用户名: 密码: 验证码:
反应加工制备聚合物/POSS复合材料的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机纳米复合材料可充分结合有机高分子和无机材料的优点,从而引起人们的广泛关注。多面齐聚倍半硅氧烷(Polyhedral oligomeric silsesquioxane,POSS)是一类重要的纳米尺度的笼型有机-无机杂化分子,其分子式为(RSiO1.5)n,尺寸约为1~3 nm,被认为是“目前可能存在的最小的硅粒子”。由于其特殊的结构与性能,POSS(零维)被认为是和蒙脱土(二维)、碳纳米管(一维)一样最具前景的纳米材料之一,从而成为材料科学研究的热点之一。
     目前,POSS已通过化学共聚和物理共混的方法被广泛引入聚合物中。本论文采用反应加工的方法制备聚合物/POSS复合材料,并研究聚合物POSS复合材料的结构和性能。论文研究主要包括三部分:(1)环氧化环己基POSS(epoxy-POSS)扩链聚对苯二甲酸丁二醇酯(PBT)的结构与性能研究;(2)反应共混制备聚丙烯(PP)/八乙烯基POSS(OvPOSS)复合材料的结构与性能研究;(3)马来酸酐接枝PP(MA-g-PP)反应增容PP/八氨基苯基POSS(OapPOSS)复合材料的结构与性能研究。
     (1)Epoxy-POSS扩链PBT的结构与性能研究
     通过反应挤出的方法制备了epoxy-POSS扩链的PBT。epoxy-POSS扩链后PBT的特性粘数增加,羧基含量降低,熔体流动指数(MFI)降低。当epoxy-POSS含量从0 %增加到2 %时,特性粘数从1.1 dL/g增加到1.7 dL/g,羧基含量从21.6 eq/106g降低到7.0 eq/106g,MFI从30 g/10min降低到7 g/10min。并且机械性能改善,加工热稳定性提高,吸水率降低,有利于PBT的储存、加工和应用。
     (2)反应共混制备PP/ OvPOSS复合材料的结构与性能研究
     在过氧化二异丙苯(DCP)作用下通过反应共混的方法制备了PP/OvPOSS复合材料,并研究其结构与性能。随着DCP或OvPOSS含量增加,OvPOSS接枝率增加。采用X-射线衍射(XRD)、示差扫描量热法(DSC)、旋转流变等方法研究了不同的加工方法(物理共混和反应共混)制备的PP/OvPOSS复合材料的结构与性能。物理共混时OvPOSS在含量低于2 %时完全分散在PP基体中,含量超过2 %时OvPOSS开始聚集、结晶。以分子状态分散的OvPOSS分子起到PPβ晶成核剂的作用,促进PPβ晶的形成。反应共混后OvPOSS与PP相容性提高,分散更均匀,PP的β晶型消失。反应共混PP/OvPOSS复合材料机械性能比物理共混的综合更好,在OvPOSS含量为2 %时机械性能最佳。DCP用量0.1 %,OvPOSS用量2 %时,复合材料的弯曲模量和冲击强度比纯PP分别提高约20 %和50 %。PP/OvPOSS复合材料的热分解温度低于纯PP,但反应共混复合材料和OvPOSS-g-PP的热稳定性高于物理共混复合材料。OvPOSS加入后材料热释放速率和质量损失速率降低,提高材料阻燃性。
     利用旋转流变、熔体流动指数等方法研究了PP/OvPOSS复合材料的流变行为。结果表明物理共混PP/OvPOSS复合材料的粘度随OvPOSS含量增加先降低后增加。反应共混复合材料的粘度在低频区粘度随OvPOSS含量增加而显著增加,在OvPOSS含量高于1 %时表现出明显的凝胶行为。反应共混PP/OvPOSS复合材料的Han图、Cole-Cole图和van Gurp-Palmen图也发生明显偏移。这一现象表明OvPOSS接枝到PP链段上之后由于OvPOSS与PP之间强的粒子-基体相互作用,抑制PP链段运动,出现明显的凝胶行为。而在物理共混时粒子-基体相互作用和粒子-粒子相互作用都很弱,OvPOSS含量为10 %时也不出现凝胶现象。
     利用DSC研究了PP/OvPOSS复合材料的等温和非等温结晶动力学。物理共混时OvPOSS对PP非等温结晶时的结晶峰温度(Tp)影响不大;反应共混复合材料和OvPOSS-g-PP的Tp显著提高,并且OvPOSS含量对Tp影响不大,表明复合材料中聚集的OvPOSS晶体对PP成核作用并不明显,而少量OvPOSS接枝到PP上就具有显著的成核作用,进一步增加接枝的OvPOSS含量对PP结晶行为影响不大。Avrami方程能够描述PP和不同体系的PP/OvPOSS复合材料的等温结晶动力学。OvPOSS对PP起到异相成核的作用,影响了PP成核机理和成核过程,促进PP结晶,折叠链表面自由能σe降低。反应共混复合材料结晶速度更快,σe更低。用Ozawa方程、Ozawa和Avrami组合方程研究PP/OvPOSS复合材料的非等温结晶动力学,结果发现Ozawa方程不适合这个体系,而利用Ozawa和Avrami组合方程则能很好的描述。并利用Kissinger和Takhor方程计算非等温结晶过程活化能(ΔE),发现物理共混和反应共混PP/OvPOSS复合材料的ΔE值略高于PP。
     (3)MA-g-PP反应增容PP/OapPOSS复合材料的结构与性能研究
     制备了OapPOSS,以MA-g-PP为增容剂,研究OapPOSS填充PP的结构与性能。MA-g-PP可以与OapPOSS中氨基反应,MA-g-PP加入到PP/OapPOSS复合材料中可提高PP与OapPOSS的相容性,OapPOSS粒子粒径明显降低,材料机械性能改善。对PP/OapPOSS复合材料,Tp随着OapPOSS含量增加而降低。然而对于PP/ MA-g-PP/OapPOSS复合材料,Tp随着OapPOSS含量增加而增加,表明OapPOSS加入抑制PP成核,而加入MA-g-PP后成核作用大于抑制作用,促进了PP结晶。PP/OapPOSS的η*高于纯PP并且随着OapPOSS含量增加而增加,然而PP/ MA-g-PP /OapPOSS的η*在OapPOSS含量为5 %时达到最大值并且低于相同OapPOSS含量时PP/OapPOSS体系。这可能是由于MA-g-PP与OapPOSS反应后包覆在OapPOSS表面,降低了OapPOSS的粒子-粒子相互作用,同时粒子间滑移更容易,导致粘度降低。
     本论文的主要创新之处:
     目前POSS主要通过化学共聚或物理共混的方法引入聚合物基体中,采用反应加工的方法制备聚合物/POSS复合材料的研究较少,本论文主要采用反应加工的方法将POSS引入聚合物基体中,改善聚合物的性能。与物理共混方法相比,反应共混后材料的机械性能改善,流变性能、热性能等均有所改变。
     (1)研究了一种环氧化环己基POSS通过反应挤出来扩链PBT的方法。该方法扩链PBT的熔体粘度显著增加,凝胶含量低,热稳定性好,吸水性低,更利于PBT的储存、加工及应用。
     (2)首次采用反应共混的方法制备了OvPOSS接枝PP,研究了物理共混和反应共混这两种不同加工方法对PP/OvPOSS复合材料的结构与性能的影响。反应共混方法制备PP/OvPOSS复合材料中OvPOSS与PP的相容性改善,OvPOSS粒子的对PP结晶的成核作用更显著,并且材料机械性能优于物理共混复合材料。反应共混方法工艺简单、生产周期短、无需复杂的分离提纯和溶剂回收等后处理过程,为制备聚合物/POSS复合材料提供了一种新的方法。
     (3)对比研究了反应共混和物理共混法制备PP/OvPOSS复合材料的动态流变行为,进一步探讨了复合材料内部结构-性能之间的相互关系。反应共混复合材料在OvPOSS含量高于1 %时在低频区出现明显的凝胶行为,而物理共混复合材料在OvPOSS含量为10 %时也不出现凝胶行为。通过比较POSS与聚合物之间相互作用解释了这两种不同加工方法时材料流变行为的差异,可以为研究其他聚合物/填料复合材料结构-性能之间的相互关系提供参考。
     (4)采用MA-g-PP反应增容了PP/OapPOSS复合材料。MA-g-PP可与OapPOSS中氨基反应,增加了PP与OapPOSS的相容性,改善了复合材料的机械性能。为选择合适的POSS填充聚合物、改善聚合物性能提供了一种新方法。
Organic-inorganic nanocomposites have drawn great attention due to their excel combination of properties of organic polymers and with inorganic systems. Polyhedral oligermeric silsesquioxane (POSS) is a kind of important organic-inorganic hybrid molecular with a formula of (RSiO1.5)n. Nanostructured POSS molecular, with the diameter of 1~3 nm, is thought as“the smallest possible particles of silica”. Due to its special structure and properties, POSS (0-D) can be thought as one of the most promising nanofillers which including clay layered silicates (2-D), single and multi-wall carbon nanotubes (1-D), and has drawn great interest.
