21]Kricheldorf H R.Weegen-Schulz B.Reactivity comparison of five-and six-membered cyclic carbonates with amines: Basic evaluation for synthesis of poly(hydroxyurethane). Polymer 1995, 36,4997-5001.
    [22] Matsuo J. Sanda F. Endo T. Cationic ring-opening polymerization behavior of 3-dioxepen-2-one, Macromol Chem Phys 1998,199, 97-102.
    [23] Matsuo J. Sanda F. Endo T. Anionic ring-opening polymerization behavior of a seven-membered cyclic carbonate; 1, 3-dioxepan-2-one. J Polym Sci Part A:Polym Chem 1997, 35, 1375-1380.
    [24] Hayajawa M. Mitani M. Yamada T. Mukaiyama T. Living ring-opening polymerization of cyclic carbonate using cationic zirconocene complex as catalyst. Macromol Rapid Commun 1996, 17, 865-870.
    [25] Hayajawa M. Mitani M. Yamada T. Mukaiyama, T. Living ring-opening polymerization of lactones using cationic zirconocene complex catalysts.Macromol Chem Phys 1997,198,1305-1317.
    [26] Vogdanis L. Martens B. Uchtmann H. Hensel F. Heitz W. Synthetic and thermodynamic investigations in the polymerization of ethylene carbonate.Macromol Chem Phys 1990, 191,465-472.
    [27] Vogdanis L. Heitz W. Carbon dioxide as a monomer, 3. The polymerization of ethylene carbonate. Macromol Rapid Commun 1986, 7, 543-547.
    [28] Burgel T. Fedtke M. Polym Bull 1993, 30, 61-73.
    [29] Rokicki G Czajkowska J. Polimery 1989, 34(4), 140-147.
    [30] Steblyanko A. Choi W. Sanda F. Endo T. Addition of five-membered cyclic carbonate with amine and its application to polymer synthesis. J Polym Sci Part A: Polym Chem 2000, 38, 2375-2380.
    [31] Kihara N. Endo T. Synthesis and properties of poly(hydroxyurethane)s. J Polym Sci Part A: Polym Chem 1993, 31, 2765-2773.
    [32] Tomita H. Sanda F. Endo, T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J Polym Sci Part A: Polym Chem 2001,39,3678-3685.
    [33] Suzuki A. Nagai D. Ochiai B. Endo, T. Facile synthesis and crosslinking reaction of trifunctional five-membered cyclic carbonate and dithiocarbonate. J Polym Sci Part A: Polym Chem 2004, 42, 5983-5989.
    [34] Tomita H. Sanda F. Endo T. Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J Polym Sci Part A: Polym Chem. 2001, 39,851-859.
    [35] Tomita H. Sanda F. Endo T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J Polym Sci Part A: Polym Chem 2001,39,3678-3685.
    [1]. Giannelis E P. Polymer layered silicate nanocomposites. Adv. Mater. 1996, 8,29-35.
    [2]. LeBaron P C, Wang Z. Pinnavaia T J. Polymer-layered silicate nanocomposites:An overview. Appl. Clay Sci. 1999,15,11-29.
    [3]. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation,properties and uses of a new class of materials. Mater. Sci. Eng. R 2000, 28,1-63.
    [4]. Suprakas S R, Masami O. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28,1539-1641.
    [5]. Gilman J W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 1999, 15, 31-49.
    [6]. Tjong S C. Structural and mechanical properties of polymer nanocomposites.Mater. Sci. Eng. R 2006, 53, 73-197.
    [7]. Morgan A B. Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym. Adv. Technol. 2006, 17,206-217.
    [8]. Ringward S C, Pemberton J E. Adsorption interactions of aromatics and heteroaromatics with hydrated and dehydrated silica surfaces by raman and FTIR spectroscopies. Environ. Sci. Technol. 2000, 34, 259-265.
    [9]. Chen L X, Rajh T, Wang Z, Thurnauer M C. XAFS studies of surface structures of TiO_2 nanoparticles and photocatalytic reduction of metal ions. J. Phys. Chem. B 1997, 101, 10688-10697.