     Recently, POSS has been widely introduced into polymers by chemical copolymerization or physical blending. In this study, polymer/POSS composites were prepared through reactive processing method and their structure and properties were studied. There are three parts in this study: (1) The study on structure and properties of epoxycyclohexyl POSS (epoxy-POSS) chain-extended poly(butylene terephthalate) (PBT), (2) The study on structure and properties of octavinyl POSS (OvPOSS) grafted polypropylene (PP) by reactive blending, (3) The study on structure and properties of maleic anhydride-grafted PP (MA-g-PP) reactive compatibilized PP/octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) composites.
     (1) The study on structure and properties of epoxy-POSS chain-extended PBT
     Epoxy-POSS chain-extended PBT was prepared by reactive extrusion. The epoxy-POSS chain-extended PBT has higher intrinsic viscosity, lower carboxyl content and melt flow index (MFI) than PBT. PBT had an intrinsic viscosity of 1.1 dL/g, carboxy1 content of 21.6 eq/106g and MFI of 30 g/10min, but the PBT chain-extended with 2 wt% epoxy-POSS had an intrinsic viscosity of 1.7 dL/g, carboxy1 content less than 7 eq/106g and MFI of 7 g/10min. The chain-extended PBT has also improved mechanical properties and thermal properties, indicating it is favorable for storage, processing and application.
     (2) The study on structure and properties of OvPOSS grafted PP by reactive blending
     The OvPOSS grafted PP was prepared by reactive blending in the presence of dicumyl peroxide (DCP), and the structure and properties of PP/OvPOSS composites were studied. The graft ratio of OvPOSS increased with the increase of DCP or OvPOSS content. The structure and properties of PP/OvPOSS composites prepared by two different processing methods (physical blending and reactive blending) were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rheological test, respectively. For the physical blending composites, POSS molecules can completely dissolve in PP matrix at OvPOSS content lower than 2 %, and aggregate to crystal with further increasing OvPOSS content. And the dissolved OvPOSS molecules can act asβ-form crystalline nucleating agents. While for the reactive blending composites, OvPOSS had good compatibility and dispersion in PP matrix. Theβ-form crystal disappeared. The reactive blending composites have better mechanical properties than the physical blending ones, and have the best mechanical properties at 2 % OvPOSS content. The impact strength and flexural modulus of PP filled with 2 % POSS and 0.1 % DCP are about 50 % and 20 % higher than that of pure PP, respectively. PP/OvPOSS composites have lower degradation temperature than PP, and the reactive blending composites have better thermal stability than that of the physical blending ones. The heat release rate and mass loss rate decreased when
     OvPOSS was added.
     The rheological behavior of physical and reactive blending composites was compared by using oscillatory rheological measurements and melt flow index. It was found that the viscosity of physical blending composites drops at lower OvPOSS content (0.5~1 wt %) and thereafter increases with increasing OvPOSS content. While the viscosity of the reactive blending composites increases with increasing OvPOSS content and the composites display a solid-like rheological behavior at low frequency region when POSS content is higher than 1 wt %. The deviation of reactive blending composites from the scaling log G′-log G″of linear polymer in Han plot, upturning at high viscosity in Cole-Cole plot and from van Gurp-Palmen plot are related to the gelation behavior when OvPOSS was grafted to PP chains..
     Isothermal and nonisothermal crystallization behavior was analyzed by DSC test. The crystallize peak temperature (Tp) of physical blending PP/OvPOSS composites is close to that of pure PP and changes little with increasing OvPOSS content. While for the reactive blending composites and OvPOSS-g-PP, Tp is greatly higher than that of PP and changes little with increasing OvPOSS content. It indicates that aggregated OvPOSS crystals have little nucleating effect on PP while grafted OvPOSS has significant nucleating effect and the nucleating effect changes little with increasing the graft ratio of OvPOSS. The Avrami equation was used to study the isothermal crystallization kinetics of PP and PP/OvPOSS composites. The results show that OvPOSS can act as a heterogeneous nucleating agent, especially effective for the reactive blending composites. Addition of OvPOSS accelerates the crystallization of PP, increases the rate of crystallization and decreases the chain folding energy of PP. For the nonisothermal crystallization kinetics of PP/OvPOSS composites, the Ozawa equation is not suitable for these materials while the combination of Avrami and Ozawa equations exhibits great advantages in treating the nonisothermal crystallization kinetics of PP/OvPOSS composites. The activation energies (ΔE) calculated by Kissinger and Takhor methods for the nonisothermal crystallization of phtsical blending and reactive blending PP/OvPOSS composites are slightly higher than PP.
     (3) The study on structure and properties of MA-g-PP reactive compatibilized PP/OapPOSS composites.
     OapPOSS was prepared and filled to PP and MA-g-PP was selected as compatibilizer. The addition of MA-g-PP could improve the compatibility between PP and OapPOSS, promote a fine dispersion of OapPOSS particles in PP matrix and improve the mechanical properties of PP due to the reaction of amine groups of OapPOSS with maleic anhtydride groups of MA-g-PP. With increasing OapPOSS content, the Tp of PP/OapPOSS composites decreased while that of PP/MA-g-PP/OapPOSS composites increased, indicating OapPOSS could retard the crystallization of PP in PP/OapPOSS composites, while the nucleating effect compensated and overlapped the retardation effects when MA-g-PP was added. For PP/OapPOSS composites,η* increased with increasing OapPOSS content, while theη* of all the PP/MAPP/OapPOSS composites was lower than that of PP /OapPOSS at the same OapPOSS content and reached the maximum at 5 % OapPOSS content. It is probably due to the lower particle-particle interaction and interface slipping when OapPOSS was encapsulated by PP chain when OapPOSS was reacted with MA-g-PP.
     The innovations of this dissertation are list as follows:
     Recently, POSS has been widely introduced into polymers by chemical copolymerization or physical blending. While there are little reports about PP/POSS composites prepared by reactive processing. In this study, POSS was introduced to polymers to improve the properties of polymers. Compared with PP/POSS composites prepared by physical blending, the reactive blending composites had better mechanical properties. Their rheological behavior and thermal properties were different.
     (1) A method of epoxy-POSS chain-extended PBT was investigated. PBT chain extended by this method has higher viscosity, lower gel content, better thermal stability and lower water absorption, which is advantage for storage, processing and application of PBT.
     (2) OvPOSS was firstly grafted to PP by reactive blending method. The structure and properties of the composites prepared by the two processing methods (reactive blending and physical blending) was studied. For the reactive blending composites, OvPOSS has goog compatibility and dispersion in PP matrix, significant nucleating effect on the crystallization of PP and improved the mechanical properties of PP. Reactive blending has advantages of simplified technique, short product cycle and no complicated aftertreat including separation, purification and solvent recycle. The properties of reactive blending composites also have better properties than physical blending composites. It provides a new method to prepare polymer/POSS composites.
     (3) The rheological behavior of reactive blending and physical blending composites was compared, and the structure-property relationship of composites was discussed. The reactive blending composites display solid-like rheological behavior at low frequency region when OvPOSS content is higher than 1 %, while the physical blending composites do not display solid-like rheological behavior even at 10 % OvPOSS content. The difference of rheological behavior of two different methods was explained by the interaction of POSS and polymer, which can provide the reference for investigating the structure-property relationship of other polymer/fillers composites.
     (4) MA-g-PP was selected as reacitve compatibilizer to PP/OapPOSS composites. The addition of MA-g-PP could improve the compatibility between PP and OapPOSS, and improve the mechanical properties of PP due to the reaction of amine groups of OapPOSS with MA-g-PP. It provides a method for choosing suitable formation of POSS filled polymer and studying the structure-properties relationship.
引文
1. Loy D A, Shea K J. Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chemical Reviews 1995, 95, (5), 1431-1442.
    2. Phillips S H, Haddad T S, Tomczak S J. Developments in nanoscience: Polyhedral oligomeric silsesquioxane (POSS)-polymers. Current Opinion in Solid State and Materials Science 2004, 8, (1), 21-29.
    3. Scott D W. Thermal rearrangement of branched-chain methylpolysiloxanes. Journal of the American Chemical Society 1946, 68, (3), 356-358.
    4. Voronkov M G, Lavrent'yev V I. polyhedral oligosilsesquioxane and their homo derivatives. Top Curr Chem 1982, 102, 199-236.
    5. Kinrade S D, Knight C T G, Pole D L, Syvitski R T. Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 2. Polymerization kinetics. Inorganic Chemistry 1998, 37, (17), 4278-4283.
    6. Choi J, Harcup J, Yee A F, Zhu Q, Laine R M. Organic/inorganic hybrid composites from cubic silsesquioxanes. Journal of the American Chemical Society 2001, 123, (46), 11420-11430.
    7. Hasegawa I, Motojima S. Dimethylvinylsilylation of Si8O208- silicate anion in methanol solutions of tetramethylammonium silicate. Journal of Organometallic Chemistry 1992, 441, (3), 373-380.
    8.杜建科,杨荣杰.笼形低聚硅倍半氧烷纳米材料及其应用.宇航材料工艺.2005, 35,(3),1-6.
    9. Laine R M, Blohowiak K Y, Robinson T R, Hoppe M L, Nardi P, Kampf J, Uhm J. Synthesis of pentacoordinate silicon complexes from SiO2. Nature 1991, 353, (6345), 642-644.
    10. Laine R M, Cheng H. International aircraft fire and cabin safety research congerence. 1998, 11-15.
    11. Feher F J, Tajima T L. Synthesis of a molybdenum-containing silsesquioxane which rapidly catalyzes the metathesis of olefins. Journal of the American Chemical Society 1994, 116, (5), 2145-2146.
    12. Feher F J, Schwab J J, Phillips S H, Eklund A, Martinez E. Phosphine-substituted silsesquioxanes as building blocks for organometallic gels. Organometallics 1995, 14, (10), 4452-4453.
    13. Feher F J, Walzer J F. Synthesis and characterization of vanadium-containing silsesquioxanes. Inorganic Chemistry 1991, 30, (8), 1689-1694.
    14. Feher F J, Nguyen F, Soulivong D, Ziller J W. A new route to incompletely condensed silsesquioxanes: Acid-mediated cleavage and rearrangement of (c-C6H11)6Si6O9 to C2-[(c-C6H11)6Si6O8X2]. Chemical Communications 1999, (17), 1705-1706.
    15. Deng J, Farmer-Creely C E, Viers B D, Esker A R. Unique rodlike surface morphologies in trisilanolcyclohexyl polyhedral oligomeric silsesquioxane films. Langmuir 2004, 20, (7), 2527-2530.
    16. Constable G S, Lesser A J, Coughlin E B. Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, (4), 1276-1282.
    17. Tamaki R, Tanaka Y, Asuncion M Z, Choi J, Laine R M. Octa(aminophenyl)silsesquioxane as a nanoconstruction site. Journal of the American Chemical Society 2001, 123, (49), 12416-12417.
    18. Ni Y, Zheng S, Nie K. Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 2004, 45, (16), 5557-5568.
    19. Ni Y, Zheng S. A novel photocrosslinkable polyhedral oligomeric silsesquioxane and its nanocomposites with poly(vinyl cinnamate). Chemistry of Materials 2004, 16, (24), 5141-5148.
    20. Liu H, Zheng S. Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2005, 26, (3), 196-200.
    21. Zhang C, Laine R M. Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species. Journal of Organometallic Chemistry 1996, 521, (1-2), 199-201.
    22. Unno M, Matsumoto T, Mochizuki K, Higuchi K, Goto M, Matsumoto H. Structure and oxidation of octakis (tert-butyldimethylsilyl)octasilacubane. Journal of Organometallic Chemistry 2003, 685, (1-2), 156-161.
    23.卢婷利,梁国正,宫兆合,任鹏刚,张增平.含倍半硅氧烷的杂化聚合物.高分子通报. 2004, (1), 15-20.
    24.宋晓艳.磁性多面体齐聚倍半硅氧烷(POSS)及其聚苯乙烯/POSS纳米复合材料的合成与表征.北京化工大学博士论文2006.
    25.倪勇.含苯基多面齐聚倍半硅氧烷高分子的结构与性能研究.上海交通大学博士学位论文2007.
    26. Lichtenhan J D, Otonari Y A, Carr M J. Linear hybrid polymer building blocks: Methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 1995, 28, (24), 8435-8437.
    27. Haddad T S, Lichtenhan J D. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 1996, 29, (22), 7302-7304.
    28. Romo-Uribe A, Mather P T, Haddad T S, Lichtenhan J D. Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. Journal of Polymer Science, Part B: Polymer Physics 1998, 36, (11), 1857-1872.
    29. Mather P T, Jeon H G, Romo-Uribe A, Haddad T S, Lichtenhan J D. Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 1999, 32, (4), 1194-1203.
    30. Shockey E G, Bolf A G, Jones P F, Schwab J J, Chaffee K P, Haddad T S, Lichtenhan J D. Functionalized polyhedral oligosilsesquioxane (POSS) macromers: New graftable POSS hydride, POSSα-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Applied Organometallic Chemistry 1999, 13, (4), 311-327.
    31. Bharadwaj R K, Berry R J, Farmer B L. Molecular dynamics simulation study of norbornene-POSS polymers. Polymer 2000, 41, (19), 7209-7221.
    32. Gao F, Culbertson B M, Tong Y, Schricker S R. Evaluation of multi-methacrylates copolymerized with methacryl-POSS for potential organic-inorganic hybrid dental restorative materials. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry 2000, 41, (1), 580-581.
    33. Jeon H G, Mather P T, Haddad T S. Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polymer International 2000, 49, (5), 453-457.
    34. Gao F, Tong Y, Schricker S R, Culbertson B M. Evaluation of neat resins based on methacryplates modified with methacryl-POSS, as potential organic-inorganic hybrids for formulating dental restoratives. Polymers for Advanced Technologies 2001, 12, (6), 355-360.
    35. Haddad T S, Viers B D, Phillips S H. Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. Journal of Inorganic and Organometallic Polymers 2001, 11, (3), 155-164.
    36. Xu H, Kuo S W, Huang C F, Chang F C. Poly(acetoxystyrene-co-isobutylstyryl POSS) nanocomposites: Characterization and molecular interaction. Journal of Polymer Research 2002, 9, (4), 239-244.
    37. Xu H, Kuo S W, Lee J S, Chang F C. Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 2002, 35, (23), 8788-8793.
    38. Xu H, Kuo S W, Lee J S, Chang F C. Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer 2002, 43, (19), 5117-5124.
    39. Zhang W, Fu B X, Seo Y, Schrag E, Hsiao B, Mather P T, Yang N L, Xu D, Ade H, Rafailovich M, Sokolov J. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 2002, 35, (21), 8029-8038.
    40. Kim K M, Keum D K, Chujo Y. Organic-inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane. Macromolecules 2003, 36, (3), 867-875.
    41. Kopesky E T, Haddad T S, Cohen R E, McKinley G H. Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, (24), 8992-9004.
    42. Weickmann H, Delto R, Thomann R, Brenn R, Do?ll W, Mülhaupt R. PMMA nanocomposites and gradient materials prepared by means of polysilsesquioxane (POSS) self-assembly. Journal of Materials Science 2007, 42, (1), 87-92.
    43. Yang B, Xu H, Wang J, Gang S, Li C. Preparation and thermal property of hybrid nanocomposites by free radical copolymerization of styrene with octavinyl polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science 2007, 106, (1), 320-326.
    44. Xu H, Yang B, Wang J, Guang S, Li C. Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45, (22), 5308-5317.
    45. Pyun J, Matyjaszewski K. Synthesis of hybrid polymers using atom transfer radical polymerization: Homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 2000, 33, (1), 217-220.
    46. Costa R O R, Vasconcelos W L, Tamaki R, Laine R M. Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 2001, 34, (16), 5398-5407.
    47. Goffin A L, Duquesne E, Moins S, Alexandre M, Dubois P. New organic-inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. European Polymer Journal 2007, 43, (10), 4103-4113.
    48. Xu W, Chung C, Kwon Y. Synthesis of novel block copolymers containing polyhedral oligomeric silsesquioxane (POSS) pendent groups via ring-opening metathesis polymerization (ROMP). Polymer 2007, 48, (21), 6286-6293.
    49. Ohno K, Sugiyama S, Koh K, Tsujii Y, Fukuda T, Yamahiro M, Oikawa H, Yamamoto Y, Ootake N, Watanabe K. Living radical polymerization by polyhedral oligomeric silsesquioxane- holding initiators: Precision synthesis of tadpole-shaped organic/inorganic hybrid polymers. Macromolecules 2004, 37, (23), 8517-8522.
    50. Kim K M. Organic-inorganic nanocomposites of polystyrene with polyhedral oligomeric silsesquioxane. Polymer 2006, 30, (5), 380-384.
    51. Lee A, Lichtenhan J D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 1998, 31, (15), 4970-4974.
    52. Li G Z, Wang L, Toghiani H, Daulton T L, Koyama K, Pittman C.U, Jr. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxanenanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends. Macromolecules 2001, 34, (25), 8686-8693.
    53. Mya K Y, He C, Huang J, Xiao Y, Dai J, Siow Y P. Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. Journal of Polymer Science, Part A: Polymer Chemistry 2004, 42, (14), 3490-3503.
    54. Lee Y J, Huang J M, Kuo S W, Lu J S, Chang F C. Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 2005, 46, (1), 173-181.
    55. Liu Y, Zheng S, Nie K. Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer 2005, 46, (25), 12016-12025.
    56. Liu Y, Meng F, Zheng S. Poly(4-vinylpyridine) nanocrosslinked by polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2005, 26, (11), 920-925.
    57. Lin H C, Kuo S W, Huang C F, Chang F C. Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2006, 27, (7), 537-541.
    58. Liu Y, Zheng S. Inorganic-organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, (3), 1168-1181.
    59. Liu Y L, Chang G P, Hsu K Y, Chang F C. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis(glycidyldimethylsiloxy)octasilsesquioxane and small-molecule curing agents. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, (12), 3825-3835.