    [10]. Rajh T, Tiede D M, Thurnauer M C. Surface modification of TiO_2 nanoparticles with bidentate ligands studied by EPR spectroscopy. J. Non-Cryst. Solids 1996,205-207, 815-820.
    [11]. Ratner B D. New ideas in biomaterials science - a path to engineered biomaterials. J. Biomed. Mater. Res. 1993, 27, 837-850.
    [12]. Bawden M J, Turner S R. in: Electronic and Photonic Application of Polymers,in: Advances in Chemistry Series, vol. 218, ACS, Washington, DC, 1998.
    [13]. Shirai Y, Tsubokawa N. Grafting of polymers onto ultrafine inorganic particle surface: graft polymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface and molybdenum hexacarbonyl. React. Funct. Polym. 1997, 32, 153-160.
    [14]. Liu P. Carbon-chain polymers 'grafting from' inorganic nanoparticles.E-polymers 2005, no070.
    [15]. Liu P. Nanosurfaces Initiated Living Radical Polymerization in Polymeric nanostructures and Their Applications, Ed. Nalwa HS. American Scientific Publishers, California, USA, 2007.
    [16]. Boutti S, Bourgeat-Lami E, Zydowicz N. Silica/polyamide nanocomposite synthesis via an original double emulsification process in miniemulsion.Macromol. Rapid Commun. 2005,26, 1860-1865.
    [17]. He J P, Li H M, Wang X Y, Gao Y. In situ preparation of poly(ethylene terephthalate)-SiO_2 nanocomposites. Eur. Polym. J. 2006,42,1128-1134.
    [18]. Hernandez-Padron G, Rojas F, Castano V M. Ordered SiO_2-(phenolic-formaldehyde resin) in situ nanocomposites. Nanotechnology 2004,15,98-103.
    [19]. Amerio E, Sangermano M, Malucelli G, Priola A, Rizza G Preparation and characterization of hyperbranched polymer/silica hybrid nanocoatings by dual-curing process. Macromol. Mater. Eng. 2006, 291, 1287-1292.
    [21]. Chen Y C, Zhou S X, Yang H H, Gu G X, Wu L M. Preparation and characterization of nanocomposite polyurethane. J. Colloid Interface Sci. 2004,279, 370-378.
    [22]. Chen S, Sui J J, Chen L, Pojman J A. Polyurethane-nanosilica hybrid nanocomposites synthesized by frontal polymerization. J. Polym. Sci. Polym.Chem. 2005, 43, 1670-1680.
    [23]. Xiang X J, Qian J W, Yang W Y, Fang M H, Qian X Q. Synthesis and properties of nanosilica-reinforced polyurethane for grouting. J. Appl. Polym. Sci. 2006, 100, 4333-4337.
    [24]. Kihara N, Hara N, Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J. Org. Chem. 1993, 58, 6198-6202.
    [25]. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999,121,4526-4527.
    [26]. Burgel T, Fedtke M. Epoxy resins with cyclic carbonate structures: Model studies for amine curing. Polym. Bull. 1993, 30, 61-68.
    [27]. Tomita H, Sanda F, Endo T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J. Polym. Sci. Polym. Chem. 2001,39, 3678-3685.
    [28]. Tomita H, Sanda F, Endo T. Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J. Polym. Sci.: Polym. Chem. 2001, 39, 851-859.
    [1]Giannelis E P.Polymer layered silicate nanocomposites.Adv.Mater.1996,8,29-35.
    [2]LeBaron P C,Wang Z,Pinnavaia T J.Polymer-layered silicate nanocomposites:An overview.Appl.Clay Sci.1999,15,11-29.
    [3]Alexandre M,Dubois E Polymer-layered silicate nanocomposites:Preparation,properties and uses of a new class of materials.Mater.Sci.Eng.R 2000,28,1-63.
    [4]Suprakas S R,Masami O.Polymer/layered silicate nanocomposites:A review from preparation to processing.Prog.Polym.Sci.2003,28,1539-1641.
    [5]Gilman J W.Flammability and thermal stability studies of polymer layered-silicate (clay)nanoeomposites.Appl.Clay Sci.1999,15,31-49.