    60. Tsuchida A, Bolln C, Sernetz F G, Frey H, Mu?lhaupt R. Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules 1997, 30, (10), 2818-2824.
    61. Zheng L, Farris R J, Coughlin E B. Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization. Journal of Polymer Science, Part A: Polymer Chemistry 2001, 39, (17), 2920-2928.
    62. Zheng L, Farris R J, Coughlin E B. Novel polyolefin nanocomposites: Synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2001, 34, (23), 8034-8039.
    63. Fu B X, Lee A, Haddad T S. Styrene-butadiene-styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, (14), 5211-5218.
    64. Drazkowski D B, Lee A, Haddad T S. Morphology and phase transitions in styrene-butadiene-styrene triblock copolymer grafted with isobutyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 2007, 40, (8), 2798-2805.
    65. Joshi M, Butola B S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 2004, 45, (14), 4953-4968.
    66. Joshi M, Butola B S, Simon G, Kukaleva N. Rheological and viscoelastic behavior of HDPE/Octamethyl-POSS nanocomposites. Macromolecules 2006, 39, (5), 1839-1849.
    67. Joshi M, Butola B S. Isothermal crystallization of HDPE/octamethyl polyhedral oligomeric silsesquioxane nanocomposites: Role of POSS as a nanofiller. Journal of Applied Polymer Science 2007, 105, (2), 978-985.
    68. Fu B X, Yang L, Somani R H, Zong S X, Hsiao B S, Phillips S, Blanski R, Ruth P. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science, Part B: Polymer Physics 2001, 39, (22), 2727-2739.
    69.许锦华,丁雪佳,徐日炜,张立群,余鼎声.聚丙烯/笼型聚硅倍半氧烷的非等温结晶及其动力学研究.北京化工大学学报2004, 31, (6), 107-109.
    70. Fina A, Tabuani D, Frache A, Camino G. Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 2005, 46, (19 SPEC. ISS.), 7855-7866.
    71. Chen J H, Chiou Y D. Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. Journal of Polymer Science, Part B: Polymer Physics 2006, 44, (15), 2122-2134.
    72. Fina A, Abbenhuis H C L, Tabuani D, Camino G. Metal functionalized POSS as fire retardants in polypropylene. Polymer Degradation and Stability 2006, 91, (10), 2275-2281.
    73. Fina A, Abbenhuis H C L, Tabuani D, Frache A, Camino G. Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis. Polymer Degradation and Stability 2006, 91, (5), 1064-1070.
    74. Pracella M, Chionna D, Fina A, Tabuani D, Frache A, Camino G. Polypropylene-POSS nanocomposites: Morphology and crystallization behaviour. Macromolecular Symposia 2006, 234, 59-67.
    75. Chen J H, Yao B X, Su W B, Yang Y B. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 2007, 48, (6), 1756-1769.
    76. Takala M, Karttunen M, Salovaara P, Kortet S, Kannus K, Kalliohaka T. Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesquioxane compounds. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15, (1), 40-50.
    77. Fu B X, Gelfer M Y, Hsiao B S, Phillips S, Viers B, Blanski R, Ruth P. Physical gelation in ethylene-propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 2003, 44, (5), 1499-1506.
    78. Hosaka N, Torikai N, Otsuka H, Takahara A. Structure and dewetting behavior of polyhedral oligomeric silsesquioxane-filled polystyrene thin films. Langmuir 2007, 23, (2), 902-907.
    79. Liu L, Hu Y, Song L, Nazare S, He S, Hull R. Combustion and thermal properties of OctaTMA-POSS/PS composites. Journal of Materials Science 2007, 42, (12), 4325-4333.
    80. Soong S Y, Cohen R E, Boyce M C, Mulliken A D. Rate-dependent deformation behavior of POSS-filled and plasticized poly(vinyl chloride). Macromolecules 2006, 39, (8), 2900-2908.
    81. Soong S Y, Cohen R E, Boyce M C. Polyhedral oligomeric silsesquioxane as a novel plasticizer for poly(vinyl chloride). Polymer 2007, 48, (5), 1410-1418.
    82. Hamza T, Wee A G, Alapati S, Schricker S R. The fracture toughness of denture base material reinforced with different concentrations of POSS. Journal of Macromolecular Science - Pure and Applied Chemistry 2004, 41 A, (8), 897-906.
    83. Kopesky E T, Haddad T S, McKinley G H, Cohen R E. Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane-poly(methyl methacrylate) blends. Polymer 2005, 46, (13), 4743-4752.
    84. Kopesky E T, McKinley G H, Cohen R E. Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer 2006, 47, (1), 299-309.
    85. Yoon K H, Polk M B, Park J H, Min B G, Schiraldi D A. Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane. Polymer International 2005, 54, (1), 47-53.
    86. Zeng J, Bennett C, Jarrett W L, Iyer S, Kumar S, Mathias L J, Schiraldi D A. Structural changes in trisilanol POSS during nanocomposite melt processing. Composite Interfaces 2005, 11, (8-9), 673-685.
    87. Zeng J, Kumar S, Iyer S, Schiraldi D A, Gonzalez R I. Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Performance Polymers 2005, 17, (3), 403-424.
    88. Ciolacu F C L, Choudhury N R, Dutta N, Kosior E. Molecular level stabilization of poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl-POSS. Macromolecules 2007, 40, (2), 265-272.
    89. Vannier A, Duquesne S, Bourbigot S, Castrovinci A, Camino G, Delobel R. The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate). Polymer Degradation and Stability 2008, 93, (4), 818-826.
    90. Misra R, Morgan S E, Fu B In Nonwetting low friction nylon 6/ polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites, Annual Technical Conference - ANTEC, Conference Proceedings, 2007; 2007; pp 62-66.
    91. Zhao Y, Schiraldi D A. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 2005, 46, (25), 11640-11647.
    92. Bohning M, Hao N, Sch? nhals A. Gas transport and molecular mobility in polymer/POSSnanocomposites. Desalination 2006, 200, (1-3), 142-143.
    93. Mulliken A D, Boyce M C. Polycarbonate and a polycarbonate-POSS nanocomposite at highrates of deformation. Journal of Engineering Materials and Technology, Transactions of the ASME2006, 128, (4), 543-550.
    94. Iyer S, Schiraldi D A. Role of specific interactions and solubility in the reinforcement ofbisphenol A polymers with polyhedral oligomeric silsesquioxanes. Macromolecules 2007, 40, (14),4942-4952.
    95. Song L, He Q, Hu Y, Chen H, Liu L. Study on thermal degradation and combustion behaviorsof PC/POSS hybrids. Polymer Degradation and Stability 2008, 93, (3), 627-639.
    96. Hottle J R, Kim H J, Deng J, Farmer-Creely C E, Viers B D, Esker A R. Blends ofamphiphilic PDMS and trisilanolisobutyl-POSS at the air/water interface. Macromolecules 2004,37, (13), 4900-4908.
    97. Hottle J R, Deng J, Kim H J, Farmer-Creely C E, Viers B D, Esker A R. Blends ofamphiphilic poly(dimethylsiloxane) and nonamphiphilic octaisobutyl-POSS at the air/waterinterface. Langmuir 2005, 21, (6), 2250-2259.
    98. Kim H J, Deng J, Lalli J H, Riffle J S, Viers B D, Esker A R. Blends of amphiphilictrisilanolisobutyl-POSS and phosphine oxide substituted poly(dimethylsiloxane) at the air/waterinterface. Langmuir 2005, 21, (5), 1908-1916.
    99. Liu L, Ming T, Liang G, Chen W, Zhang L, Mark J E. Polyhedral Oligomeric Silsesquioxane(POSS) particles in a polysiloxane melt and elastomer. Dependence of the dispersion of the POSSon its dissolution and the constraining effects of a network structure. Journal of MacromolecularScience, Part A: Pure and Applied Chemistry 2007, 44, (7), 659-664.
    100. Liu L, Tian M, Zhang W, Zhang L, Mark J E. Crystallization and morphology study ofpolyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by meltblending. Polymer 2007, 48, (11), 3201-3212.
    101. Liu Y R, Huang Y D, Liu L. Thermal stability of POSS/methylsilicone nanocomposites.Composites Science and Technology 2007, 67, (13), 2864-2876.
    102. Liu Y R, Huang Y D, Liu L. Influences of MonoSilanolIsobutyl-POSS on thermal stability ofpolymethylsilxoane. Journal of Materials Science 2007, 42, (14), 5544-5550.
    103. Lee Y J, Kuo S W, Huang W J, Lee H Y, Chang F C. Miscibility, specific interactions, andself-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. Journal ofPolymer Science, Part B: Polymer Physics 2004, 42, (6), 1127-1136.
    104. Li G, Wang L, Ni H, Pittman Jr C U. Polyhedral oligomeric silsesquioxane (POSS) polymersand copolymers: A review. Journal of Inorganic and Organometallic Polymers 2001, 11, (3),123-154.
    105. Kim K M, Inakura T, Chujo Y. Organic-inorganic polymer hybrids using octasilsesquioxanes with hydroxyl groups. Polymer Bulletin 2001, 46, (5), 351-356.
    106. Pyun J, Matyjaszewski K, Wu J, Kim G M, Chun S B, Mather P T. ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: Synthesis and unique properties. Polymer 2003, 44, (9), 2739-2750.
    107. Zheng L, Waddon A J, Farris R J, Coughlin E B. X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2002, 35, (6), 2375-2379.
    108. Waddon A J, Zheng L, Farris R J, Coughlin E B. Nanostructured Polyethylene-POSS Copolymers: Control of Crystallization and Aggregation. Nano Letters 2002, 2, (10), 1149-1155.
    109. Miao J, Cui L, Lau H P, Mather P T, Zhu L. Self-assembly and chain-folding in hybrid coil-coil-cube triblock oligomers of polyethylene-b-poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane. Macromolecules 2007, 40, (15), 5460-5470.
    110. Liu Y, Yang X, Zhang W, Zheng S. Star-shaped poly(ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 2006, 47, (19), 6814-6825.
    111. Ni Y, Zheng S. Melting and crystallization behavior of polyhedral oligomeric silsesquioxane-capped poly(ε-caprolactone). Journal of Polymer Science, Part B: Polymer Physics 2007, 45, (16), 2201-2214.
    112. Maitra P, Wunder S L. Oligomeric poly(ethylene oxide)-functionalized silsesquioxanes: Interfacial effects on Tg, Tm, andΔHm. Chemistry of Materials 2002, 14, (11), 4494-4497.
    113. Mya K Y, Pramoda K P, He C B. Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core. Polymer 2006, 47, (14), 5035-5043.
    114. Li G Z, Wang L, Toghiani H, Daulton T L, Pittman Jr C U. Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS-styrene copolymers. Polymer 2002, 43, (15), 4167-4176.
    115. Wu J, Haddad T S, Kim G M, Mather P T. Rheological behavior of entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) copolymers. Macromolecules 2007, 40, (3), 544-554.
    116. Kim J K, Yoon K H, Bang D S, Park Y B, Kim H U, Bang Y H. Morphology and rheological behaviors of polyethylene terephthalate nanocomposites containing polyhedral oligomeric silsesquioxanes. Journal of Applied Polymer Science 2008, 107, (1), 272-279.
    117.汪凤佳. POSS基高分子材料的制备及其热性能研究.安徽大学硕士学位论文2005.
    118. Xu H, Kuo S W, Huang C F, Chang F C. Characterization of poly(vinyl pyrrolidone-co-isobutylstyryl polyhedral oligomeric silsesquioxane) nanocomposites. Journal ofApplied Polymer Science 2004, 91, (4), 2208-2215.
    119. Xu H, Kuo S W, Chang F C. Significant glass transition temperature increase based on polyhedral oligomeric silsequioxane (POSS) copolymer through hydrogen bonding. Polymer Bulletin 2002, 48, (6), 469-474.
    120. Ricco L, Russo S, Monticelli O, Bordo A, Bellucci F.ε-Caprolactam polymerization in presence of polyhedral oligomeric silsesquioxanes (POSS). Polymer 2005, 46, (18), 6810-6819.
    121. Baldi F, Bignotti F, Ricco L, Monticelli O, Ricco T. Mechanical and structural characterization of POSS-modified polyamide 6. Journal of Applied Polymer Science 2006, 100, (4), 3409-3414.
    122. Baldi F, Bignotti F, Fina A, Tabuani D, Ricco T. Mechanical characterization of polyhedral oligomeric silsesquioxane/ polypropylene blends. Journal of Applied Polymer Science 2007, 105, (2), 935-943.
    123. Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire and Materials 2002, 26, (4-5), 149-154.
    124. Chigwada G, Jash P, Jiang D D, Wilkie C A. Fire retardancy of vinyl ester nanocomposites: Synergy with phosphorus-based fire retardants. Polymer Degradation and Stability 2005, 89, (1), 85-100.
    125.Bourbigot S, Duquesne S, Jama C. Polymer nanocomposites: How to reach low flammability? Macromolecular Symposia 2006, 233, 180-190.
    126. Leu C M, Chang Y T, Wei K H. Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via Poss-diamine. Macromolecules 2003, 36, (24), 9122-9127.
    127. Leu C M, Chang Y T, Wei K H. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chemistry of Materials 2003, 15, (19), 3721-3727.
    128. Leu C M, Reddy G M, Wei K H, Shu C F. Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chemistry of Materials 2003, 15, (11), 2261-2265.
    129. Chen W Y, Wang Y Z, Kuo S W, Huang C F, Tung P H, Chang F C. Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine. Polymer 2004, 45, (20), 6897-6908.
    130. Lee Y J, Huang J M, Kuo S W, Chang F C. Low-dielectric, nanoporous polyimide films prepared from PEO-POSS nanoparticles. Polymer 2005, 46, (23), 10056-10065.
    131. Liu Y L, Liu C S, Cho C I, Hwu M J. Polyhedral oligomeric silsequioxane monolayer as ananoporous interlayer for preparation of low-k dielectric films. Nanotechnology 2007, 18, (22).
    132. Turri S, Levi M. Wettability of polyhedral oligomeric silsesquioxane nanostructured polymer surfaces. Macromolecular Rapid Communications 2005, 26, (15), 1233-1236.
    133. Liu Y, Ni Y, Zheng S. Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromolecular Chemistry and Physics 2006, 207, (20), 1842-1851.
    134. Misra R, Fu B X, Morgan S E. Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2007, 45, (17), 2441-2455.
    135. Zeng K, Zheng S. Nanostructures and surface dewettability of epoxy thermosets containing hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped polyethylene oxide. Journal of Physical Chemistry B 2007, 111, (50), 13919-13928.
    136. Miyamoto K, Hosaka N, Kobayashi M, Otsuka H, Yamada N, Torikai N, Takahara A. Dewetting inhibition and interfacial structures of silsesquioxane- terminated polystyrene thin films. Polymer Journal 2007, 39, (12), 1247-1252.
    137. Gonzalez R I, Tomczak S J, Minton T K, Brunsvold A L, Hoflund G B In Synthesis and atomic oxygen erosion testing of space-survivable POSS (polyhedral oligomeric silsesquioxane) polyimides, European Space Agency, (Special Publication) ESA SP, 2003; 2003; pp 113-120.
    138. Koh K, Sugiyama S, Morinaga T, Ohno K, Tsujii Y, Fukuda T, Yamahiro M, Iijima T, Oikawa H, Watanabe K, Miyashita T. Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate). Macromolecules 2005, 38, (4), 1264-1270.
    139.董建华,关马劲,殷敬华,安立佳,郑安呐,盛京,周持兴.高分子材料反应加工的基本科学问题.中国科学基金2003, 1, 12-15.
    140.瞿金平,李光吉,周南桥(译).反应挤出—原理与实践.北京:化学工业出版社1999.
    141.陈卫丰,严海标,柯清泉,郦华.聚合物反应挤出加工技术及其应用.塑料科技2001, 8, 23-25.
    142.刘洪乔.塑料反应挤出改性进展.聚氯乙烯2003, 3, 1-9.
    143.王卫卫,邱桂学.反应挤出加工技术在塑料改性中的发展.塑料工业2007, 35, 20-27.
    1.赵耀明,非纤维用热塑性聚酯工艺于应用.化学工业出版社: 2002.
    2. Kosky P G, McDonald R S, Guggenheim E A. Dertermination of end-group concentration and molecular weight of poly(butylene terephthaleat) by solid-state Fourier transform infrared spectroscopy. Polymer Engineering and Science 1985, 25, (7), 389-394.
    3. Kosky P G, Guggenheim E A. Solid-state polymerization in poly(butylene terephthalate): the equilibrium constant. Polymer Engineering and Science 1985, 25, (18), 1145-1147.
    4. Inata H, Matsumura S. Chain extenders for polyesters. I. Adition-type chain extenders reactive with carboxyl end groups of polyesters. Journal of Applied Polymer Science 1985, 30, (8), 3325-3337.
    5. Inata H, Matsumura S. Chain extenders for polyesters II. Reactives of carboxyl-addition-type chain extenders: bis cyclic-imimo-ethers. . Journal of Applied Polymer Science 1986, 32, (5),5193-5202.
    6. Inata H, Matsumura S. Chain extenders for polyesters. III. Addition-type nitrogen-containing chain extenders reactive with hydroxyl end groups of polyesters. Journal of Applied Polymer Science 1986, 32, (4), 4581-4594.
    7. Inata H, Matsumura S. Chain extenders for polyesters. VI. Properties of the properties of the polyesters chain extended by 2,2 prime -bis(4H-3,1-benzoxazin-4-one). Journal of Applied Polymer Science 1987, 34, (8), 2769-2776.
    8. Inata H, Matsumura S. Chain extenders for polyesters. V. Reactives of hydroxyl-addition-type chain extender:2,2 prime -bis(4H-3,1-benzoxazin-4-one). Journal of Applied Polymer Science 1987, 34, (7), 2609-2617.