    [6]Tjong S C.Structural and mechanical properties of polymer nanocomposites.Mater.Sci.Eng.R 2006,53,73-197.
    [7]Morgan A B.Flame retarded polymer layered silicate nanocomposites:A review of commercial and open literature systems.Polym.Adv.Technol.2006,17,206-217.
    [8]Komameni S,Feature article.Nanocomposites.J.Mater.Chem.1992,2,1219-1230.
    [9]Fischer H,Polymer nanocomposites:from fundamental research to specific applications.Mater.Sci.Eng.C.2003,23,763-772.
    [10]Tjong S C.Structural and mechanical properties of polymer nanocomposites.Mater.Sci.Eng.R 2006,53,73-197.
    [11]Boutti S,Bourgeat-Lami E,Zydowicz N.Silica/polyamide nanocomposite synthesis via an original double emulsification process in miniemulsion.Macromol.Rapid.Commun.2005,26,1860-1865.
    [12]He J P,Li H M,Wang X Y,Gao Y.In situ preparation ofpoly(ethylene terephthalate)-SiO_2 nanocomposites.Eur.Polym.J.2006,42,1128-1134.
    [13]Hemandez-Padron G,Rojas F,Castano V M.Ordered SiO_2(phenolic-formaldehyde resin)in situ nanocomposites.Nanotechnology 2004,15, 98-103.
    [14] Araerio E, Sangermano M, Malucelli G, Priola A, Rizza. G Preparation and characterization of hyperbranched polymer/silica hybrid nanocoatings by dual-curing process. Macromol. Mater. Eng. 2006, 291, 1287-1292.
    [15] Chen Y C, Zhou S X, Yang H H, Gu G X, Wu L M. Preparation and characterization of nanocomposite polyurethane. J. Colloid Interface Sci. 2004,279, 370-378.
    [16] Chen S, Sui J J, Chen L, Pojman J A. Polyurethane-nanosilica hybrid nanocomposites synthesized by frontal polymerization. J. Polym. Sci. Polym.Chem. 2005,43, 1670-1680.
    [17] Xiang X J, Qian J W, Yang W Y, Fang M H, Qian X Q. Synthesis and properties of nanosilica-reinforced polyurethane for grouting. J. Appl. Polym. Sci. 2006,100,4333-4337.
    [18] Ciprai D, Jacob K. Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 2006, 39,6565-6573.
    [19] Shirai Y, Tsubokawa N. Hyperbranched PAMAM-grafted silica obtained from repeated reaction cycles. React. Funct. Polym. 1997, 32, 153-160.
    [20] Rittiqstein P, Torkelson J M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci: Polym. Phys. 2006, 44, 2935-2943.
    [21] Kihara N, Hara N, Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J.Org. Chem. 1993, 58, 6198-6202
    [22]Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999, 121, 4526-4527.
    [23] Tomita H, Sanda F, Endo T. Dynamic mechanical and dielectric properties of ORMOCER® incorporating functionalized poly(styrene) latexes. J. Polym. Sci:Polym. Chem. 2001, 39, 860-867.
    [24] Tomita H, Sanda F, Endo T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J. Polym. Sci: Polym. Chem. 2001,39, 3678-3685.
    [25] Tomita H, Sanda F, Endo T. Endo T. Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J. Polym. Sci.: Polym. Chem. 2001, 39,851-859.
    [26] Liu P, Liu W M, Xue Q J. In situ chemical oxidative graft polymerization of aniline from silica nanoparticles. Mater. Chem. Phys. 2004, 87, 109-113.
    [27] Tang Z B, Liu P, Guo J S, Su Z X. Preparation and characterization of polyhydroxyurethane/silica nanocomposites via in-situ surface-initiated polymerization. Polym. Compos. 2009, 30,445-450
    [28] Liu P, Su Z X. Thermal stabilities of polystyrene/silica hybrid nanocomposites via microwave-assisted in situ polymerization. Mater. Chem. Phys. 2005, 94,412-416.
    [1]吕建坤,柯毓才,漆宗能,等.插层聚合制备粘土/环氧树脂纳米复合材料过程中粘土剥离行为的研究.高分子学报2000,1,85-89.