    9. Inata H, Matsumura S. Chain extenders for polyesters. IV. Properties of the polyesters chain-extenders chain-extended by 2,2 prime -bis(2-oxazoline). Journal of Applied Polymer Science 1987, 33, (8), 3069-3079.
    10. Bikiaris D N, Karayannidis G P. Chain extension of polyesters PET and PBT with N,N'-bis (glycidyl ester) pyromellitimides. I. Journal of Polymer Science Part A: Polymer Chemistry 1995, 33, (10), 1705-1714.
    11. Bikiaris D N, Karayannidis G P. Chain extension of polyesters PET and PBT with two new diimidodiepoxides. II. Journal of Polymer Science, Part A: Polymer Chemistry 1996, 34, (7), 1337-1342.
    12. Guo B, Chan C M. Chain Extension of Poly(butylene terephthalate) by Reactive Extrusion. Journal of Applied Polymer Science 1999, 71, (11), 1827-1834.
    13.朱志学.聚对苯二甲酸乙醇酯和聚对苯二甲酸丁二醇酯化学扩链反应.合成化学.1997, 5, (4) 349-356.
    14. Muschiatti, Lawrence C. High melt strength pet polymers for foam applications and methods relating thereto. United States Patent 1991, 5,229,432.
    15. Lee A, Lichtenhan J D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 1998, 31, (15), 4970-4974.
    16. Ramírez C, Abad M J, Barral L, Cano J, Díez F J, López J, Montes R, Polo J. Thermal behaviour of a polyhedral oligomeric silsesquioxane with epoxy resin cured by diamines. Journal of Thermal Analysis and Calorimetry 2003, 72, (2), 421-429.
    17. Mya K Y, He C, Huang J, Xiao Y, Dai J, Siow Y P. Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. Journal of Polymer Science, Part A: Polymer Chemistry 2004, 42, (14), 3490-3503.
    18. Liu Y, Meng F, Zheng S. Poly(4-vinylpyridine) nanocrosslinked by polyhedral oligomeric silsesquioxane. Macromolecular Rapid Communications 2005, 26, (11), 920-925.
    19. Liu Y, Zheng S, Nie K. Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer 2005, 46, (25), 12016-12025.
    20. Liu Y, Ni Y, Zheng S. Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromolecular Chemistry and Physics 2006, 207, (20), 1842-1851.
    21. Liu Y, Zheng S. Inorganic-organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, (3), 1168-1181.
    22. Liu Y L, Chang G P, Hsu K Y, Chang F C. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis(glycidyldimethylsiloxy)octasilsesquioxane and small-molecule curing agents. Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, (12), 3825-3835.
    23. Zeng J, Kumar S, Iyer S, Schiraldi D A, Gonzalez R I. Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Performance Polymers 2005, 17, (3), 403-424.
    24. Yoon K H, Polk M B, Park J H, Min B G, Schiraldi D A. Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane. Polymer International 2005, 54, (1), 47-53.
    25. Ciolacu F C L, Choudhury N R, Dutta N, Kosior E. Molecular level stabilization of poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl-POSS. Macromolecules 2007, 40, (2), 265-272.
    26. www.hybridplastic.com.
    27. Pohl H A. Determination of carboxyl end groups in polyester, polyethylene terephthalate Analytical Chemistry 1954, 26, (10), 1614-1616.
    28. Inata H, Morinaga T, Matsumura S. Postcrosslinking of linear polyesters. I Melt-blend-type UV-induced crosslinking agents. Journal of Applied Polymer Science 1988, 35, (7), 1705-1714.
    29. Illers K H. Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate). Colloid and Polymer Science 1980, 258, (2), 117-124.
    30. Hang D H. Rheology in Polymer Processing. Academic: NewYork 1976.
    1. Tsu chida A, Bolln C, Sernetz F G, Frey H, Mülhaupt R. Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules 1997, 30, (10), 2818-2824.
    2. Zheng L, Farris R J, Coughlin E B. Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization. Journal of Polymer Science, Part A: Polymer Chemistry 2001, 39, (17), 2920-2928.
    3. Zheng L, Farris R J, Coughlin E B. Novel polyolefin nanocomposites: Synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2001, 34, (23), 8034-8039.
    4. Fu B X, Yang L, Somani R H, Zong S X, Hsiao B S, Phillips S, Blanski R, Ruth P. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science, Part B: Polymer Physics 2001, 39, (22), 2727-2739.
    5. Fina A, Tabuani D, Frache A, Camino G. Polypropylene-polyhedral oligomericsilsesquioxanes (POSS) nanocomposites. Polymer 2005, 46, (19 SPEC. ISS.), 7855-7866.
    6. Fina A, Abbenhuis H C L, Tabuani D, Frache A, Camino G. Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis. Polymer Degradation and Stability 2006, 91, (5), 1064-1070.
    7. Pracella M, Chionna D, Fina A, Tabuani D, Frache A, Camino G. Polypropylene-POSS nanocomposites: Morphology and crystallization behaviour. Macromolecular Symposia 2006, 234, 59-67.
    8. Chen J H, Chiou Y D. Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. Journal of Polymer Science, Part B: Polymer Physics 2006, 44, (15), 2122-2134.
    9. Fina A, Abbenhuis H C L, Tabuani D, Camino G. Metal functionalized POSS as fire retardants in polypropylene. Polymer Degradation and Stability 2006, 91, (10), 2275-2281.
    10. Chen J H, Yao B X, Su W B, Yang Y B. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 2007, 48, (6), 1756-1769.
    11. Baldi F, Bignotti F, Fina A, Tabuani D, Ricco T. Mechanical characterization of polyhedral oligomeric silsesquioxane/ polypropylene blends. Journal of Applied Polymer Science 2007, 105, (2), 935-943.
    12. Takala M, Karttunen M, Salovaara P, Kortet S, Kannus K, Kalliohaka T. Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesquioxane compounds. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15, (1), 40-50.
    13. Misra R, Fu B X, Morgan S E. Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2007, 45, (17), 2441-2455.
    14. Shockey E G, Bolf A G, Jones P F, Schwab J J, Chaffee K P, Haddad T S, Lichtenhan J D. Functionalized polyhedral oligosilsesquioxane (POSS) macromers: New graftable POSS hydride, POSSα-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Applied Organometallic Chemistry 1999, 13, (4), 311-327.
    15. Fu B X, Lee A, Haddad T S. Styrene-butadiene-styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, (14), 5211-5218.
    16. Wu C L, Zhang M Q, Rong M Z, Lehmann B, Friedrich K. Functionalisation of polypropylene by solid phase graft polymerisation and its effect on the mechanical properties of silica nanocomposites. Plastics, Rubber and Composites 2003, 32, (10), 445-450.
    17. Zhang C, Laine R M. Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species. Journal of Organometallic Chemistry 1996, 521, (1-2), 199-201.
    18.张剑桥,李齐方.八乙烯基多面体低聚硅倍半氧烷及其环氧化物的合成与表征.精细化工. 2007, 24(1),17-20.
    19. Yang B, Xu H, Wang J, Gang S, Li C. Preparation and thermal property of hybrid nanocomposites by free radical copolymerization of styrene with octavinyl polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science 2007, 106, (1), 320-326.
    20. Xu H, Yang B, Wang J, Guang S, Li C. Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45, (22), 5308-5317.
    21. Xu H, Kuo S W, Lee J S, Chang F C. Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer 2002, 43, (19), 5117-5124.
    22. Xu H, Kuo S W, Huang C F, Chang F C. Characterization of poly(vinyl pyrrolidone-co-isobutylstyryl polyhedral oligomeric silsesquioxane) nanocomposites. Journal of Applied Polymer Science 2004, 91, (4), 2208-2215.
    23. Turner J A, Aizlewood J M, D.R.Beckett. Crystalline forms of isotactic polypropylene. . Makromol Chem 1964, 75, 134-158.
    24. Torre F J, Cortázar M M, Gómez M A, Ellis G, Marco C. Isothermal crystallisation of iPP/Vectra blends by DSC and simultaneous SAXS and WAXS measurements employing synchrotron radiation. Polymer 2003, 44, (18), 5209-5217.
    25. Miao J, Cui L, Lau H P, Mather P T, Zhu L. Self-assembly and chain-folding in hybrid coil-coil-cube triblock oligomers of polyethylene-b-poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane. Macromolecules 2007, 40, (15), 5460-5470.
    26. Menyhárd A, Varga J, Liberá, Belina G. Polymer blends based on theβ-modification of polypropylene. European Polymer Journal 2005, 41, (4), 669-677.
    27. Padden F, Keith H. Evidence for a second crystal form of polypropylene. Journal of Applied Physics 1959, 30, (10), 1479-1484.
    28. Norton D R, Keller A. Spherulitic and lamellarmorphology of melt-crystallized isotactic polypropylene. Polymer 1985, 26, (5), 704-716.
    29. Lotz B, Wittmann J C. Molecular origin of lamellar branching in the alpha(monoclinic) form jof isotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics 1986, 24, (7), 1541-1558.
    30. Labour T, Gauthier C, Séguéla., Vigier G, Bomal Y, Orange G. Influence of theβcrystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterisation. Polymer 2001, 42, (16), 7127-7135.
    31. Tjong S C, Shen J S, Li R K Y. Mechanical behavior of injection moldedβ-crystalline phase polypropylene. Polymer Engineering and Science 1996, 36, (1), 100-105.
    32. Chatterjee A, Deopura B L. High modulus and high strength PP nanocomposite filament. Composites Part A: Applied Science and Manufacturing 2006, 37, (5), 813-817.
    33. Wetton R E, Marsh R, Van-de-Velde J G. Theory and application of dynamic mechanical thermal analysis. Thermochimica Acta 1991, 175, 1-11.
    34. Baldi F, Bignotti F, Ricco L, Monticelli O, Ricco T. Mechanical and structural characterization of POSS-modified polyamide 6. Journal of Applied Polymer Science 2006, 100, (4), 3409-3414.
    35. Doyle C D. Estimating Thermal Stability of Experimental Polymers by Empirical Thermogravimetric Analysis. Analytical Chemistry. 1961, 33, (1), 77-79.
    36. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochimica Acta 2006, 440, (1), 36-42.
    37. Geng H. Structure/property relationships of polymers containing hybrid nano-filler: Polyhedral oligomeric silsesquioxanes (POSS). Doctoral dissertation of Michigan State University 2002.
    38. Liu L, Tian M, Zhang W, Zhang L, Mark J E. Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer 2007, 48, (11), 3201-3212.
    39. Babrauskas V, Peacock R D. Heat release rate. The single most important variable in fire hazard. Fire Safety Journal 1992, 18, (3), 255-272.
    40. Mouritz A P, Mathys Z, Gibson A G. Heat release of polymer composites in fire. Composites Part A: Applied Science and Manufacturing 2006, 37, (7), 1040-1054.
    41. Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire and Materials 2002, 26, (4-5), 149-154.
    42. Ferry J D. Viscoelastic properties of polymer. John Wiley & Sons: New York 1980.
    43. Onogi S, Masuda T, Kitagawa K. Rheological Properties of Anionic Polystyrenes. I. Dynamic Viscoelasticity of Narrow-Distribution Polystyrenes. Macromolecules 1970, 3, (2), 109-116.
    44. Han C D, John M S. Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers. Journal of Applied Polymer Science 1986, 32, (3), 3809-3840.
    45. Soong S Y, Cohen R E, Boyce M C, Mulliken A D. Rate-dependent deformation behavior of POSS-filled and plasticized poly(vinyl chloride). Macromolecules 2006, 39, (8), 2900-2908.
    46. Soong S Y, Cohen R E, Boyce M C. Polyhedral oligomeric silsesquioxane as a novelplasticizer for poly(vinyl chloride). Polymer 2007, 48, (5), 1410-1418.
    47. Joshi M, Butola B S, Simon G, Kukaleva N. Rheological and viscoelastic behavior of HDPE/Octamethyl-POSS nanocomposites. Macromolecules 2006, 39, (5), 1839-1849.
    48. Han C D, Kim J, Kim J K. Determination of the order-disorder transition temperature of block copolymers. Macromolecules 1989, 22, (1), 383-394.
    49. Han C D, Baek D M, Kim J K, Ogawa T, Sakamoto N, Hashimoto T. Effect of volume fraction on the order-disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 1. Order-disorder transition temperature determined by rheological measurements. Macromolecules 1995, 28, (14), 5043-5062.
    50. Choi S, Lee K M, Han C D. Effects of triblock copolymer architecture and the degree of functionalization on the organoclay dispersion and rheology of nanocomposites. Macromolecules 2004, 37, (20), 7649-7662.
    51. Han C D, Chuang H-K. Criteria for rheological compatibility of polymer blends. Journal of Applied Polymer Science 1985, 30, (11), 4431-4454.
    52. Han C D. Influence of molecular weight distributiong on the linear viscoelastic properties of polymer blends. . Journal of Applied Polymer Science 1988, 35, (1), 167-213.
    53. Vega J F, Santamaría A, Mu?oz-Escalona A b, Lafuente P. Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 1998, 31, (11), 3639-3647.
    54. Tian J, Yu W, Zhou C. The preparation and rheology characterization of long chain branching polypropylene. Polymer 2006, 47, (23), 7962-7969.
    55.田敬华.长支链聚丙烯及聚丙烯反应共混材料的制备、结构与性能的研究.上海交通大学博士学位论文2007.
    56. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161-210.
    57. van-Gurp M, Palmen J. Time temperature superposition for polymeric blends. Rheol. Bull. 1998, 67, 5-8.
    58. Trinkle S, Freidrich C. Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers. Rheologica Acta 2001, 40, (4), 322-328.
    59. Trinkle S, Walter P, Friedrich C. Van Gurp-Palmen plot II - Classification of long chain branched polymers by their topology. Rheologica Acta 2002, 41, (1), 103-113.
    60. Carrot C, Mbarek S, Jaziri M, Chalamet Y, Raveyre C, Prochazka F. Immiscible blends of PC and PET, current knowledge and new results: Rheological properties. Macromolecular Materials and Engineering 2007, 292, (6), 693-706.
    61. Abdel-Goad M, Potschke P, Zhou D, Mark J E, Heinrich G. Preparation and rheologicalcharacterization of polymer nanocomposites based on expanded graphite. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 2007, 44, (6), 591-598.
    62. Lohse D J, Milner S T, Fetters L J, Xenidou M, Hadjichristidis N, Mendelson R A, García-Franco C A, Lyon M K. Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 2002, 35, (8), 3066-3075.
    63. Fu B X, Gelfer M Y, Hsiao B S, Phillips S, Viers B, Blanski R, Ruth P. Physical gelation in ethylene-propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 2003, 44, (5), 1499-1506.
    1. Mi Y, Chen X, Guo Q. Bamboo fiber-reinforced polypropylene composites: Crystallization and interfacial morphology. Journal of Applied Polymer Science 1997, 64, (7), 1267-1273.
    2. Shieh Y T, Lee M S, Chen S A. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer 2001, 42, (9), 4439-4448.
    3. Papageorgiou G Z, Achilias D S, Bikiaris D N, Karayannidis G P. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochimica Acta 2005, 427, (1-2), 117-128.
    4. Avella M, Cosco S, Di Lorenzo M L, Di Pace E, Errico M E. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. Journal of Thermal Analysis and Calorimetry 2005, 80, (1), 131-136.
    5. Homminga D, Goderis B, Dolbnya I, Reynaers H, Groeninckx G. Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly(ethylene oxide) /montmorillonite nanocomposites. Polymer 2005, 46, (25), 11359-11365.
    6. Ray V V, Banthia A K, Schick C. Fast isothermal calorimetry of modified polypropylene clay nanocomposites. Polymer 2007, 48, (8), 2404-2414.
    7. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y. Isothermal crystallization kinetics of polypropylene with silane functionalized multi-walled carbon nanotubes. Journal of Polymer Science, Part B: Polymer Physics 2007, 45, (13), 1616-1624.
    8. Fu B X, Yang L, Somani R H, Zong S X, Hsiao B S, Phillips S, Blanski R, Ruth P. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science, Part B: Polymer Physics 2001, 39, (22), 2727-2739.
    9. Chen J H, Chiou Y D. Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. Journal of Polymer Science, Part B: Polymer Physics 2006, 44, (15), 2122-2134.
    10. Chen J H, Yao B X, Su W B, Yang Y B. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 2007, 48, (6), 1756-1769.
    11.许锦华,丁雪佳,徐日炜,张立群,余鼎声.聚丙烯/笼型聚硅倍半氧烷的非等温结晶及其动力学研究.北京化工大学学报2004, 31, (6), 107-109.
    12. Fina A, Tabuani D, Frache A, Camino G. Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 2005, 46, (19 SPEC. ISS.), 7855-7866.
    13. Pracella M, Chionna D, Fina A, Tabuani D, Frache A, Camino G. Polypropylene-POSS nanocomposites: Morphology and crystallization behaviour. Macromolecular Symposia 2006, 234, 59-67.
    14. Tjong S C, Xu S A. Non-isothermal crystallization kinetics of calcium carbonate-filledβ-crystalline phase polypropylene composites. Polymer International 1997, 44, (1), 95-103.
    15. Joshi M, Butola B S. Isothermal crystallization of HDPE/octamethyl polyhedral oligomeric silsesquioxane nanocomposites: Role of POSS as a nanofiller. Journal of Applied Polymer Science 2007, 105, (2), 978-985.
    16. Zhang Q X, Yu Z Z, Xie X L, Mai Y W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 2004, 45, (17), 5985-5994.
    17. Avrami M J. Kinetics of phase change-Ⅲ. Granulation, phase change and microstructure. Journal of Chemistry and Physics 1941, 9, 177-124.
    18. Wunderlich B, Macromolecular physics. New York: Academic Press.: 1976; Vol. 2, p 146.
    19. Cui L, Wang S, Zhang Y, Zhang Y. Morphology and nonisothermal crystallization behavior of PP/novolac blends. Journal of Applied Polymer Science 2007, 105, (2), 379-389.