    [2]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究.高分子通报1997,3,135-143.
    [3]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酷修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征.高分子学报2000,5,599-603.
    [4]朱军,李毕忠.聚合物/无机纳米复合材料研究进展.化工新型材料2000,28,3-8.
    [5]Mson T J,Lor J p,Imer Pan Iwnyk K L.Ultrasound starts quiet revolution in materials science.Mater.World.1999,7,167-175.
    [6]Giannelis E P.Polymer layered silicate nanocomposites.Adv.Mater.1996,8,29-35.
    [7]LeBaron P C,Wang Z,Pinnavaia T J.Polymer-layered silicate nanocomposites:An overview.Appl.Clay Sci.1999,15,11-29.
    [8]Alexandre M,Dubois P.Polymer-layered silicate nanocomposites:Preparation,properties and uses of a new class of materials.Mater.Sci.Eng.R 2000,28,1-63.
    [9]Suprakas S R,Masami O.Polymer/layered silicate nanocomposites:A review from preparation to processing.Prog.Polym.Sci.2003,28,1539-1641.
    [10]Gilman J W.Flammability and thermal stability studies of polymer layered-silicate(clay)nanocomposites.Appl.Clay Sci.1999,15,31-49.
    [11]Tjong S C.Structural and mechanical properties of polymer nanocomposites.Mater.Sci.Eng.R.2006,53,73-197.
    [12]Morgan A B.Flame retarded polymer layered silicate nanocomposites:A review of commercial and open literature systems.Polym.Adv.Technol.2006,17,206-217.
    [13]Fujiwara S,Salamotom T.Jap.Pat.1976,109998.
    [14]Alexandre M,Dubois P.Polymer-layerd silicate nanocomposites preparation, properties and uses of a new class of materials. Mater Sci. Eng. R. 2000, 28,1-63.
    [15] Powell C E, Beall G W. Physical properties of polymer/clay nanocomposites.Curr. Opin. Solid State Mater Sci. 2006,10, 73-80.
    [16] Zeng Q H, Yu A B, Lu G Q, Paul D R. Clay-based polymer nanocomposites:research and commercial development. J. Nanosci. Nanotechnol. 2005, 5,1574-1592.
    [17] Sinha Ray S, Okamoto M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003,28,1539-1642.
    [18] Moore D F, Molne W I, Oda S. Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites. Power. Eng. J. 1999, 13, 2-11.
    [19] Friend R H, Yoffe A V. Electronic Properties of Intercalation Complexes of the Transition-Metal Dichacogenides. Adv. Phys. 1987, 36, 1-94.
    [20] O'Hare D. Electron-impact-ionization cross section for the hydrogen atom. New J. Chem. 1994,18,989-991.
    [21] Vaia R A, Vasudevan S, Krawiec W, Scalon L G, Giannelos E P. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv. Mater. 1995, 7, 154-156.
    [22] Carrado K A, Xu L. In Situ Synthesis of Polymer-Clay Nanocomposites from Silicate Gels. Chem. Mater. 1998, 10, 1440-1445.
    [23] Swenson J, Smalley M V, Hatharasinghe H L M, Fragneto G Interlayer Structure of a Clay-Polymer-Salt-Water System. Langmuir 2001, 17, 3813-3818.
    [24] Whittingham S M, Jacobson A J, Eds. Intercalation Chemistry, Academic: New York, 1982.
    [25] Krishnamoorthy R, Vaia R A, Giannelis E P. Microstructural Evolution of Melt Intercalated Polymer-Organically Modified Layered Silicates Nanocomposites.Chem. Mater. 1996, 8, 2628-2635.
    [26] Biswas M, Ray S S. Polymer. 1998, 39, 25-31.
    [27] Suh D J, Lim Y T, Park O O. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods Polymer. 2000, 41, 8557-8563.
    [28] Armes S P, Gottesfield S, Beery J G, Garzon F, Agnew S F. Conducting polymer-colloidal silica composites. Polymer. 1991, 32, 2325-2330.
    [29] Liu D F, Du X S, Meng Y Z. Facile synthesis of exfoliated polyaniline/vermiculite nanocornposites. Mater. Lett. 2006, 60, 1847-1850.
    [30] Xu J, Meng, Y Z, Li R K Y, Xu Y, Rajulu A V. Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites. J. Polym. Sci: Polym. Phys.2003,41,749-755.
    [31] Liu B L, Ding Q J, Zhang J H, Hu B X. Preparation and properties of new EPDM/vermiculite nanocomposites. Polym. Compos. 2005, 26, 706-712.
    [32] Xu J, Li R K Y, Xu Y, Li L. Meng Y Z. Preparation of poly(propylene carbonate)/organo-vermiculite nanocomposites via direct melt intercalation Eur.Polym. J. 2005,41,881-888.
    [33] Xu, J, Meng Y. Z, Li R K Y, Xu Y. Rajulu A V. Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites J. Polym. Sci: Polym. Phys.2003,41,749-755.
    [34] Kihara N, Hara N, Endo T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J.Org. Chem. 1993, 58, 6198-6202.
    [35] Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999, 121,4526-4527.
    [36] Burgel T, Fedtke M. Epoxy resins with cyclic carbonate structures: Model studies for amine curing. Polym. Bull. 1993, 30, 61-68.
    [37] Tomita H, Sanda F, Endo T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J. Polym. Sci.: Polym. Chem. 2001;39, 3678-3685.
    [38] Tomita H, Sanda F, Endo T. Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction.J.Polym.Sci:Polym.Chem.2001,39,851-859.
    [39]Zhao M F,Tang Z B,Liu P.Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite.J.Hazard.Mater.2008,158,43-51.
    [40]Tang Z B,Liu P,Guo J S,Su Z X.Preparation and characterization of polyhydroxyurethane/silica nanocomposites via in-situ surface-initiated polymerization.Polym.Compos.2009,30,445-450.
    [41]Ogata N,Kawakage S,Ogihara T.Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blends prepared using water as solvent,d.Appl.Polym.Sci.1977,66,573-581.
    [42]Nisha A,Dhamodharan R,Rajeswari M K.Intercalative redox polymerization and characterization ofpoly(n-vinyl-2-pyrrolidinone)in the gallery of vermiculite:A novel inorganic-organic hybrid materialJ.Appl.Polym.Sci.2000,76,1825-1830.
    [1] Xin W, Ye W Q, Yong D J, Characterization of polyethylene/kaolin composites by polymerization filling with Cp2ZrC12/MAO catalyst system. J. Appl. Polym. Sci,2002, 85(14), 2913-2921.
    [2] Privalkol V P, Korskanovl V V, Privalko E G, J. Therm. Analy. Calor. 2002, 59,509-516
    [3] Unal H, Findik F, Mimaroglu A. Mechanical behavior of nylon composites containing talc and kaolin J. Appl. Polym. Sci. 2003, 88(7), 1694-1697.
    [4] Fellahi S, Chikhi N, M. Baker. Modification of epoxy resin with kaolin as a toughening agent. J. Appl. Polym. Sci. 2001, 82(4), 861-878.
    [5] Llu(?)s Cabedoa, Enrique Gime'neza, Jose' M. Lagaronb, Rafael Gavarab, Juan J.Sauraa. Development of EVOH-kaolinite nanocomposites. Polymer. 2004, 45,5233-5238.
    [6] Tamer A. Elbokl and Christian Detellier. Aluminosilicate nanohybrid materials Intercalation of polystyrene in kaolinite. J Phys Chem Solid. 2006, 67(5-6),950-955.
    [7] Shuzheng Zhang, Kecheng Gong, Jianwen Lu, Novel modification method for inorganic geopolymer by using water soluble organic polymers. Mater. Lett. 2004,58, 1292- 1296.
    [8] Tunney J, Detellier C, Chemically Modified Kaolinite. Grafting of Methoxy Groups on the Interlamellar Aluminol Surface of Kaolinite. Can. J. Chem. 1997,75(11), 1766-1722.
    [9] Cardolinski J E, Carrera L C M, Cantao M P, J. Mater. Sci. 2000, 35(12),3113-3229.