    20. Avrami. M. Kinetics of phase change-Ⅰ.General theory. Journal of Chemistry and Physics 1939, 7, 1103-1112.
    21. Grenier D, Robbert E P. Avrami Analysis: Three Experiment of limiting factors. Journal of polymer science. Physical Edition 1980, 18, 1655-1657.
    22. Zhou Z, Cui L, Zhang Y, Zhang Y, Yin N. Isothermal crystallization kinetics ofpolypropylene/POSS composites. Journal of Polymer Science, Part B: Polymer Physics. 2007, submitted.
    23. Avalos F, Lopez-Manchado M A, Arroyo M. Crystallization kinetics of polypropylene: 1. Effect of small additions of low-density polyethylene. Polymer 1996, 37, (25), 5681-5688.
    24. Zhang W, Fu B X, Seo Y, Schrag E, Hsiao B, Mather P T, Yang N L, Xu D, Ade H, Rafailovich M, Sokolov J. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 2002, 35, (21), 8029-8038.
    25. Liu Y, Yang X, Zhang W, Zheng S. Star-shaped poly(ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 2006, 47, (19), 6814-6825.
    26. Hoffman J D. Soc Plast Eng Trans 1960, 4, 315.
    27. Ni Y, Zheng S. Melting and crystallization behavior of polyhedral oligomeric silsesquioxane-capped poly(ε-caprolactone). Journal of Polymer Science, Part B: Polymer Physics 2007, 45, (16), 2201-2214.
    28. Hoffman J D, Miller R L. Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment. Polymer 1997, 38, (13), 3151-3212.
    29. Jiang X, Zhang Y, Zhang Y. Crystallization behavior of dynamically cured polypropylene/epoxy blends. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, (7), 1181-1191.
    30. Yin J, Wang S, Zhang Y, Zhang Y. Isothermal crystallization kinetics of PP in PP/Mg(OH)2 composites. Journal of Polymer Science, Part B: Polymer Physics 2005, 43, (14), 1914-1923.
    31. Hoffman J D, Weeks J J. Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. Journal of Chemical Physics 1962, 37, 1723-1741.
    32. Hoffman J D. Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 1983, 24, (1), 3-26.
    33. Clark E J, Hoffman J D. Regime III crystallization in polypropylene. Macromolecules 1984, 17, (4), 878-885.
    34. Hoffman J D, Davis G T, Laruriten J L. In "Treatise on solid state chemistry", Hannnay NE, ed, Plenum Press: New York 1976, 3, (7).
    35. Lopez-Manchado M A, Arroyo M. Crystallization kinetics of polypropylene: Part 4: Effect of unmodified and azide-modified PET and PA short fibres. Polymer 1999, 40, (2), 487-495.
    36. Li J, Zhou C, Wang G, Tao Y, Liu Q, Li Y. Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polymer Testing 2002, 21, (5), 583-589.
    37. Qian J S, He P S, Nie K M. Nonisothermal Crystallization of PP/Nano-SiO2 Composites. Journal of Applied Polymer Science 2004, 91, (2), 1013-1019.
    38. Ozawa T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150-156.
    39. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(Aryl Ether Ether Ketone Ketone). Polymer Engineering and Science 1997, 37, (3), 568-575.
    40. Liu N, Yu Y, Cui Y, Zhang H, Mo Z. Isothermal and nonisothermal crystallization kinetics of nylon-11. Journal of Applied Polymer Science 1998, 70, (12), 2371-2380.
    41. Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Stand 1956, 57, 217.
    42. Takhor R. Advances in nucleation and crystallization of glasses. Columbus: American Ceramics Society 1971, 166-172.
    1. Li G, Wang L, Ni H, Pittman Jr C U. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers 2001, 11, (3), 123-154.
    2. Joshi M, Butola B S. Polymeric nanocomposites - Polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science - Polymer Reviews 2004, 44, (4), 389-410.
    3. Lee Y J, Kuo S W, Huang W J, Lee H Y, Chang F C. Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, (6), 1127-1136.
    4. Kuo S W, Lin H C, Huang W U J, Huang C F, Chang F C. Hydrogen bonding interactions and miscibility between phenolic resin and octa(acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2006, 44, (4), 673-686.
    5. Ni Y, Zheng S, Nie K. Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 2004, 45, (16), 5557-5568.
    6. Zhao Y, Schiraldi D A. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 2005, 46, (25), 11640-11647.
    7. Fina A, Tabuani D, Frache A, Camino G. Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 2005, 46, (19 SPEC. ISS.), 7855-7866.
    8. Zeng J, Kumar S, Iyer S, Schiraldi D A, Gonzalez R I. Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Performance Polymers 2005, 17, (3), 403-424.
    9.倪勇.含苯基多面齐聚倍半硅氧烷高分子的结构与性能研究.上海交通大学博士学位论文2007.
    10. Tamaki R, Tanaka Y, Asuncion M Z, Choi J, Laine R M. Octa(aminophenyl)silsesquioxane as a nanoconstruction site. Journal of the American Chemical Society 2001, 123, (49), 12416-12417.
    11. Cho H, Liang K, Chatterjee S, Pittman Jr C U. Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate estermatrices. Journal of Inorganic and Organometallic Polymers and Materials 2005, 15, (4), 541-553.
    12. Zhang Y, Lee S H, Yoonessi M, Toghiani H, Pittman Jr C U. Phenolic resin/octa(aminophenyl)-T8-polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Synthesis, morphology, thermal and mechanical properties. Journal of Inorganic and Organometallic Polymers and Materials 2007, 17, (1), 159-171.
    13. Bertini F, Canetti M, Ricci G. Crystallization and melting behavior of 1,2-syndiotactic polybutadiene. Journal of Applied Polymer Science 2004, 92, (3), 1680-1687.
    14. Tjong S C, Xu S A. Non-isothermal crystallization kinetics of calcium carbonate-filledβ-crystalline phase polypropylene composites. Polymer International 1997, 44, (1), 95-103.
    15. Hang D H. Rheology in Polymer Processing. Academic: NewYork 1976.
    16. Homminga D, Goderis B, Dolbnya I, Reynaers H, Groeninckx G. Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly(ethylene oxide) /montmorillonite nanocomposites. Polymer 2005, 46, (25), 11359-11365.
    17. Homminga D S, Goderis B, Mathot V B F, Groeninckx G. Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration. Polymer 2006, 47, (5), 1630-1639.
    18. Homminga D, Goderis B, Dolbnya I, Groeninckx G. Crystallization behavior of polymer/montmorillonite nanocomposites. Part II. Intercalated poly(ε-caprolactone) /montmorillonite nanocomposites. Polymer 2006, 47, (5), 1620-1629.
    19. Zheng J, Siegel R W, Toney C G. Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites. Journal of Polymer Science, Part B: Polymer Physics 2003, 41, (10), 1033-1050.
    20. Weon J I, Sue H J. Mechanical properties of talc-and CaCO3-reinforced high-crystallinity polypropylene composites. Journal of Materials Science 2006, 41, (8), 2291-2300.
    21. Jiang X L, Zhang Y, Zhang Y. Crystallization Behavior of dynamically cured polypropylene/epoxy blends. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, (7), 1181-1191.
    22. Cui L, Wang S, Zhang Y, Zhang Y. Morphology and nonisothermal crystallization behavior of PP/novolac blends. Journal of Applied Polymer Science 2007, 105, (2), 379-389.
    23. Mackay M E, Henson D J. The effect of molecular mass and temperature on the slip of polystyrene melts at low stress levels. Journal of Rheology 1998, 42, (6), 1505-1517.
    24. Bomal Y, Godard P. Melt viscosity of calcium-carbonate-filled low density polyethylene: Influence of matrix-filler and particle-particle interactions. Polymer Engineering and Science 1996, 36, (2), 237-243.
    25. Wang Y, Wang J J. Shear yield behavior of calcium carbonate-filled polypropylene. Polymer Engineering and Science 1999, 39, (1), 190-198.
    26. Zhang W, Fu B X, Seo Y, Schrag E, Hsiao B, Mather P T, Yang N L, Xu D, Ade H, Rafailovich M, Sokolov J. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 2002, 35, (21), 8029-8038.
    27. Hany R, Hartmann R, Bóhlen C, Brandenberger S, Kawada J, Lo?we C, Zinn M, Witholt B, Marchessault R H. Chemical synthesis and characterization of POSS-functionalized poly[3-hydroxyalkanoates]. Polymer 2005, 46, (14), 5025-5031.
    28. Xie X L, Liu Q X, Li R K Y, Zhou X P, Zhang Q X, Yu Z Z, Mai Y W. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 2004, 45, (19), 6665-6673.
    29. Mackay M E, Dao T T, Tuteja A, Ho D L, Van Horn B, Kim H C, Hawker C J. Nanoscale effects leading to non-einstein-like decrease in viscosity. Nature Materials 2003, 2, (11), 762-766.
    30. Tuteja A, Mackay M E, Hawker C J, VanHorn B. Effect of Ideal, Organic Nanoparticles on the Flow Properties of Linear Polymers: Non-Einstein-like Behavior. Macromolecules 2005, 38, (19), 8000-8011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700