    [10] Hasan G, Richard H. Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings. Wiley 2008
    [11] Frisch H L, Zi B W, Qin Y C, Failovich M, Yang N L, Yan X Z, Synthesis and characterization of a conductive polyaniline/clay hybrid system. High Perform.Polym. 2000, 12,543.
    [12] Ilic M, Koglin E, Pohlmeier A, Narres H D, Schwuger M J, Adsorption and Polymerization of Aniline on Cu(Ⅱ)-Montmorillonite: Vibrational Spectroscopy and ab Initio Calculation. Langmuir. 2000, 16, 8946-8951.
    [13] Kim J W, Kim S G, Choi H J, Suh M S, Shin M J, Jhon M S, Synthesis and electrorheological characterization of polyaniline and Na+-Montmorillonite clay nanocomposite. Intl. J. Mod. Phy. B 2001,15, 657-664.
    [14] Kim B H, Jung J H, Joo J, Kim J W, Choi H J, Effect of dopant and clay on nanocomposites of polyaniline (PAni) intercalated into Na+-montmorillonite (Na+-MMT). Kor J, Phys. Soc. 2000,36, 366-370.
    [15] Xu J, Meng Y Z, Li R KY, Xu Y, Rajulu A V, Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites. J. Polym. Sci: Part B 2003,41,749-755.
    [16] Ibrahim M A, Lee B G, Park N G, Synthesis of new oligothiophene derivatives and their intercalation compounds: orientation effects. Synth. Met. 1999,105,35-42.
    [ 17] Tjong S C, Meng Y Z, Hay A S. Novel preparation and properties of polypropylene-vermiculite nanocomposites. Chem Mater. 2002,14,44-51.
    [18] Tjong S C, Meng Y Z, Xu Y. Structure and properties of polyamide-6/vermiculite nanocomposites prepared by direct melt compounding. J. Polym Sci Part B:Polym Phys. 2002,40, 2860-2870.
    [19] Tjong S C, Meng Y Z, Xu Y. Preparation and properties of polyamide 6/polypropylene-vermiculite nanocomposite/polyamide 6 alloys. J. Appl Polym Sci. 2002, 86,2330.
    [20] Tang Z B, Lu D, Guo J S. Su Z X. Thermal stabilities of Vermiculites/polystyrene(VMTs/PS) naonocomposites via in-situ bulk polymerization. Mater Lett. 2008,62,4223-4225.
    [21] Liu D F, Du X S, Meng Y Z. Facile synthesis of exfoliated polyaniline/vermiculite nanocomposites. Mater Lett. 2006, 60, 1847-1850.
    [22] Tang Z B, Liu P, Guo J S. Su Z X. Preparation of polyaniline/clay nanocomposites by in situ chemical oxidative grafting polymerization. Polym. Int.2009,58,552-556.
    [23]Liu B L,Ding Q J,Zhang J H,Hu B X,Shen J.Preparation and properties of new EPDM/vermiculite nanocomposites.Polym Comp.2005,26,706-712.
    [24]Tjong S C,Meng Y Z,Hay A S.Novel preparation and properties of polypropylene-vermiculite nanocomposites.Chem.Mater.2002,14,44-51.
    [25]王丽萍,洪广言.无机.有机纳米复合材料[J].功能材料,1998,29(4),343.
    [26]Zhang J H,Zhuang W,Zhang Q,Liu B L,Wang W,Hu B X,Shen J.Novel polylactide/vermiculite nanocomposites by in situ intercalative polymerization.I.Preparation,characterization,and properties Polym Comp.2007,28,545-550.
    [27]Umasankar T P,Harikrishnan G,Ashok M,Khakhar D V.Formation and characterization of polyurethane-vermiculite clay nanocomposite foams.Polym Eng & Sci.2008,48,1778-1784.
    [28]Zhang Y,Liu W,Han W,Guo W H,Wu C F.Preparation and properties of novel natural rubber/organo-vermiculite nanocomposites Polym Comp.2009,30,38-42.
    [29]吴平霄.HDTMA改性蛭石的结构特征研究[J].地学前缘,2001,8(2),321-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700